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Resumen
Este trabajo se enfoca al análisis cinemático directo de un manipulador paralelo de tres
grados de libertad, cuya plataforma móvil puede experimentar sólo movimientos de

rotación. El análisis directo de posición, una tarea retadora en la mayoría de los
manipuladores paralelos, se presenta en forma cerrada. El análisis directo de velocidad
se aborda por medio de la teoría de tornillos siendo de espe cial utilidad la forma de Klein 

del álgebra de Lie e(3).  Finalmente, se proporciona una interpretación geométrica  de las 
llamadas singularidades locales del manipulador paralelo propuesto.

Descriptores:  Movimiento esférico, manipulador paralelo, teoría de tornillos, singu-
laridad,  análisis cinemático.

Abstract
This work is de voted to the for ward ki ne mat ics of a three-degree-of-freedom par al lel ma nip u la tor whose

mov ing plat form can un dergo only spher i cal mo tions. The for ward po si tion anal y sis, a chal leng ing task 
for most par al lel ma nip u la tors, is pre sented in closed-form so lu tion. Af ter wards, the for ward ve loc ity
anal y sis is ap proached by means of the the ory of screws be ing of spe cial util ity the Klein form of the Lie

al ge bra e(3). Finally, a geo met ric in ter pre ta tion of the so-called lo cal sin gu lar i ties of the pro posed par -
al lel ma nip u la tor is pro vided.

Key words:  Spher i cal mo tion, par al lel ma nip u la tor, screw the ory, sin gu lar ity, ki ne mat ics.

Introducción

Una plataforma general Gough-Stewart es un
manipulador paralelo de seis grados de libertad
que consta de una plataforma móvil unida a una
plataforma fija por medio de seis cadenas ci-
nemáticas o extremidades, las cuales se accionan
de manera independiente. El análisis directo de
posición del mecanismo, introducido por Gough
hace más de medio siglo, como un mecanismo
para probar neumáticos de avión bajo diferentes
condiciones de carga, y retomado por Stewart
como un simulador de vuelo en 1965, es una tarea
compleja que conduce a 40 posibles soluciones,
(Raghavan, 1993), las cuales se pueden resumir en

un polinomio de grado cuarenta, (Innocenti, 1998). 
No es de sorprender que el primer algoritmo, no
iterativo, propuesto para determinar los coefi-
cientes de dicho polinomio data de hace menos de 
diez años y se le atribuye a Husty (1996).  

A fin de simplificar el análisis directo de
posición, la plataforma Gough-Stewart puede des-
componerse en dos manipuladores paralelos
ensamblados en serie, uno para la rotación y el
otro para la translación, y con ello, es posible
obtener la solución en forma cerrada, (Gallardo,
2005). Por otra parte, si se reconoce que muchas
aplicaciones industriales no requieren de los seis
grados de libertad de un manipulador paralelo,



entonces es posible recurrir a lo que se denomina
como un manipulador paralelo deficiente. Un ejemplo
del éxito industrial de un manipulador paralelo con 
menos de seis grados de libertad, es el llamado
manipulador Delta, una invención de Clavel (1988).

Dentro de los manipuladores paralelos con
menos de seis grados de libertad, se ubican los
llamados manipuladores esféricos, y seguramente
el más estudiado de ellos es el manipulador
conocido como el ojo ágil, un mecanismo sobre
restringido que fue introducido por Gosselin y
Angeles (1988). Con dichos mecanismos un punto
fijo de la plataforma móvil sólo puede experimentar
movimientos de rotación, por lo tanto, las demás
partículas de la plataforma móvil se mueven sobre
esferas concéntricas. Los manipuladores esféricos,
dadas sus arquitecturas, tienen aplicaciones intere-
santes, como por ejemplo, en dispositivos mecá-
nicos que orientan antenas de radar y telescopios.

En este trabajo se realiza el análisis cinemático
del manipulador paralelo esférico, compuesto por
tres cadenas cinemáticas asimétricas que se mues- 
tran en la figura 1. 

La plataforma móvil se une a la fija por medio de
una cadena cinemática tipo CPS, por sus siglas en
el idioma Inglés de Cylindrical + Prismatic +
Spherical, otra tipo Spherical + Prismatic +
Spherical, o por brevedad simplemente SPS, y un
par esférico pasivo que por sí solo constituye la
tercer extremidad.

El análisis directo de posición se obtiene en
forma cerrada, y con ello, se prescinde del uso de
una técnica numérica para su solución, como lo es
el método de Newton-Raphson, (Gallardo et al.,
2004). Por su parte, el análisis de velocidad, así
como el análisis de singularidades locales, se
resuelve por medio de la teoría de tornillos
infinitesimales. 

Finalmente, se proporciona un ejemplo numé-
rico, y los resultados obtenidos vía teoría de
tornillos se comparan con los generados con el
programa de simulación de análisis cinemático y
dinámico ADAMS©.
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Figura 1. El manipulador propuesto y su esquema geométrico



Análisis de posición

El análisis directo de posición consiste en deter-
minar las coordenadas, de acuerdo al sistema de
referencia fijo o global XYZ, de los centros de los
pares esféricos, {SQ, S1, S2}, que conectan la
plataforma móvil con las tres cadenas cinemáticas
cuando se dispone de un conjunto de coorde-
nadas generalizadas {q1, q2, q3}, así como de los
parámetros del manipulador. Este análisis requie-
re, definitivamente, del cálculo correcto del grado
de libertad del mecanismo, por lo que esta sección 
inicia con dicho análisis de movilidad.

El grado de libertad F de un mecanismo
espacial de acuerdo a la clásica fórmula de
Kutzbach-Grübler, viene dado por

F n fj
j

= - - -å6 1 6( ) ( )

donde n es el número de eslabones y  f j re-
presenta el grado de libertad del par cinemática
en turno. De esta manera, puesto que el
manipulador paralelo bajo estudio se compone
de 6 eslabones, 1 par cilíndrico, 2 pares pris-
máticos y 4 pares esféricos; entonces, apa-
rentemente, el mecanismo es de 4 grados de
libertad, como bien lo menciona uno de los
revisores. Sin embargo, nótese que la rotación a
lo largo de la extremidad SPS, debida a los dos
pares esféricos, no afecta el movimiento de la
plataforma móvil, es decir, dicha rotación debe
considerarse como un grado de libertad pasivo
que debe restarse de los 4 ya calculados, dando
como resultado el grado de libertad del me-
canismo que es en realidad  3. 

Una vez que se ha determinado el grado de
libertad del mecanismo, se prosigue con el análisis
directo de posición.

De la figura 1 es evidente que

S hQ = ( , , )0 0 . 

Por otra parte, a fin de calcular las coordenadas 
del centro de la junta esférica

S X Y Z1 1 1 1= ( , , ) , 

es necesario considerar las ecuaciones de clausura 
asociadas a la cadena cinemática CPS y el par
esférico pasivo de la tercer extremidad, la cual
actúa como un simple poste. De la arquitectura del 
mecanismo, es posible escribir las ecuaciones de
restricción

            ( ) ( )r r r r r r
S q d S q d q1 3 1 1 3 1 1

2- - · - - =          (1)

y

                ( ) ( )r r r r
S h S h r1 1

2- · - =                   (2)

donde • denota al producto escalar usual del
álgebra vectorial de tres dimensiones. Si se to-
ma en cuenta que el par prismático asociado al
par cilíndrico de la extremidad CPS, denotado
por la coordenada generalizada q3, se mueve en
una dirección paralela al eje X, entonces de
acuerdo con las expresiones (1) y (2) se obtiene
una ecuación cuadrática con la cual es posible
determinar Z1. Esto es

                  A Z B Z C1 1
2

1 1 1 0+ + =                       (3)

donde los coeficientes se proporcionan en la
tabla 1. Más aún, dada la topología del ma-
nipulador, si el sistema de referencia XYZ se
ubica de tal forma que el eje X se encuentra a lo
largo de la coordenada generalizada q3, en-
tonces es evidente que X1=q 3. Por su parte, la
componente Y 1 se obtiene a partir de la
ecuación (1) como

                    Y q Z d1
2

1
2

1 1
2= - -( ) ,                      (4)

y con ello, se completa el cálculo de las
coordenadas del centro del par esférico S1.

A fin de calcular las coordenadas del centro de
la junta esférica 

S X Y Z2 2 2 2=( , , )

se consideran las ecuaciones de restricción dadas por

                 ( ) ( )
r r r r
S S S S r2 2

2- · - =Q Q                  (5)

                  ( ) ( )
r r r r
S d S d q2 2 2 2 2

2
- · - =                   (6)

                  ( ) ( )
r r r r
S S S S r2 1 2 1

2- · - =                   (7)
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De las expresiones (5), (6) y (7), es posible obtener
un sistema lineal de dos ecuaciones con tres
incógnitas {X2,Y2,Z2}. Por lo tanto, expresando X2
y Y2 en términos de la variable Z 2 se obtiene que

                      X K Z K2 1 2 2= + ,                         (8)

y

                      Y K Z K2 3 2 4= + .                         (9)

Donde, los coeficientes se listan en la tabla 2. 

La sustitución de las expresiones (8) y (9) en la
(5) conduce a la siguiente ecuación cuadrática,
cuya variable es precisamente Z2.

( )K K Z3
2

1
2

2
21+ + +

                     2 1 2 3 4 3 2( )K K K K K h Z+ - +              (10)
h K K h K r2

2
2

4 4
2 22 0+ - + - =

Una vez que se calcula Z2, las componentes
restantes del centro del par esférico S2=(X2,Y2,Z2),
se determinan directamente de las expresiones (8)
y (9), y con ello, se completa el análisis directo de
posición en forma cerrada.

Conceptos básicos de teoría de
tornillos en los análisis de primer

orden

Como una consideración para aquellos lectores
que no están familiarizados con la teoría de
tornillos infinitesimales, a fin de darle coherencia a 
las secciones posteriores, en esta sección se pro-
porciona una revisión, necesariamente breve de
algunos conceptos relacionados con la aplicación de
esta herramienta matemática en el análisis de velo-
cidad de cadenas cinemáticas abiertas y cerradas.

Un tornillo, $, es un vector de seis dimensiones
dado por una componente primaria, P($)=$s, y una
componente dual, D($)=

r
s0, y se representa en

coordenadas de Plücker, Duffy (1996), como

                            $
$

=
é

ëê
ù

ûú
s

sr0
.                             (11)

El vector unitario o normalizado $s representa un 
vector a lo largo del eje del tornillo, mientras que el 
vector 

r
s 0 es el momento producido por $s en

relación a un punto O fijo al sistema de referencia.
El momento rs0 se determina como
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Tabla 1. Coeficientes de la ecuación 3
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Tabla 2. Coeficientes de las ecuaciones 8 y 9



                      r rs ps s rO O O= + ´$ $ / '                      (12)

donde, 
r
r O/O’ es un vector que inicia en un punto O

del eje instantáneo del tornillo y termina en el
punto de interés O’, mientras que p es el paso del
tornillo. Por su parte, ×, denota al producto cruz
usual del álgebra vectorial de tres dimensiones.

Cualquier par cinemático inferior puede repre-
sentarse por un tornillo o conjunto de tornillos. Si
el tornillo representa a un par de revoluta, en-
tonces el paso p  es igual a cero y el tornillo viene
dado por

                       $
$
$ / '

=
´

é

ë
ê
êê

ù

û
ú
úú

s
s rO O

r                           (13)

Si el paso del tornillo tiende a infinito, entonces el 
tornillo representa a un par prismático y se
reduce a

                            $ $=
é

ë
ê
êê

ù

û
ú
úú

r
0
s

                                (14)

Un par cilíndrico es la combinación de un par
de revoluta y un par prismático, mientras que un
par esférico resulta de la acción de tres pares de
revoluta, cuyos ejes concurren a un punto común.

Sean
$ ($ , )1 1 1= s sO

r   y   $ ($ , )2 2 2= s sO
r

dos tornillos infinitesimales o elementos del
álgebra de Lie e(3). La forma de Klein se define
como

KL R: ( ) ( )e e3 3´ ®
              KL($ ,$ ) $ $1 2 1 2 2 1= · + ·s s s sO O

r r                    (15)

El estado de velocidad 
r

V de un cuerpo rígido
representa el giro sobre un tornillo (Ball, 1900), y
se determina como

                                   
r r

rV = =
é

ë
ê
ê
ê

ù

û
ú
ú
ú

w
w

$
vo

,                                (16)

donde 
r
w es la velocidad angular del cuerpo rígido

mientras que rvO es la velocidad del punto O, fijo al
cuerpo rígido en movimiento bajo estudio, y que

en el instante de tiempo considerado coincide con 
un punto fijo al sistema de referencia.

En un manipulador serie, el estado de velocidad 
del órgano terminal cuerpo m , con respecto al
eslabón fijo cuerpo O, puede expresarse, según 
Sugimoto y Duffy (1982), en términos de los
tornillos infinitesimales, asociados a los pares
cinemáticos del manipulador como la siguiente
combinación lineal

                   0
1

1

0

1r
V m

i i
i i

i

m
= +

+

=

-

å w $ ,                    (17)

donde i iw+ 1 representa los cambios instantáneos
de velocidad entre los cuerpos indicados.

La expresión (17) es un elemento esencial en el
análisis de velocidad de manipuladores serie y pue-
de extenderse sin esfuerzo considerable al análisis
de velocidad de cadenas cinemáticas cerradas y
manipuladores paralelos, (Rico et al., 1999).

Análisis de velocidad

En esta sección se formula el análisis directo de
velocidad del manipulador paralelo propuesto.
Dicho análisis consiste en determinar la velocidad
angular de la plataforma móvil, con respecto a la
fija, dado un conjunto de velocidades generali-
zadas instantáneas.

En el manipulador propuesto, el estado de
velocidad de la plataforma móvil cuerpo 6, con
respecto a la plataforma fija cuerpo 0, puede
expresarse a través de cualesquiera de las tres
cadenas cinemáticas conectoras. Por ejemplo, el
estado de velocidad de la plataforma móvil de
acuerdo a la expresión (17), (Sugimoto y Duffy,
1982), tomando como referencia el punto Q
indicado en la figura 1, y de acuerdo a la cadena
cinemática CPS vendrá dado por

& $ $ & $ $q q3
0 1

1 2
1 2

1
2 3

3 4
3 4+ + + +w w

        

         

                 4 5
4 5

5 6
5 6 0 6w w$ $+ =

r
V                 (18)

donde, los tornillos infinitesimales indicados en la
expresión (18) se muestran en la figura 2. Nótese
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que los tornillos 0 1$  y 1 2$  representan, respec-
tivamente, al par de revoluta y al par prismático del 
par cilíndrico de la cadena CPS.

Más aún, puesto que el punto Q carece de
movimientos de translación, entonces es evidente
que la componente dual del estado de velocidad
es nula, (Ball, 1900). Esto es

                         0 6

0

r r
rV =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

w
,                            (19)

donde  

rw w w w= ( , , )X Y Z

es la velocidad angular de la plataforma móvil de
acuerdo al sistema de referencia fijo .

Considere la línea en coordenadas de Plücker, 

$ ( , , , , , )1 1 1 1 1 1 1= s s s s s sX Y Z Q X Q Y Q Z  ,

(Duffy, 1996), a lo largo de la extremidad CPS. Esta
línea es recíproca a todos los tornillos que
representan los pares de revoluta de la extremidad
CPS. Por lo tanto, la aplicación de la forma de
Klein, Rico y Duffy (2000), entre $1 y ambos lados
de la expresión (18) conduce a

                    ( )& $ ,q1 1
0 6= KL V

r
.                      (20)

Considere ahora la extremidad SPS, figura 3.
Siguiendo un procedimiento similar al de la
extremidad CPS, se obtiene que

                         ( )& $ ,q 2 2
0 6= KL V

r
.                          (21)

donde

$ ( , , , , , )2 2 2 2 2 2 2= s s s s s sX Y Z Q X Q Y Q Z  ,

es la línea a lo largo de la extremidad SPS.

Con la finalidad de completar las ecuaciones
necesarias para el análisis directo de velocidad, se
introduce una cadena cinemática ficticia SPS que
inicia en el punto de intersección de las líneas d1 y 
q 3 que termina en el centro del par esférico S1, tal y
como se indica en las figuras 1 y 4. De esta manera, 
es posible escribir la siguiente expresión

                            ( )& $ ,q f f=KL V0 6r
.                       (22)

Donde

$ ( , , , , , )f fX fY fZ QfX QfY QfZs s s s s s=  ,

es una línea en coordenadas de Plücker a lo largo
de la extremidad ficticia. Más aún, puesto que de
acuerdo a la figura 1 se tiene que

q q qf = +1
2

3
2 .
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Figura 2. Cadena CPS y sus tornillos infinitesimales

Figura 3. Cadenas SPS y sus tornillos infinitesimales

Figura 4. Cadena ficticia SPS y sus tornillos
infinitesimales



Entonces, la velocidad &qf se obtiene por simple
derivación como

                      & & &
q q q q q

q q
f =

+

+

1 1 3 3

1
2

3
2

                       (23)

Finalmente, ordenando en forma matricial las
expresiones (20), (21) y (22) se obtiene que la
velocidad angular de la plataforma móvil, como se
observa desde la plataforma fija, puede calcularse
directamente de la expresión

                          rw=

é

ë

ê
ê
ê
êê

ù

û

ú
ú
ú
úú

-S
q
q

q

1
1

2

3

&
&
&

,                         (24)

donde S es una matriz especial dada por las
componentes duales de las líneas a lo largo de las
extremidades CPS, SPS y la línea ficticia $f como

S
s s s
s s s

s s sf f f

=

é

ë

êê
ê
ê
ê

ù

û

úú
ú

Q X Q Y Q Z

Q X Q Y Q Z

QX Q Y Q Z

1 1 1

2 2 2
ú
ú

,

Vale la pena destacar que la expresión (24)
permite calcular la velocidad angular de la pla-
taforma móvil a partir de las velocidades gene-
ralizadas y las componentes duales de las coor-
denadas de las líneas a lo largo de las extremi-
dades del manipulador, incluyendo la extremidad
ficticia. Más aún, la expresión (24) muestra cómo el 
análisis directo de velocidad puede ser resuelto
sistemáticamente aplicando las propiedades de
tornillos recíprocos a través de la forma de Klein,
sin necesidad de calcular las velocidades pasivas
del manipulador, algo que sin duda representa un
ahorro considerable de tiempo de cómputo.

Análisis de singularidades locales

En esta sección el análisis de singularidades se
aborda por medio de la teoría de tornillos infini-
tesimales y se toma como referencia la extremidad
tipo CPS, aun así, los resultados son aplicables a la 
extremidad SPS. 

La expresión (18) puede ser rescrita como

                            JW= 0 6r
V                             (25)

donde

[ ]W = & &q q T
3 1 2 1 3 4 4 5 5 6w w w w

es la matriz de las velocidades pasivas y genera-
lizadas de la extremidad CPS, mientras que J es la
matriz Jacobiana generada por el subespacio de los
correspondientes tornillos infinitesimales. Esto es

[ ]J = 0 1 1 2 2 3 3 4 4 5 5 6$ $ $ $ $ $

Una singularidad local ocurre cuando no existe
una relación uno a uno en la expresión (25), (Di
Gregorio, 2004), y puede presentarse tanto en el
análisis directo de velocidad como en el inverso.

El primer tipo de singularidad en ser analizada
es la asociada al análisis inverso de velocidad.
Suponga que la velocidad angular de la plataforma
móvil se anula, esto es 

[ ]0 6 0 0
r r r

V =
T

.

Esta condición se satisface si:

♦ [ ]W = ´06 1  La cual es una situación tri-

vial y por lo tanto, cualquier análisis poste -
rior es tiempo perdido.

♦ El rango de la matriz Jacobiana J es
deficiente, lo cual implica que su dimensión
es incompleta y det(J)=0. Bajo esta
condición, la matriz Ω puede admitir valores
arbitrarios reales, siendo de espe cial interés
los correspondientes a las velocidades
generalizadas &q1 y &q3. Si  &q1≠0 o  &q3≠ 0 el
manipulador esférico experimenta des-
plazamientos infinitesimales y la plataforma
móvil se encuentra en un punto muerto. 

El otro tipo de singularidad en ser analizada, es
la asociada con el análisis directo de velocidad.
Estas singularidades son más interesantes que las
primeras y la ecuación clave para su estudio es la
expresión (24).
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Una breve inspección de la expresión (24) revela
que el análisis directo de velocidad no tiene
solución o significado físico cuando el rango de
la matriz es deficiente, es decir, cuando
det(S)=0. Varias situaciones pueden caer en
esta posibilidad y a continuación se estudian
algunas de ellas.

♦ Si una extremidad del manipulador se
anula, por ejemplo si q 2=0, entonces la
componente primaria de la línea $2 no queda
definida de manera única, provocando la
singularidad de la matriz S. 

♦ Suponga que el centro del par esfé-
rico SQ se encuentra en la dirección del
vector 

r
q2 . Entonces es evidente el que

r r
sQ2 0= ,

y con ello, se anula el segundo renglón de la
matriz S, lo cual evidentemente provoca que

dim( ) det( )S S£ ® =2 0.

Un resultado similar se obtiene si el centro
del par esférico SQ se encuentra en la
dirección de rq1 , lo cual,  implica además que
q3 =0.

♦ Si las componentes primarias de las
líneas $1 y $ 2 son coplanares, entonces las
componentes duales de dichas líneas son
linealmente dependientes, provocando la sin-
gularidad de la matriz S.

♦ Si las componentes primarias de las
líneas $1 y  $2 concurren a un mismo punto,
entonces si dicho punto se toma como
referencia para el cálculo de las respectivas
componentes duales, éstas se anulan y
todos los elementos de la matriz S son
iguales a cero. Bajo tal situación es evidente
que det (J)=0.

Finalmente, las singularidades locales indicadas 
en esta sección seguramente son las más
representativas e interesantes del manipulador
propuesto. Sin embargo, es importante mencionar 
que un mayor número de singularidades locales

pueden ser detectadas e interpretadas recurriendo 
al concepto de dependencia lineal de la matriz S.
Por ejemplo, la condición de no singularidad de la
matriz S ocurre cuando se genera con unicidad al
vector cero de tres dimensiones, es decir, si se sa-
tisface que

l l l1 1 2 2 3 0
r r r r
s s s fQ Q Q+ + =

Û = =l i i0 12 3( , , ),

donde, por supuesto, se descarta la solución
trivial.

Ejemplo numérico

A fin de mostrar la versatilidad de las expresiones
derivadas en la presente contribución para el
análisis cinemático directo del mecanismo pro-
puesto, en esta sección se proporciona un ejem-
plo numérico.

Los parámetros asignados al mecanismo son
los siguientes

d r h1 025 10 10= = =. , . , . ,r
d 2 10 0 0 0 25= - -( . , . , . )

donde todos los valores están en metros. Por su
parte, las coordenadas generalizadas se rigen por
las funciones periódicas

q sen t1 10 025= -. . ( ),
q sen t2 15 075= -. . ( ),
q sen t t3 045 04 0 2= - - =. . ( ), , .. ., p

Es decir, la plataforma móvil inicia su
movimiento en el tiempo t=0 y 2π, segundos más
tarde regresa a su posición original. Por otra
parte, las velocidades generalizadas se obtienen
como simples derivadas temporales de las
coordenadas generalizadas. Con esta infor-
mación se desean determinar todas las posibles
orientaciones instantáneas de la plataforma
móvil, vía el cálculo de las coordenadas de los
tres pares esféricos que se ubican sobre ésta, así
como el historial de la velocidad angular
instantánea de la plataforma móvil, con respecto
a la plataforma fija, tomando como posición
inicial del manipulador una solución del análisis
directo de posición.
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Las expresiones requeridas para resolver el
ejemplo numérico se introdujeron en una hoja
Maple y en la tabla 3 se listan las cuatro posibles
soluciones resultantes del análisis directo de
posición.

Finalmente, la velocidad angular de la pla-
taforma móvil, tomando como posición inicial la
primera solución del análisis directo de posición,
se muestra en la figura 5. Más aún, con la finalidad
de validar los resultados numéricos del ejemplo
propuesto, se generó un modelo con el programa
de simulación de análisis cinemático y dinámico

ADAMS  y los resultados de dicho modelo se
incluyen en la misma figura.

Conclusiones

En este trabajo se propone un manipulador
esférico con una topología, hasta donde los au-
tores esperan, inédita. El manipulador propuesto
se compone de una plataforma fija y una móvil,
unidas por medio de dos extremidades, una tipo
CPS y la otra tipo SPS, y un par esférico pasivo
cuya función es la de restringir el movimiento de
translación de un punto fijo a la plataforma móvil,
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Q
S

1S 2S

(0,1, 0) (-0.45 , 0.7868,0.86720) (-0.8804, 1.4185,0.2225)

(0,1, 0) (-0.45 , 0.7868,0.86720) (0.2734, 0.1904,0.5194)

(0,1, 0) (-0.45 , 0.4037,-0. 6648) (-0.6252, 1.3882,-0. 6770)

(0,1, 0) (-0.45 , 0.4037,-0. 6648) (0.4819, 0.2026,-0.3631)

Tabla 3. Soluciones del análisis directo de posición

Figura 5. Historial de la velocidad angular de la plataforma móvil



por lo que dicho punto sólo puede experimentar
movimientos de rotación, mientras que los
restantes puntos, fijos a la plataforma móvil, se
mueven sobre esferas concéntricas de acuerdo a la 
posición fija del punto.

El análisis directo de posición del mecanismo
propuesto se obtiene en forma cerrada, y con ello,
se evita el uso de una técnica numérica con sus
respectivos inconvenientes, como lo es el método
de Newton-Raphson para su solución. El  análisis
revela que existen, cuando mucho, cuatro solu-
ciones diferentes del manipulador esférico, lo cual
contrasta con las posibles cuarenta soluciones del
análisis directo de posición de una plataforma
general Gough-Stewart.

El análisis directo de velocidad del manipulador 
esférico se aborda por medio de la teoría de
tornillos infinitesimales. Para un mejor enten-
dimiento de este análisis, se incluye una sección
con conceptos preliminares relacionados con el
análisis de velocidad de cadenas cinemáticas
abiertas y cerradas por medio de la teoría de
tornillos infinitesimales. El estado de velocidad, o
giro infinitesimal sobre un tornillo, se expresa
como un vector de seis dimensiones, y a su vez, en
forma de tornillos infinitesimales a través de cada
una de las dos cadenas cinemáticas de que consta
el mecanismo propuesto. Posteriormente, la
aplicación de la forma de Klein entre la línea en
coordenadas de Plücker a lo largo de la extremidad 
CPS con el estado de velocidad de la plataforma
móvil,  permite calcular la velocidad generalizada
asociada al par prismático de dicha extremidad.
Un procedimiento similar conduce al cálculo de la
velocidad generalizada asociada al par prismático
de la cadena cinemática SPS. A fin de completar
las expresiones requeridas para el análisis directo
de velocidad, se introduce una cadena cinemática
ficticia tipo SPS y de igual forma, se determina la
velocidad generalizada del par prismático ficticio.
Ordenando en forma matricial las expresiones así
generadas, y tomando en cuenta que la compo-
nente dual del estado de velocidad de la plata-
forma móvil es el vector cero, se obtiene una
expresión simple y compacta para el cálculo de la
velocidad angular de la plataforma móvil, con
respecto a la plataforma fija. Es interesante
mencionar que dicha expresión no requiere de los

valores de las velocidades pasivas del mani-
pulador, lo cual sin duda representa un ahorro
significativo en tiempo de cómputo. Adicional-
mente, se provee una interpretación geométrica
sobre las singularidades locales más significativas
del manipulador propuesto. 

Finalmente, se proporciona un ejemplo numé-
rico y los resultados obtenidos con las expresiones 
derivadas en la presente contribución, vía teoría
de tornillos, se comparan con resultados gene-
rados con el programa de simulación de análisis
cinemático y dinámico ADAMS .
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