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Resumen

En este trabajo se reporta la aplicacion del concepto de perfiles de comporta-
miento numérico en la comparacion del desempefio numérico de los méto-

. . . L Descriptores:
dos Immune Network Algorithm vy Bacterial Foraging Optimization en 18

funciones benchmark de optimizacion. Especificamente la robustez, eficiencia + perfil de comportamiento
y el tiempo de ejecucion de estos métodos se compararon en espacios de o funciones benchmark
busqueda con multiples minimos locales, bowl-shaped, plate-shaped, valley- e AiNet

shaped, steep ridges y otras conocidas funciones de optimizaciéon como sty- e BFOA

blinski-tang y beale function. Los resultados muestran que el método AiNet * optimizacion

(Castro et al., 2002) es mas robusto que el método BFOA (Passino, 2010) para
los casos de estudio considerados en este trabajo. Sin embargo, existen dife-
rencias en la eficiencia (nimero de funciones evaluadas y tiempo de conver-
gencia) entre ambos métodos. Donde BFOA es el algoritmo con mejor
desempefio en cuanto al niumero de funciones evaluadas.
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Abstract

. o ) ) Keywords:
This paper reports the application of the performance profiles model comparing the
numerical methods Immune Network (AiNet) and Bacterial Foraging Optimization « performance profile
Algorithm (BFOA) in 18 benchmark optimization functions. Specifically robust- o benchmark functions
ness, efficiency and execution time of these methods were compared in search spaces o AiNet
with local minima multiple, bowl-shaped, plate-shaped, valley- shaped, steep ridges o BFOA
and other known optimization functions as styblinski-tang and beale function. The « optimization

results show that the method AiNet (Castro et al., 2002) is more robust than the
BFOA method (Passino, 2010) for the case studies considered in this work. However
there are differences in the efficiency (number of evaluated functions and conver-
gence time) between both methods. BFOA is the algorithm with best perform in

terms of the number of evaluated functions.

Introduccion

Los métodos de busqueda inspirados en procesos natu-
rales se consideran confiables y adecuados para resol-
ver diversos problemas de optimizacién que se
caracterizan por tener funciones objetivo altamente no
lineales y no convexas. De forma particular, en el area
de ingenierias existen diversas funciones conocidas
como benchmark con las que se pretende representar la
complejidad de problemas reales. Estas funciones se
emplean para el estudio y comparacion del desemperio
de métodos de optimizacion (Kampf et al., 2010). En
este contexto, varios estudios han demostrado que los
métodos inspirados en procesos naturales, son robus-
tos, faciles de implementar y de aplicacion general para
la resolucion de problemas en diversos contextos de la
aplicacion de meta heuristicas (Yang, 2010). Especifica-
mente los métodos basados en optimizacion segun la
actividad celular emplean la estrategia de reproducciéon
o clonacion de aquellas que ofrecen mejores resultados
en la busqueda. Esta es una caracteristica en comuin con
el conocido algoritmo genético de Holland (1975).

En cuanto a las funciones benchmark, estas tienen di-
ferentes complejidades y suelen ser multimodales, mul-
tidimensionales, y con un nimero n de diferentes
minimos locales. Cada uno de los espacios de busqueda
representa un problema particular para el algoritmo de
optimizacion (Molga et al., 2005). Hasta ahora se han
desarrollado diferentes algoritmos inspirados en la ac-
tividad celular, como por ejemplo los basados en el sis-
tema inmune de los organismos, que se encargan de la
deteccion y eliminacion de potenciales amenazas exter-
nas, asi como aquellos algoritmos inspirados en la acti-
vidad bacterial en busqueda de nutrientes. También las
conocidas redes neuronales son sistemas artificiales
inspirados en las células del sistema nervioso, conoci-
das como neuronas, pero es principalmente explotado

en el drea de reconocimiento de patrones y aprendizaje
(Brownlee, 2011). Con base en lo anterior, en este traba-
jo se reporta un comparativo de comportamiento nu-
mérico entre dos algoritmos inspirados en procesos
naturales, particularmente la actividad celular. Estos
algoritmos son:

a) Bacterial Foraging Optimization Algorithm (Passi-
no, 2010) e
b) Immune Network Algorithm (Castro et al., 2002).

La comparacion de estos métodos se realizé empleando
el concepto de perfiles numéricos propuesto por (Dolan
et al., 2002) y recientemente empleado por (Bonilla et al.,
2011) con el objeto de establecer las diferencias relativas
entre los algoritmos en términos de robustez (capaci-
dad de alcanzar el 6ptimo global), eficiencia (esfuerzo
numérico requerido durante la secuencia de optimiza-
cién).

Trabajos previos y justificacion

El algoritmo Bacterial Foraging Optimization Algorithm
(BFOA) se emplea en multiples problemas del area de
ingenierias y optimizacion en general, por ejemplo los
siguientes: en (Kou, 2010) una aplicaciéon de BFOA en el
disefio de turbinas, o la que presenta Vaisakh (2009)
donde se propone una aplicaciéon al problema de ruteo
de vehiculos. En (Dehghan, 2011) se aplica BFOA como
estrategia para el disefio de filtros activos en ingenieria
eléctrica y en Ali (2013) para el problema de transferen-
cia de potencia. Mientras que en Regis (2011) y Wu
(2013) se emplea para el disefio de un PID un converti-
dor DC-DC electrénico. Asimismo en Jati (2012) se pro-
pone una aplicacion al problema de la planificacion de
movimientos robdticos. Por otro lado, en Minshed
(2012) hay una aplicacion como estrategia de localiza-
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cién en un radar lasser. En Wu (2013) se usa BFOA en el
problema de Hydro Power Dispatch. En Bejinariu (2013)
la aplicacién de BFOA consiste en la optimizacion del
registro de imagenes en procesadores hardware multi-
ntcleo. En Dasgupta (2008) existe una aplicacion al pro-
blema de reconocimiento de patrones. Las
implantaciones de este algoritmo en diferentes contex-
tos han generado una serie de propuestas y adaptacio-
nes a partir del algoritmo original de Passino. A
continuacion se clasifican y describen brevemente.

Adaptaciones y mejoras: Por ejemplo, en Dasgupta
(2009a) se disefia una version de BFOA adaptativo con
una estrategia para acelerar la convergencia al 6ptimo.
Sefialan que este algoritmo puede quedar oscilante
cuando estd muy cerca del objetivo. Proponen un ope-
rador que cambia dindmicamente los pasos de quimio-
taxis seguin los valores de fitness obtenidos. En Abraham
(2008) se analiza la etapa de reproduccion de BFOA
como determinante en la convergencia a través de dos
ecuaciones diferenciales y en un escenario de dos bacte-
rias en un plano. En Dasgupta (2009b) se propone una
version BFOA donde la mejor bacteria se mantiene in-
tacta (elitismo) mientras las otras, que son unas cuan-
tas, se reinician. En Borovska (2011) se hace una
paralelizacién de BFOA aplicado al problema de pla-
neacion de tareas.

Modelos matemiticos: en Das S.D. (2009); Das S.B.
(2009) y Thomas (2013) se hace una descripcion detalla-
da del algoritmo desde el punto de vista matematico.

Comparativas de desemperio: en Jati (2012); Rout (2013);
Mezura (2009); Baijal (2011) y Mezura (2008) se hace
una comparativa del desempefio de BFOA con otros al-
goritmos de optimizacion y en el contexto de diferentes
problemas.

Hibridaciones: en Praveena (2010) existe una descrip-
ciéon de la hibridacién entre PSO, BFOA y Diferential
Evolution (DE). En Minshed (2012) se propone un hibri-
do entre BFOA y Firefly Optimization aplicado al pro-
blema de ruteo vehiculos. En Narendhar (2012) se
describe un hibrido entre ant colony y BFOA aplicado
al problema de programacion de labores. El trabajo en
Moncayo (2014) es un hibrido entre algoritmo genético
y BFOA aplicado al problema de distribucion de plan-
tas de celdas de manufactura. En Shen (2009) se aplica
un hibrido de BFOA y PSO al problema de optimiza-
ciéon numérica global.

En cuanto al algoritmo Immune Network Algorithm
(AiNet), los trabajos previos también se encuentran
en el contexto de ingenieria y optimizacion. Por ejem-
plo los siguientes: en Andrews (2006) se explora la
eficiencia de un operador que asegura la diversidad
en la poblacién de soluciones. El trabajo de Li (2010)

se refiere al uso de AiNet en la prediccion de desas-
tres naturales a partir de bases de datos histdricas del
clima. En Ju (2012) se hace una comparativa de des-
empefio de AiNet en el problema de programacion de
tareas. Comparan resultados con el algoritmo genéti-
co, recocido simulado y colonia de hormigas. En Wei
(2011) Aplican AiNet como estrategia de buisqueda en
el modelo de aprendizaje cualitativo (QLM), mientras
que en Rautenberg (2008) para la construcciéon de re-
des neuronales. El trabajo en De Franca (2010) y Agiza
(2011) se refiere al desarrollo de dos versiones de Ai-
Net para comparar su desempefio en funciones bench-
mark. En el contexto de la medicina, el trabajo de
Tsankova (2007) se refiere al uso de AiNet en la pre-
diccién del desarrollo de Cancer a partir de bases de
datos genéticas y casos fatales versus casos de cura.
En el contexto de la ingenieria, en Campelo (2006)
existe una Aplicacion de AiNet en el disefio de dispo-
sitivos electromagnéticos.

En el area optimizacién es frecuente hacer compa-
rativas de desemperfio entre algoritmos en problemas
de interés, una de las practicas comunes es trabajar
con promedios de repeticiones de forma que faciliten
la comparativa, y en algunos casos se realizan pruebas
estadisticas como la conocida prueba f para contrastar
promedios. Sin embargo, este procedimiento no per-
mite observar en términos globales el desempefio de
un conjunto de algoritmos a la luz de un conjunto de
problemas. Ante esto existen herramientas como el
perfil de comportamiento numérico. Este trabajo in-
troduce la aplicaciéon de esta herramienta como com-
parativa para estos algoritmos y se realiza para tres
diferentes métricas. Se trata de un aporte para docu-
mentar y contrastar la eficiencia y eficacia de los algo-
ritmos presentados.

Métodos inspirados en la naturaleza

Desde el comienzo de la humanidad, el hombre fue ca-
paz de obtener recursos de la naturaleza, como alimen-
tos y refugio que encontraba a su paso. Con el tiempo,
fue posible comprender mejor las bases de diferentes
procesos naturales hasta lograr cultivar alimentos, do-
mesticar animales y construir refugios segtn las necesi-
dades. Gradualmente, el conocimiento del hombre
sobre los procesos naturales se ha incrementado, hasta
los dias modernos en que es posible “manejar la vida”
en diferentes niveles, por ejemplo, crear alimentos
transgénicos, combatir enfermedades y cultivar cepas
de organismos unicelulares (Castro ef al., 2004).
Actualmente con los recursos de cémputo es posible
observar la naturaleza como fuente de inspiracion para
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el desarrollo de técnicas de optimizacion y solucion de
problemas complejos en ingenieria y otros contextos.
En el drea de la computacion inspirada en procesos na-
turales, existe la rama de computacion inspirada en
procesos biologicos que se refiere particularmente a
procesos naturales de los organismos vivos. Entre los
procesos naturales no bioldgicos existe por ejemplo el
recocido de materiales que inspira el algoritmo de reco-
cido simulado Kirkpatrick (1984).

En el drea optimizacion existen modelos inspirados
en procesos biologicos:

a) Bacterial Foraging (forrajeo de bacterias). Este mode-
lo se inspira en la forma en que las colonias de bac-
terias son capaces de trasladarse hacia un punto en
el que perciben mayor cantidad de nutrientes. Asi
mismo, son capaces de apartarse de toxinas y facto-
res desfavorables para la colonia. Este es un modelo
relacionado con el algoritmo de quimiotaxis bacterial
de Muller (2002) asi como otros basados en el modelo
de enjambres. Las bacterias como E.Coli segregan
sustancias que atraen y repelen a otras bacterias de
la misma especie. La movilidad bacterial esta deter-
minada por el uso de flagelos que se mueven en di-
reccién o contra-direcciéon de las manecillas del
reloj. El movimiento de una bacteria se puede dar en
forma de tumbos (tumble) o nado (swim), y esto se
determina por su percepcion del entorno, es decir, el
gradiente de nutrientes/toxinas en conjunto con la
interaccion de otras bacterias (Brownlee, 2011). Este
trabajo se centra en el algoritmo BFOA.

b) Immune System (sistema inmune). El drea de sistemas
inmunes artificiales (SIA) esta relacionada con los mé-
todos computacionales inspirados en el sistema in-
muno-biologico de los organismos, principalmente
el de los mamiferos, que permite la deteccion y eli-
minaciéon de patdgenos que significan un riesgo
para el organismo en cuestion. Los patoégenos pue-
den ser bacterias, virus, pardsitos y polen. La identi-
ficacion de patdgenos se logra por diferenciacion. El
sistema inmune adquirido, también llamado adap-
tativo, es responsable de especializar la defensa
para amenazas especificas. Este tipo de sistema de
defensa esta presente en organismos vertebrados, a
diferencia del sistema inmune innato. Una caracte-
ristica del sistema inmune es la capacidad de rete-
ner informacién de los patégenos que atacan al
sistema, como estrategia para futuras apariciones
del mismo patogeno. Las células conocidas como
glébulos blancos, son los principales actores en el
sistema inmune, ya que estan involucrados tanto en

la identificacién como en la eliminacién de los pato-
genos (Brownlee, 2011). Los trabajos por incorporar
a este modelo bioldgico en modelos algoritmicos en-
focados a la optimizacion tienen origenes en traba-
jos previos (Hoffmann, 1986 y Hofmeyr, 1999). Los
SIA modernos estan inspirados en alguna de las tres
sub-areas de estudio: clonal selection, negative selec-
tion o immune network. Estos modelos se emplean en
problemas de optimizacidn, clasificacién y reconoci-
miento de patrones. Destaca el trabajo de Castro
(2002) que es una introduccién a inmunologia con el
grado de detalle para disefio de algoritmos. Este tra-
bajo se centra en el algoritmo AiNet.

Algoritmo BFOA

La optimizacién por enjambre de bacterias o bacterial
foraging optimization algorithm (BFOA) representa una
aproximacion diferente a la buisqueda de valores 6pti-
mos en funciones no lineales, desarrollado por Passino
(2010), se basa en el comportamiento quimiotactico de
la bacteria Escherichia Coli (E. Coli). Si bien, utilizar la
quimiotaxis como modelo para optimizacion se propu-
so por primera vez en Bremermann (1974) y se ha utili-
zado en trabajos de Leiviska (2006), el trabajo de Passino
incluye algunas modificaciones como la reproduccion y
la dispersion de los agentes. La E.Coli es quiza el mi-
croorganismo mas comprendido, ya que su comporta-
miento y estructura genética estan bien estudiados.

Esta consta de una capsula que incluye sus érganos
y flagelos, que utiliza para su locomocién; posee capa-
cidad de reproducirse por divisién y también es capaz
de intercambiar informacion genética con sus congéne-
res. Ademas, es capaz de detectar nutrientes y evitar
sustancias nocivas, efectuando un tipo de busqueda
aleatoria, basado en dos estados de locomocion: el des-
plazamiento o nado (swim) y el giro o tumbo (tumble).
La decision de permanecer en alguno de estos dos esta-
dos se basa en la concentracion de nutrientes o sustan-
cias nocivas en el medio. Este comportamiento se de-
nomina quimiotaxis. A continuaciéon se describen los
pasos de la optimizacion con el algoritmo BFOA (Regis
etal., 2011).

Paso 1: El ciclo de la quimiotaxis se describe en la figu-
ra 1. En este proceso el movimiento de E.Coli se simula.
El movimiento se efectiia de dos formas: dando tumbos
0 anado, una operacién a la vez. Se calcula el valor de la
funcién objetivo. La bacteria cambia su posicion si el va-
lor de la funcién objetivo modificada es peor que la ante-
rior. Al completar la quimiotaxis la bacteria estara
rondando un punto en el espacio de busqueda.
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Figura 1. Proceso de Quimiotaxis: Las células o bacterias realizan movimiento en forma de nado (swim) o tumbos (tumble) como
estrategia para su movilizacién en busca de nutrientes o apartarse de condiciones desfavorables

Paso 2: El proceso de reproduccion. El valor de la
funcion objetivo se calcula para cada una de las bacte-
rias en la poblacion ordenada. La peor mitad de la po-
blacién se descarta y la mejor mitad se duplica. Para
esta nueva generacion de bacterias el ciclo de quimio-
taxis se inicia y el proceso contintia por el nimero de
pasos de reproduccion.

Paso 3: En el ciclo de eliminacion-dispersion, algunas
bacterias se eliminan con baja probabilidad y se disper-
san en un punto aleatorio del espacio de busqueda. Este
proceso mantiene constante el niimero de bacterias.

Los pardmetros de entrada son el niumero de bacte-
rias S,, limite de pasos de quimiotaxis N, limite de
pasos de nado N, limite de ciclos de reproduccion N,,
numero de bacterias a producir S, limite del ciclo de
eliminacién-dispersién N,,, tamafo de paso C; y proba-
bilidad de eliminacién-dispersion P,,. El costo de cada
bacteria se optimiza por su interaccién con otras bacte-
rias. La funcién de interaccién se calcula de acuerdo
con la expresion g().

s (=g, * D o (cell, ~other), )*
gleell,) =Y ¢ [-d,,, *e 2 |
— * P _ i2
+§ S [h >(-e Wrepel Zm:l(ce”m other,, ) ]

i=1L""repel

donde

cell, = bacteria en cuestion

d Y W, = coeficientes de atraccion

By Y W,q = coeficientes de repulsion

S =numero de bacterias en la poblacion

p =numero de dimensiones o variables a op-
timizar en cada bacteria

La representacion “other” es “otra célula” interactuan-
do con cell,..

Algoritmo AiNet

Recientemente el algoritmo de optimizacion basado en
el sistema inmune (Castro y Timmis 2002) ha llamado la
atencion de los investigadores por su potente capacidad
de manejo de informacion. El sistema inmune natural es
complejo y con diferentes mecanismos de defensa contra
organismos invasores, tiene caracteristicas como: especi-
ficidad, reconocimiento de patrones, diversidad, toleran-
cia a fallas, memoria y aprendizaje, auto-organizacion,
cooperacion entre capas, entre otros.

El objetivo de una red inmune es el de preparar o
construir un repertorio de detectores para un problema
dado, donde las células con mejor desempeno supri-
men a aquellas con baja afinidad en la red. Este objetivo
se alcanza exponiendo a la poblacién a informacion ex-
terna, a partir de la cual se generan respuestas en forma
de clonaciones y dinamica iter-celular.

Las dos teorias que principalmente motivaron el
desarrollo de este modelo de optimizacion son (Ara-
gon et al., 2010): Immune Netrwork Theory (IN) y Clonal
Selection Theory (CS). El principio de CS es la teoria
que se emplea para describir la respuesta adaptativa
del sistema inmune hacia estimulos antigénicos. La
premisa de este modelo establece que el sistema inmu-
ne reacciona Unicamente cuando se invade por esti-
mulos externos. Asi que la respuesta del sistema es la
produccion de anticuerpos por las células B una vez
que el antigeno ha entrado al sistema. Entonces en la
presencia del antigeno, aquellos anticuerpos con ma-
yor afinidad o capacidad de reconocer el antigeno son
los privilegiados para proliferar, produciendo enor-
mes cantidades de anticuerpos clones con diversidad
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basada en mutacién. Por otro lado, la teoria IN esta-
blece que los anticuerpos (receptores de las células B)
tienen partes llamadas idiotopes que pueden recono-
cerse por otros anticuerpos en otras células B. Esta ca-
racteristica de reconocer y ser reconocido le da al
sistema una dinamica intrinseca. A continuacién se
describe el pseudo codigo y la estrategia de optimi-
zacion del algoritmo AiNet (Brownlee, 2011).

La cantidad de mutacion de los clones es proporcio-
nal a la afinidad de la célula original (padre) con la fun-
cién objetivo en términos de que a una mejor aptitud
(afinidad) le corresponde menor mutacion. También se
adicionan células aleatorias. Para limitar la redundancia
se efecttia la eliminacion de células segiin su similitud
con otras. El tamafo de la poblacién es dinamico y si
contintia creciendo, puede significar que el espacio de
busqueda tenga multiples minimos locales o que el um-
bral de afinidad necesite un ajuste. La mutacién propor-
cional a la afinidad se hace con ¢’=c+a x N (1, 0) donde
a=1/B x exp (-f), N es un nimero gaussiano aleatorio y
fesel grado de aptitud o fitness de la célula original (pa-
dre), ¢’ es la mutacion de la célula ¢, 3 controla el decre-
mento de la funcién y puede establecerse en 100. El
umbral de afinidad es especifico del problema y su re-
presentacion. Por ejemplo, dicho umbral de afinidad se
puede establecer en 0.1 como valor arbitrario o se puede
calcular como porcentaje del tamafio del espacio de bus-
queda. El nimero de células aleatorias insertadas puede
ser 40% de la poblacién. El nimero de clones a partir de
una célula dada suele ser pequefio, por ejemplo 10.

Funciones Benchmark

Para asegurar una diversidad de pruebas se emplea un
conjunto de 18 funciones de problemas conocidos en el
area de optimizacion (Chase et al., 2010; Molga, 2005) ver
tabla 1. Estos se clasifican segtin la similitud y forma del
espacio de busqueda (Surjanovic, 2013), algunas funcio-
nes tienen multiples minimos locales, otras tienen forma
plana, forma de valle o profundidad como tazoén, otras
son escalonadas y de varias formas. Para esta comparati-
va todas las funciones son bidimensionales (d=2).

Parametros y recursos

Los algoritmos BFOA y AiNet se desarrollaron en len-
guaje Ruby, en equipo de computo con procesador In-
tel core i7, 10Gb en memoria RAM y sistema operativo
Windows 7. Las graficas se generaron en el software Ex-
cel de Microsoft. En cuanto a los pardmetros de los al-
goritmos, se adoptaron los considerados default,
reportados por Brownlee (2011).

Determinacion de los perfiles numéricos

La comparacion del comportamiento numérico (robus-
tez, eficiencia) de los métodos BFOA y AiNet se realiz al
emplear el concepto de perfil de comportamiento numé-
rico. El perfil de comportamiento para un método de op-
timizacion se define como la funcién de distribucién
acumulativa para una métrica de comportamiento o des-
empefio numérico (Dolan, 2002). Dicha métrica puede
corresponder a algin factor de interés en la comparativa
de desempefio, como el tiempo necesario para alcanzar
la convergencia del método de optimizacion, la cantidad
de funciones evaluadas durante la secuencia de calculo o
la capacidad del método para localizar al 6ptimo global
de la funcién objetivo. En este trabajo, las siguientes mé-
tricas se consideran para la comparacion de los dos mé-
todos: la distancia relativa entre el éptimo localizado por
el método de optimizacién y el dptimo global conocido:
d. La cantidad de funciones evaluadas durante la se-
cuencia de optimizacién (NFE) y el tiempo de ejecucion
(T) para la convergencia. La primera métrica se asocié
con la robustez del método (es decir, la capacidad de la
estrategia numeérica para localizar al 6ptimo global de la
funcién objetivo) mientras que la segunda y tercera co-
rresponden a una medida de la eficiencia de los métodos
estocasticos (Ali et al., 2005).

Para la evaluacion de estas métricas, se asume que
existen 1, = 2 métodos de optimizacion y 1, = 18 proble-
mas o casos de estudio. Cada uno de los casos de estu-
dio se resolvié en 30 ocasiones con estimaciones ini-
ciales aleatorias y diferentes secuencias de nimeros
aleatorios, considerando una tolerancia de 1.0E-06 en
el valor de la funcion objetivo como criterio de conver-
gencia para ambos métodos. Para cada problema y mé-
todo de optimizacion, las métricas t,, se calcularon
empleando los resultados de 30 calculos y las siguientes
expresiones.

t :—ﬂ:{' “Ju P =NEFE ! =T
fuhj - f obj

donde
12017; = valor promedio de la funcién objetivo cal-
) culado por el método de optimizacion
Ty = ¢ptimo global de la funcion objetivo
ot = valor maximo para la funcion objetivo en-
contrado dentro la secuencia de calculo
NFEyT = valor promedio del niimero de funciones

evaluadas y el tiempo para alcanzar la con-
vergencia del método de optimizacion
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Tabla 1. Conjunto de funciones Benchmark

Styblinski-Tang

Benchmark Funcién var Espacio de Minimo Global
Busqueda
— 0.1
(NOL;Z J

Cross in Tray f(x)=-0.00014sin, sin_e +1 xi € [-10, 10] —-2.06261

1+ cos(124/(x? +x2
Drop Wave f(x)= —# X, € [-5.12,5.12] -1

0.5(x; +x;)+2 )
i J
Holder Table f(x)=—|sin(x,)cos(x,)e xi e [-10, 10] -19.2085
EggHolder f0)=—(x, +47)sin[ x +’C%+47Uﬂc1 sin( v, —(x, +47)\) xi € [-512, 512] -959.6407
d
Rastrigin f(x)=10d+ Y[ x? ~10cos 27, | xi e [-5.12,5.12] 0
i=1

5 5
Shubert f(x):[Zicos((Hl)x, +1)][Zicos((i+1)x2 +])] xi e [-10, 10] —186.7309

i=1 i=1

d
Schwefel Flx)=418.98294 - Y x, sin(y[[x ) xi e [-500, 500] 0
i=1
sin?(x? —x2)-0.5
. fx)=05+———1 2l 2 _—
Schaffer2 (14000162 ) | xi € [~100, 100] 0
a=20

IS iyt b=02 ;
Ackley f(x):ae[l aZit] [Tt ,))WHI =2 xi e [-32.768,32.768] 0
Booth F(x) = (x, +2x, = 7)* +(2x, +x,~5) xi € [-10, 10] 0
Matyas F(x)=026(x2 + x2)-0.48x,x, xi € [-10, 10] 0
Zakharov f(x)=ixf+[io-5ix,j +[i0-5fx,] xi € [-5, 10] 0
Sphere fo) =2 xi € [-5.12,5.12] 0
Rosenbrok f(x):Z[loo(xM—xf)z +(x,=1)"] e[-510 ] 0

d
Michaelwicz f@) == sin(x)sin (ix? /) m=10 xi € [0, ] -1.8013
Easom £(x) = —cos(x, ) cos(x, e 0 xi € [~100, 100] -1
Beale f) = (152, 3,7, +(225-x, +2,%;)" +(2.62-x, +x,2,)" xi € [-4.5,4.5] 0
f(x)zgi(xpwxasm xi € [-5, 5] -39.16599d
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Tabla 2. Pardmetros de los algoritmos BFOA y AiNet

Algoritmo BFOA Algoritmo AiNet
Parametro Valor Parametro Valor
Poblacién 50 Limite de Generaciones 150
Step size 0.1 Poblacién 20
giigézeigz:l(i;\eig?cién— 1 Ntmero de Clones 10
Ciclos de reproducciéon (Nre) 4 Beta 100
Ciclos de quimiotaxis (Nc) 70 Ntmeros aleatorios 2
Longitud de nado (Ns) 4 Umbral de afinidad 0.05 del espacio de busqueda
Prob. de eliminacion (Ped) 0.25
d_attr 0.1
w_attr 0.2
h_rep d_attr
w_rep 10

Es importante sefialar que los valores de f i NFEy T
se determinaron empleando los 30 experimentos numé-
ricos realizados para el caso de estudio. Conforme a lo
establecido por Ali ef al. (2005) y Bonilla et al. (2011), en
la literatura se suelen usar valores promedio para las
métricas de comportamiento con el objeto de describir
el desempeno de los métodos. Con base en lo anterior,
este estudio también emplea dicho enfoque. Por otro
lado, para las tres métricas, la tasa de comportamiento
numeérico 7, se define como

t

" ps
P mm{ :se S}

Donde S corresponde al conjunto de métodos de optimi-
zacion analizados. Se puede observar que el valor de di-
cha tasa es igual a 1 para el método que presenta el mejor
comportamiento en un problema especifico, ya que para
ambas métricas es deseable obtener el valor minimo po-
sible (Dolan, 2002 y Ali ef al., 2005). Finalmente, la tasa de
probabilidad acumulativa p(t) para el método de opti-
mizacion s y la métrica en cuestion se define como

p.(7) 1 cantidad {p e P:r, <t}
. .

P

Donde t es un factor que se define en (1,%0). La grafica del
perfil de comportamiento, es decir, el grafico de p, versus
1, compara el desempefio relativo entre los métodos de
optimizacion para el grupo de problemas considerados
(Dolan, 2002). Hasta el momento los pertiles de compor-

tamiento se han utilizado por Montaz ef al. (2005) em-
pleando funciones objetivo clasicas del area de
optimizacion, y por Bonilla ef al. (2011) empleando fun-
ciones del area de la ingenieria quimica. No obstante,
dicho concepto no se ha empleado en la comparativa de
los métodos descritos en este estudio.

Resultados y discusién

El perfil de comportamiento para la métrica t:,s’ que se
asocia a la capacidad del método de optimizacién para
acercarse al dptimo global en los problemas considerados,
se muestra en la figura 2. Como se puede observar, el mé-
todo AiNet presenta un mejor comportamiento para esta
métrica, en contraste con el método BFOA dentro del ran-
go analizado para 1. También estos resultados indican
que en 81% de los casos de estudio el método AiNet pro-
porciona mejor solucion (t = 1), mientras que BFOA sola-
mente lo consigue en 19% de los casos.

Para el caso de la eficiencia, en la métrica NFEes in-
dudable que el método BFOA supera al método AiNet
(figura 3) para todos los casos de estudio.

Para el caso de la eficiencia, en la métricaAdel tiempo
empleado por el método de optimizacion T, se puede
observar en la figura 4 que el método AiNet tuvo un
mejor desempenio en contraste con BFOA.

Con el objeto de proporcionar mas elementos para
el comparativo de estos métodos de optimizacion, en la
tabla 3 se muestran los valores de f NEE y T para las
dos estrategias de optimizacion en todos los casos de
estudio considerados.
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Figura 2. Perfil de comportamiento numérico para la métrica de
costo tZS
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—8—AINET
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Figura 4. Perfil de comportamiento numérico para la métrica T

Es de notar el valor de la métrica ]Afoh. para el caso de las
funciones de optimizacion Schewfel y EggHolder para
los algoritmos de optimizacién, donde se observa una
diferencia que contrasta con el resto de los experimentos.

p,(™
—4—BFOA

~8—AINET

1 4 71013161922252831343740434649525558616467

T

Figura 3. Perfil de comportamiento numérico para la métrica NEE

Los parametros de atraccion y repulsion en el caso del
algoritmo BFOA son determinantes y para este estudio
todos los experimentos se realizaron con valores pro-
puestos en la literatura, pero pueden ajustarse con base
en el juicio (Dasgupta et al., 2009). En este sentido, para el
caso de la métrica que corresponde al niimero de funcio-
nes evaluadas NFE, destaca el resultado del algoritmo
AiNet para la funcién de optimizacién Easom, donde
considerablemente el algoritmo realiza un esfuerzo com-
putacional mayor que BFOA. De acuerdo con la literatu-
ra, el pardmetro de umbral de similitud puede ajustarse
para problemas especificos (Brownlee, 2011). En cuanto
al tiempo empleado por el método de optimizacion, la
métrica T describe dicha caracteristica para los casos de
estudio. Destaca el algoritmo AiNet haciendo uso de me-
nos tiempo en todos los experimentos excepto el corres-
pondiente al de la funcién Easom, que como es de
esperarse y en congruencia con la métrica NFE pre-
senta mayor tiempo de ejecucion.

Tabla 3. Promedios de las métricas a comparar para los algoritmos BFOA y AiNet

BFOA AINET BFOA AINET BFOA AINET
Num Optimo Benchmark I» s NEE NEE T 7

1 0 Ackley 9.3442 4.3250 28616.8333 150853.1000 3764.5153 1829.0026
2 -1.8013 Michaelwikcz -1.8012 -1.7999 29372.3667 75678.2000 3873.6549 1253.0574
3 0 Rastrigin 0.7107 0.2212 28588.8000 129441.1330 3762.2486 2043.7369
4 0 Rosenbrok 0.0007 0.0762 32261.7667 136271.8330 4275.7113 2134.2732
5 0 Schwefel 201.1314 79.9905 40398.7333 149165.7000 2474.1749 1192.5015
6 0 Sphere 0.0000 0.0000 38576.7667 76409.0333 4499.3907 1091.4825
7 -78.33198 Styblinski -78.3323 —78.2564 32229.9000 108285.3670 1959.0027 1093.2016
8 0 Zakharov 0.0001 0.0033 38901.1333 100223.0000 5398.3088 1015.1348
9 0 Beale 0.0000 0.0026 31692.7000 107971.2000 5485.3804 1063.6682
10 0 Booth 0.0001 0.2168 37141.1333 128546.3000 4843.2103 1405.6686
11 -2.06361 Cross In Tray -2.0626 -2.0527 43420.5667 144084.0670 5238.7663 1565.3355
12 -1 Drop Wave -0.8708 -0.9426 33297.1667 150218.1330 4514.5249 1609.6689
13 -1 Easom —-0.0333 -0.0232 56335.3333 4007564.3700 6101.5156 15623.0552
14 -959.6407  Egg Holder -719.0541 -838.0015  40293.5667 151782.8670 5974.6418 1639.7758
15 —-19.2085 Holder Table -19.2081 -19.1766 35989.3333 114001.6000 4941.5826 1607.4575
16 0 Matyas 0.0000 0.0031 40177.0000 112702.1330 5371.4072 1679.3944
17 0 Schaffer 2 0.0023 0.0002 26183.6000 146886.2330 3376.0931 2373.0716
18 -186.7309 Shubert -178.8117 -186.5650 28487.7667 146344.9670 3935.1918 2535.8996
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Conclusiones

Este trabajo describe la aplicacién del método BFOA y
AiNet en comparativa, empleando el modelo de perfil
de comportamiento numérico (Dolan, 2002) para un
conjunto de conocidas funciones benchmark. Los resul-
tados obtenidos indican que el método AiNet (Castro,
2002) es mas robusto que el método BFOA (Passino,
2010) para los casos de estudio considerados en este tra-
bajo. Sin embargo, existen diferencias en la eficiencia
(nimero de funciones evaluadas y tiempo de conver-
gencia) entre ambos métodos. Donde BFOA es el algo-
ritmo con mejor desempenio en cuanto al nimero de
funciones evaluadas.

Con base en los resultados obtenidos, para futuras
aplicaciones de los algoritmos aqui descritos se hacen
los siguientes contrastes:

El algortimo AiNet tuvo mejor desempefio en térmi-
nos globales en comparacion con BFOA, pero debe se-
nalarse el caso de la funcién benchmark Easom, en la
que AiNet tuvo particularmente dificultades. Esto apa-
rentemente se debe a que la naturaleza de su estrategia
basada en clonacion puede ser ineficiente en la region
plana del espacio de buisqueda, donde el algoritmo “pa-
rece perderse”, se recomienda observar la grafica del
espacio de busqueda Easom. Esto debe tomarse en
cuenta para futuras aplicaciones.

En el caso de la funcion benchmark Schwefel, los
dos algoritmos tuvieron resultados alejados del éptimo
esperado, donde BFOA fue el peor. Al observar la grafi-
ca del espacio de busqueda destacan los multiples mi-
nimos locales. Tal parece que ambos algoritmos tienen
dificultades en un escenario de tal complejidad. Se re-
comienda hacer una sintonizacién no basada en los de-
fault para el parametro de umbral de afinidad respecto
a AiNet y los parametros de atracciéon/repulsion (d_attr,
w_attr, h_rep, w_rep) respecto a BFOA.
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