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Resumen

Este trabajo se enfoca al andlisis cinemético directo de un manipulador paralelo de tres
grados de libertad, cuya plataforma movil puede experimentar s6lo movimientos de
rotacion. El analisis directo de posicion, una tarea retadora en la mayoria de los
manipuladores paralelos, se presenta en forma cerrada. El andlisis directo de velocidad
se aborda por medio de la teoria de tornillos siendo de espe cial utilidad la forma de Klein
del dlgebra de Lie e(3). Finalmente, se proporciona una interpretacion geomeétrica de las
llamadas singularidades locales del manipulador paralelo propuesto.

Descriptores: Movimiento esférico, manipulador paralelo, teoria de tornillos, singu-
laridad, andlisis cinematico.

Abstract
Thiswork is de voted to the for ward ki ne mat ics of a three-degree-of-freedom par al lel ma nipu latorwhose
moving platformcanundergoonly spherical motions. Theforward positionanal ysis,achal lenging task
for most par al lel manip u lators, is pre sented in closed-form so lu tion. Af ter wards, the forwardvelocity
analysisis ap proached by means of the the ory of screws be ing of spe cial util ity the Klein form of the Lie

algebrae(3). Finally,ageometricinter pretationoftheso-called local singularities of the pro posed par-

E&um!#

allelmanipulatorisprovided.

Keywords: Sphericalmotion, parallelmanipulator, screwtheory, singu larity, kinematics.

Introduccién

Wha plataforma general Gough-Stewart es un
manipulador paralelo de seis grados de libertad
gue consta de una plataforma mévil unida a una
plataforma fija por medio de seis cadenas ci-
nematicas o extremidades, las cuales se accionan
de manera independiente. El analisis directo de
posicién del mecanismo, introducido por Gough
hace méas de medio siglo, como un mecanismo
para probar neumaticos de avion bajo diferentes
condiciones de carga, y retomado por Stewart
como un simulador de vuelo en 1965, es una tarea
compleja que conduce a 40 posibles soluciones,
(Raghavan, 1993), las cuales se pueden resumir en

un polinomio de grado cuarenta, (Innocenti, 1998).
No es de sorprender que el primer algoritmo, no
iterativo, propuesto para determinar los coefi-
cientes de dicho polinomio data de hace menos de
diez afos y se le atribuye a Husty (1996).

A fin de simplificar el andlisis directo de
posicion, la plataforma Gough-Stewart puede des-
componerse en dos manipuladores paralelos
ensamblados en serie, uno para la rotacion y el
otro para la translacién, y con ello, es posible
obtener la solucion en forma cerrada, (Gallardo,
2005). Por otra parte, si se reconoce que muchas
aplicaciones industriales no requieren de los seis
grados de libertad de un manipulador paralelo,
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entonces es posible recurrir a lo que se denomina
como un manipulador paralelo deficiente Un ejemplo
del éxito industrial de un manipulador paralelo con
menos de seis grados de libertad, es el llamado
manipulador Delta, una invencién de Clavel (1988).

Dentro de los manipuladores paralelos con
menos de seis grados de libertad, se ubican los
llamados manipuladores esféricos, y seguramente
el mas estudiado de ellos es el manipulador
conocido como el ojo agil, un mecanismo sobre
restringido que fue introducido por Gosselin y
Angeles (1988). Con dichos mecanismos un punto
fijo de la plataforma movil s6lo puede experimentar
movimientos de rotacién, por lo tanto, las demas
particulas de la plataforma movil se mueven sobre
esferas concéntricas. Los manipuladores esféricos,
dadas sus arquitecturas, tienen aplicaciones intere-
santes, como por ejemplo, en dispositivos meca-
nicos que orientan antenas de radar y telescopios.

En este trabajo se realiza el analisis cinematico
del manipulador paralelo esférico, compuesto por
tres cadenas cinematicas asimétricas que se mues-
tran en la figura 1.

La plataforma maovil se une a la fija por medio de
una cadena cinematica tipo CPS, por sus siglas en
el idioma Inglés de Cylindrical + Prismatic +
Spherical, otra tipo Spherical + Prismatic +
Spherical, o por brevedad simplemente SPS, y un

par esférico pasivo que por si solo constituye la
tercerextremidad.

El andlisis directo de posicion se obtiene en
forma cerrada, y con ello, se prescinde del uso de
una técnica numérica para su solucién, como lo es
el método de Newton-Raphson, (Gallardo et al.,
2004). Por su parte, el analisis de velocidad, asi
como el andlisis de singularidades locales, se
resuelve por medio de la teoria de tornillos
infinitesimales.

Finalmente, se proporciona un ejemplo numé-
rico, y los resultados obtenidos via teoria de
tornillos se comparan con los generados con el

programa de simulacién de analisis cinematico y
dinamico ADAMS®.

Figura 1. El manipulador propuesto y su esquema geométrico
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Analisis de posicidn

El analisis directo de posicidon consiste en deter-
minar las coordenadas, de acuerdo al sistema de
referencia fijo o global XYZ, de los centros de los
pares esféricos, {Sq, Si, S}, que conectan la
plataforma mévil con las tres cadenas cinematicas
cuando se dispone de un conjunto de coorde-
nadas generalizadas {q,, g,, g5}, asi como de los
parametros del manipulador. Este analisis requie-
re, definitivamente, del célculo correcto del grado
de libertad del mecanismo, por lo que esta seccion
inicia con dicho andlisis de movilidad.

El grado de libertad F de un mecanismo
espacial de acuerdo a la clasica férmula de
Kutzbach-Gribler, viene dado por

F=6n-3-36-1)

donde n es el numero de eslabones y f; re-
presenta el grado de libertad del par cineméatica
en turno. De esta manera, puesto que el
manipulador paralelo bajo estudio se compone
de 6 eslabones, 1 par cilindrico, 2 pares pris-
maticos y 4 pares esféricos; entonces, apa-
rentemente, el mecanismo es de 4 grados de
libertad, como bien lo menciona uno de los
revisores. Sin embargo, nétese que la rotacion a
lo largo de la extremidad SPS, debida a los dos
pares esféricos, no afecta el movimiento de la
plataforma movil, es decir, dicha rotacion debe
considerarse como un grado de libertad pasivo
gue debe restarse de los 4 ya calculados, dando

como resultado el grado de libertad del me-
canismo que es en realidad 3.

Una vez que se ha determinado el grado de
libertad del mecanismo, se prosigue con el analisis
directo de posicion.

De la figura 1 es evidente que
So=(0,h0.

Por otra parte, a fin de calcular las coordenadas
del centro de la junta esférica

Sl =O( l’Yl!Zj)y

es necesario considerar las ecuaciones de clausura
asociadas a la cadena cinematica CPS y el par

esférico pasivo de la tercer extremidad, la cual
actia como un simple poste. De la arquitectura del
mecanismo, es posible escribir las ecuaciones de

restriccion

(§1- 5 - 61)- (§1 - 81):q§ 1)
(él-ﬁ)- (Sl-ﬁ)zrz ?

donde - denota al producto escalar usual del
algebra vectorial de tres dimensiones. Si se to-
ma en cuenta que el par prismatico asociado al
par cilindrico de la extremidad CPS, denotado
por la coordenada generalizada q;, se mueve en
una direccién paralela al eje X, entonces de
acuerdo con las expresiones (1) y (2) se obtiene
una ecuacién cuadréatica con la cual es posible
determinar Z,;. Esto es

A.Z +B,Z, +C, =0 (3)

donde los coeficientes se proporcionan en la
tabla 1. Mas aln, dada la topologia del ma-

nipulador, si el sistema de referencia XYZ se
ubica de tal forma que el eje X se encuentraalo
largo de la coordenada generalizada g, en-

tonces es evidente que X;=(q3. Por su parte, la
componente Y, se obtiene a partir de la
ecuacion (1) como

Yf:qi’ (Zl-dl)z’ (4)

y con ello, se completa el célculo de las
coordenadas del centro del par esférico S;.

A fin de calcular las coordenadas del centro de
la junta esférica

Sz =(X2’ Yz'Zz)

se consideran las ecuaciones de restriccion dadas por

N
1
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e}
~
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—
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_
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Tabla 1. Coeficientes de la ecuacion 3

A =42 +h?)

Bl =4(' dl3 B h2d1 +q§d1 B r2dl +q12d1

C,=2qg3h*-2q2h* - 2922 +q - 2h®r?- 297d? - 2h?d} - 2r %2 + 2r%d? +q]

# 04 20007 - 205 + 1+

Tabla 2. Coeficientes de las ecuaciones 8 'y 9

_ hzl - hdZZ +Yld22
= hxl + hdzx = Yld 2X

_-hzZ?-hX?-hY?+hr®- hq; +hd; - Y,r®+hd, - Yd) +Y,h’-Yd., +Y.q

172X 2

K. = dzle - dzle
° - hX, +hd,, -Y,d,,

2(- hX, +hd,, - Y,d,, )

172X

=" C’rzle +d222 X1+d22xX1' dZXY12 B dzxxlz'dzxz12+ r2Xl +h2d2x' h2X1

De las expresiones (5), (6) y (7), es posible obtener
un sistema lineal de dos ecuaciones con tres
incégnitas {X,,Y,,Z,}. Por lo tanto, expresando X,
y Y, en términos de la variable Z , se obtiene que

X, =K, Z, +K,, 8)

Y, =K;Z, +K, . 9)
Donde, los coeficientes se listan en la tabla 2.

La sustitucion de las expresiones (8) y (9) en la

(5) conduce a la siguiente ecuacion cuadratica,
cuya variable es precisamente Z,.

(Kg +Ki +])Z§ +
AKK, +K K, - K,hZ, + (10)

2

h? +K5 - 2K,h+K; -r° =0

Una vez que se calcula 7z, las componentes
restantes del centro del par esférico S,=(X,Y,,Z,),
se determinan directamente de las expresiones (8)
y (9), y con ello, se completa el andlisis directo de

posiciéon en forma cerrada.

2(- hX, +hd,,

- YleX)

Conceptos basicos de teoria de
tornillos en los analisis de primer
orden

Como una consideracién para aquellos lectores
que no estan familiarizados con la teoria de
tornillos infinitesimales, a fin de darle coherencia a
las secciones posteriores, en esta seccién se pro-
porciona una revision, necesariamente breve de
algunos conceptos relacionados con la aplicacion de
esta herramienta matematica en el analisis de velo-

cidad de cadenas cineméticas abiertas y cerradas.

Un tornillo, $, es un vector de seis dimensiones
dado por una componente primaria, P($)=¢, y una
componente dual, D($)=S,, y se representa en
coordenadas de Pliicker, Duffy (1996), como

6

El vector unitario o normalizado§ representa un
vector a lo largo del eje del tornillo, mientras que el
vector s, es el momento producido por § en

relacién a un punto O fijo al sistema de referencia.
El momento s, se determina como

$ 11)
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So =B +S57 Toro (12)

donde, fo/0' €S UN vector que inicia en un punto O
del eje instantaneo del tornillo y termina en el
punto de interés O’, mientras que p es el paso del
tornillo. Por su parte, *, denota al producto cruz
usual del lgebra vectorial de tres dimensiones.

Cualquier par cinematico inferior puede repre-
sentarse por un tornillo o conjunto de tornillos. Si
el tornillo representa a un par de revoluta, en-
tonces el paso p es igual a cero y el tornillo viene
dado por

_&
g o

Si el paso del tornillo tiende a infinito, entonces el
tornillo representa a un par prismatico y se
reduce a

$ v (13)
i

(14)

(@ el et

Un par cilindrico es la combinacion de un par
de revoluta y un par prismético, mientras que un
par esférico resulta de la accion de tres pares de
revoluta, cuyos ejes concurren a un punto coman.

Sean
$,=65..%0 Y $ =(52:50)

dos tornillos infinitesimales o elementos del
algebra de Lie ¢(3). La forma de Klein se define

como

KLe@ ed® R
KL($,$,)=$" 3, +5, " Sos (15)

El estado de velocidad V de un cuerpo rigido
representa el giro sobre un tornillo (Ball, 1900), y
se determina como

. Qv U
V=vp=¢ U

& g

donde wes la velocidad angular del cuerpo rigido
mientras que Y, es la velocidad del punto O, fijo al
cuerpo rigido en movimiento bajo estudio, y que

(16)

en el instante de tiempo considerado coincide con
un punto fijo al sistema de referencia.

En un manipulador serie, el estado de velocidad
del 6rgano terminal cuerpo m, con respecto al
eslabon fijo cuerpo O, puede expresarse, segin
Sugimoto y Duffy (1982), en términos de los
tornillos infinitesimales, asociados a los pares
cinematicos del manipulador como la siguiente
combinacionlineal

V"=3 w,$", (a7

donde .w, . representa los cambios instantaneos
de velocidad entre los cuerpos indicados.

La expresion (17) es un elemento esencial en el
analisis de velocidad de manipuladores serie y pue-
de extenderse sin esfuerzo considerable al andlisis
de velocidad de cadenas cinemaéticas cerradas y
manipuladores paralelos, (Rico etal., 1999).

Analisis de velocidad

En esta seccion se formula el analisis directo de
velocidad del manipulador paralelo propuesto.
Dicho analisis consiste en determinar la velocidad
angular de la plataforma movil, con respecto a la
fija, dado un conjunto de velocidades generali-
zadasinstantaneas.

En el manipulador propuesto, el estado de
velocidad de la plataforma movil cuerpo 6, con
respecto a la plataforma fija cuerpo 0, puede
expresarse a través de cualesquiera de las tres
cadenas cinematicas conectoras. Por ejemplo, el
estado de velocidad de la plataforma mévil de
acuerdo a la expresion (17), (Sugimoto y Duffy,
1982), tomando como referencia el punto Q
indicado en la figura 1, y de acuerdo a la cadena

cinematica CPS vendra dado por
Gy’ 8 + 0 8 40,787+, w87 +
Ws $° +w'$ = VE (18)

donde, los tornillos infinitesimales indicados en la
expresion (18) se muestran en la figura 2. Notese
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que los tornillos °$" y '$? representan, respec-
tivamente, al par de revolutay al par prismatico del

par cilindrico de la cadena CPS.

Figura 2. Cadena CPS y sus tornillos infinitesimales

Mas aln, puesto que el punto Q carece de
movimientos de translacion, entonces es evidente

gue la componente dual del estado de velocidad
es nula, (Ball, 1900). Esto es

Ve = g’g (19)

donde
W= (W, W, W, )

es la velocidad angular de la plataforma movil de
acuerdo al sistema de referencia fijo .

Considere la linea en coordenadas de Pllcker,

$1 =(51x Sty ,81z,5Q X ,SQ1y ,Sle) )

(Duffy, 1996), a lo largo de la extremidad CPS. Esta
linea es reciproca a todos los tornillos que
representan los pares de revoluta de la extremidad

CPS. Por lo tanto, la aplicacion de la forma de
Klein, Rico y Duffy (2000), entre $;, yambos lados
de la expresion (18) conduce a

q, = KL($,.° \76). (20)

Considere ahora la extremidad SPS, figura 3.
Siguiendo un procedimiento similar al de la
extremidad CPS, se obtiene que

Figura 3. Cadenas SPS y sus tornillos infinitesimales

q, =KL($2,°\76). (21)

donde

$; =(2x1S2v 182 1Sq2x:S 02y 1S027) 1
es lalinea a lo largo de la extremidad SPS.

Con la finalidad de completar las ecuaciones
necesarias para el andlisis directo de velocidad, se
introduce una cadena cinematica ficticia SPS que
inicia en el punto de interseccion de las lineas d, y
(3 que termina en el centro del par esférico Sy, tal y
como se indica en las figuras 1y 4. De esta manera,
es posible escribir la siguiente expresion

Figura 4. Cadena ficticia SPS y sus tornillos
infinitesimales

4, =KL ($f 0 \76). (22)
Donde
$ =(S X 4 SfY 4 S1Z,SQix , SQfy ,Ssz) )
es una linea en coordenadas de Pliicker a lo largo

de la extremidad ficticia. Mas aln, puesto que de
acuerdo a la figura 1 se tiene que

0 =408 +q3.
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Entonces, la velocidad ¢; se obtiene por simple
derivacion como

f _ 00, +G0s

q i
VAl +a;

(23

Finalmente, ordenando en forma matricial las
expresiones (20), (21) y (22) se obtiene que la
velocidad angular de la plataforma movil, como se

dbserva desde la plataforma fija, puede calcularse
directamente de la expresion

o
W=S ng Hv (24)

&4

donde S es una matriz especial dada por las
componentes duales de las lineas a lo largo de las

extremidades CPS, SPS 'y la linea ficticia como

§ ol wnid

Vale la pena destacar que la expresion (24)
permite calcular la velocidad angular de la pla-
taforma mavil a partir de las velocidades gene-
ralizadas y las componentes duales de las coor-
denadas de las lineas a lo largo de las extremi-
dades del manipulador, incluyendo la extremidad
ficticia. Mas aln, la expresion (24) muestra como el
analisis directo de velocidad puede ser resuelto
sistematicamente aplicando las propiedades de
tornillos reciprocos a través de la forma de Klein,
sin necesidad de calcular las velocidades pasivas
del manipulador, algo que sin duda representa un
ahorro considerable de tiempo de cémputo.

Andlisis de singularidades locales

En esta seccion el analisis de singularidades se
aborda por medio de la teoria de tornillos infini-
tesimales y se toma como referencia la extremidad
tipo CPS, aun asi, los resultados son aplicables a la

extremidad SPS.

La expresion (18) puede ser rescrita como

w=0 v°® (25)
donde
W:[Os Wo Gy 3W 4 Ws 5W6]T

es la matriz de las velocidades pasivas y genera-
lizadas de la extremidad CPS, mientras que J es la

matriz Jacobiana generada por el subespacio de los
correspondientes tornillos infinitesimales. Esto es

J=[0$1 l$2 2$3 3$4 4$5 5$6]

Una singularidad local ocurre cuando no existe
una relacién uno a uno en la expresion (25), (Di
Gregorio, 2004), y puede presentarse tanto en el

analisis directo de velocidad como en el inverso.

El primer tipo de singularidad en ser analizada
es la asociada al andlisis inverso de velocidad.
Suponga que la velocidad angular de la plataforma
movil se anula, esto es

- ., =T
O\® = [o ol .
Esta condicion se satisface si:

w=[0,,] La cual es una situacion tri-

vial y por lo tanto, cualquier analisis poste-
rior es tiempo perdido.

El rango de la matriz Jacobiana ] es
deficiente, lo cual implica que su dimension
es incompleta y det())=0. Bajo esta
condicion, la matriz W puede admitir valores
arbitrarios reales, siendo de especial interés
los correspondientes a las velocidades
generalizadas ¢ y gs. Si §*0 0 @ O el
manipulador esférico experimenta des-
plazamientos infinitesimales y la plataforma
movil se encuentra en un punto muerto.

El otro tipo de singularidad en ser analizada, es
la asociada con el andlisis directo de velocidad.
Estas singularidades son mas interesantes que las
primeras y la ecuacion clave para su estudio es la
expresion (24).
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Una breve inspeccion de la expresion (24) revela
gue el andlisis directo de velocidad no tiene
solucion o significado fisico cuando el rango de
la matriz es deficiente, es decir, cuando
det(S)=0. Varias situaciones pueden caer en
esta posibilidad y a continuacion se estudian
algunas de ellas.

Si una extremidad del manipulador se
anula, por ejemplo si q,=0, entonces la
componente primaria de la linea $, no queda
definida de manera Unica, provocando la
singularidad de la matriz S.

Suponga que el centro del par esfé-
rico S, se encuentra en la direccion del
vectord,. Entonces es evidente el que

y con ello, se anula el segundo renglon de la
matriz S, lo cual evidentemente provoca que

dm(S) £2® det(S) =0.

Un resultado similar se obtiene si el centro
del par esférico S, se encuentra en la
direccion de gy, lo cual, implica ademas que

o; =0.

Si las componentes primarias de las
lineas § y $, son coplanares, entonces las
componentes duales de dichas lineas son
linealmente dependientes, provocando la sin-
gularidad de la matriz S.

Si las componentes primarias de las
lineas $ y $, concurren a un mismo punto,
entonces si dicho punto se toma como
referencia para el calculo de las respectivas
componentes duales, éstas se anulan y
todos los elementos de la matriz S son
iguales a cero. Bajo tal situacion es evidente
que det (J)=0.

Finalmente, las singularidades locales indicadas
en esta seccion seguramente son las mas
representativas e interesantes del manipulador
propuesto. Sin embargo, es importante mencionar
gue un mayor nuamero de singularidades locales

pueden ser detectadas e interpretadas recurriendo
al concepto de dependencia lineal de la matriz S.
Por ejemplo, la condicion de no singularidad de la
matriz S ocurre cuando se genera con unicidad al
vector cero de tres dimensiones, es decir, Si se sa-

tisface que

|1§Q + 2§Q2 +1 3§Qf :6
0 1, =0G=123)

donde, por supuesto, se descarta la solucién
trivial.

Ejemplo numérico

A fin de mostrar la versatilidad de las expresiones
derivadas en la presente contribucién para el
andlisis cinematico directo del mecanismo pro-
puesto, en esta seccidn se proporciona un ejem-
plo numérico.

Los parametros asignados al mecanismo son
los siguientes

d:=025,r =10,h =10,

d,=(-10,00,-025

donde todos los valores estdn en metros. Por su
parte, las coordenadas generalizadas se rigen por
las funciones periodicas

q,=10- 025n(t),
q, =15- 0.75en(t),
q, =-045- 04sen(t),t=0,...2p

Es decir, la plataforma movil inicia su
movimiento en el tiempo t=0y 2p, segundos mas
tarde regresa a su posicion original. Por otra
parte, las velocidades generalizadas se obtienen
como simples derivadas temporales de las
coordenadas generalizadas. Con esta infor-
macion se desean determinar todas las posibles
orientaciones instantaneas de la plataforma
movil, via el calculo de las coordenadas de los
tres pares esféricos que se ubican sobre ésta, asi
como el historial de la velocidad angular
instantanea de la plataforma mévil, con respecto
a la plataforma fija, tomando como posicion
inicial del manipulador una solucion del anélisis
directo de posicién.
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Las expresiones requeridas para resolver el
ejemplo numérico se introdujeron en una hoja
MapleOy en la tabla 3 se listan las cuatro posibles
soluciones resultantes del analisis directo de
posicion.

Finalmente, la velocidad angular de la pla-
taforma mévil, tomando como posicion inicial la
primera solucion del andlisis directo de posicién,
se muestra en la figura 5. Mas adn, con la finalidad
de validar los resultados numéricos del ejemplo
propuesto, se generé un modelo con el programa
de simulacién de andlisis cinematico y dindmico

ADAMSO y los resultados de dicho modelo se
incluyen en la misma figura.

Conclusiones

En este trabajo se propone un manipulador
esférico con una topologia, hasta donde los au-
tores esperan, inédita. El manipulador propuesto
se compone de una plataforma fija y una movil,
unidas por medio de dos extremidades, una tipo
CPS y la otra tipo SPS, y un par esférico pasivo
cuya funcion es la de restringir el movimiento de
translacién de un punto fijo a la plataforma movil,

Tabla 3. Soluciones del analisis directo de posicién

S, S, s,

019 (-045,07868,0.8620) (-0.8804, 14185,0.225)
©L9 (-045,07868,0.8620) (02734, 01904,05194)
019 (-045,04037 -0 6648) (-0.652,13882-06770)
©L9 (-045,04037-06648) (04819, 02026,-0.363L)

(1] 1 28 w0

18
20I8-B1-16 W7 56

Figura 5. Historial de la velocidad angular de la plataforma movil
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por lo que dicho punto sélo puede experimentar
movimientos de rotaciéon, mientras que los
restantes puntos, fijos a la plataforma moévil, se
mueven sobre esferas concéntricas de acuerdo a la
posicion fija del punto.

El analisis directo de posicion del mecanismo
propuesto se obtiene en forma cerrada, y con ello,
se evita el uso de una técnica numérica con sus
respectivos inconvenientes, como lo es el método
de Newton-Raphson para su solucion. El andlisis
revela que existen, cuando mucho, cuatro solu-
ciones diferentes del manipulador esférico, lo cual
contrasta con las posibles cuarenta soluciones del
andlisis directo de posicion de una plataforma
general Gough-Stewart.

El andlisis directo de velocidad del manipulador
esférico se aborda por medio de la teoria de
tornillos infinitesimales. Para un mejor enten-
dimiento de este analisis, se incluye una seccién
con conceptos preliminares relacionados con el
andlisis de velocidad de cadenas cinematicas
abiertas y cerradas por medio de la teoria de
tornillos infinitesimales. El estado de velocidad, o
giro infinitesimal sobre un tornillo, se expresa
como un vector de seis dimensiones, y a su vez, en
forma de tornillos infinitesimales a través de cada
una de las dos cadenas cinematicas de que consta
el mecanismo propuesto. Posteriormente, la
aplicacion de la forma de Klein entre la linea en
coordenadas de Pliicker a lo largo de la extremidad
CPS con el estado de velocidad de la plataforma
movil, permite calcular la velocidad generalizada
asociada al par prismatico de dicha extremidad.
Un procedimiento similar conduce al calculo de la
velocidad generalizada asociada al par prismatico
de la cadena cinemética SPS. A fin de completar
las expresiones requeridas para el analisis directo
de velocidad, se introduce una cadena cinematica
ficticia tipo SPS y de igual forma, se determina la
velocidad generalizada del par prismatico ficticio.
Ordenando en forma matricial las expresiones asi
generadas, y tomando en cuenta que la compo-
nente dual del estado de velocidad de la plata-
forma movil es el vector cero, se obtiene una
expresién simple y compacta para el calculo de la
velocidad angular de la plataforma movil, con
respecto a la plataforma fija. Es interesante
mencionar que dicha expresion no requiere de los
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valores de las velocidades pasivas del mani-
pulador, lo cual sin duda representa un ahorro
significativo en tiempo de computo. Adicional-
mente, se provee una interpretacion geometrica
sobre las singularidades locales mas significativas
del manipulador propuesto.

Finalmente, se proporciona un ejemplo numé-
rico y los resultados obtenidos con las expresiones
derivadas en la presente contribucién, via teoria
de tornillos, se comparan con resultados gene-
rados con el programa de simulacién de analisis
cinemético y dinamico ADAMS &.
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