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Resumen

En este trabajo se reporta la aplicación del concepto de perfiles de comporta-
miento numérico en la comparación del desempeño numérico de los méto-
dos Immune Network Algorithm y Bacterial Foraging Optimization en 18 
funciones benchmark de optimización. Específicamente la robustez, eficiencia 
y el tiempo de ejecución de estos métodos se compararon en espacios de 
búsqueda con múltiples mínimos locales, bowl-shaped, plate-shaped, valley-
shaped, steep ridges y otras conocidas funciones de optimización como sty-
blinski-tang y beale function. Los resultados muestran que el método AiNet 
(Castro et al., 2002) es más robusto que el método BFOA (Passino, 2010) para 
los casos de estudio considerados en este trabajo. Sin embargo, existen dife-
rencias en la eficiencia (número de funciones evaluadas y tiempo de conver-
gencia) entre ambos métodos. Donde BFOA es el algoritmo con mejor 
desempeño en cuanto al número de funciones evaluadas. 
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Introducción

Los métodos de búsqueda inspirados en procesos natu-
rales se consideran confiables y adecuados para resol-
ver diversos problemas de optimización que se 
caracterizan por tener funciones objetivo altamente no 
lineales y no convexas. De forma particular, en el área 
de ingenierías existen diversas funciones conocidas 
como benchmark con las que se pretende representar la 
complejidad de problemas reales. Estas funciones se 
emplean para el estudio y comparación del desempeño 
de métodos de optimización (Kämpf et al., 2010). En 
este contexto, varios estudios han demostrado que los 
métodos inspirados en procesos naturales, son robus-
tos, fáciles de implementar y de aplicación general para 
la resolución de problemas en diversos contextos de la 
aplicación de meta heurísticas (Yang, 2010). Específica-
mente los métodos basados en optimización según la 
actividad celular emplean la estrategia de reproducción 
o clonación de aquellas que ofrecen mejores resultados 
en la búsqueda. Esta es una característica en común con 
el conocido algoritmo genético de Holland (1975).

En cuanto a las funciones benchmark, estas tienen di-
ferentes complejidades y suelen ser multimodales, mul-
tidimensionales, y con un número n de diferentes 
mínimos locales. Cada uno de los espacios de búsqueda 
representa un problema particular para el algoritmo de 
optimización (Molga et al., 2005). Hasta ahora se han 
desarrollado diferentes algoritmos inspirados en la ac-
tividad celular, como por ejemplo los basados en el sis-
tema inmune de los organismos, que se encargan de la 
detección y eliminación de potenciales amenazas exter-
nas, así como aquellos algoritmos inspirados en la acti-
vidad bacterial en búsqueda de nutrientes. También las 
conocidas redes neuronales son sistemas artificiales 
inspirados en las células del sistema nervioso, conoci-
das como neuronas, pero es principalmente explotado 

en el área de reconocimiento de patrones y aprendizaje 
(Brownlee, 2011). Con base en lo anterior, en este traba-
jo se reporta un comparativo de comportamiento nu-
mérico entre dos algoritmos inspirados en procesos 
naturales, particularmente la actividad celular. Estos 
algoritmos son: 

a) 	 Bacterial Foraging Optimization Algorithm (Passi-
no, 2010) e 

b)	 Immune Network Algorithm (Castro et al., 2002). 

La comparación de estos métodos se realizó empleando 
el concepto de perfiles numéricos propuesto por (Dolan 
et al., 2002) y recientemente empleado por (Bonilla et al., 
2011) con el objeto de establecer las diferencias relativas 
entre los algoritmos en términos de robustez (capaci-
dad de alcanzar el óptimo global), eficiencia (esfuerzo 
numérico requerido durante la secuencia de optimiza-
ción). 

Trabajos previos y justificación

El algoritmo Bacterial Foraging Optimization Algorithm 
(BFOA) se emplea en múltiples problemas del área de 
ingenierías y optimización en general, por ejemplo los 
siguientes: en (Kou, 2010) una aplicación de BFOA en el 
diseño de turbinas, o la que presenta Vaisakh (2009) 
donde se propone una aplicación al problema de ruteo 
de vehículos. En (Dehghan, 2011) se aplica BFOA como 
estrategia para el diseño de filtros activos en ingeniería 
eléctrica y en Ali (2013) para el problema de transferen-
cia de potencia. Mientras que en Regis (2011) y Wu 
(2013) se emplea para el diseño de un PID un converti-
dor DC-DC electrónico. Asimismo en Jati (2012) se pro-
pone una aplicación al problema de la planificación de 
movimientos robóticos. Por otro lado, en Minshed 
(2012) hay una aplicación como estrategia de localiza-
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ción en un radar lasser. En Wu (2013) se usa BFOA en el 
problema de Hydro Power Dispatch. En Bejinariu (2013) 
la aplicación de BFOA consiste en la optimización del 
registro de imágenes en procesadores hardware multi-
núcleo. En Dasgupta (2008) existe una aplicación al pro-
blema de reconocimiento de patrones. Las 
implantaciones de este algoritmo en diferentes contex-
tos han generado una serie de propuestas y adaptacio-
nes a partir del algoritmo original de Passino. A 
continuación se clasifican y describen brevemente. 

Adaptaciones y mejoras: Por ejemplo, en Dasgupta 
(2009a) se diseña una versión de BFOA adaptativo con 
una estrategia para acelerar la convergencia al óptimo. 
Señalan que este algoritmo puede quedar oscilante 
cuando está muy cerca del objetivo. Proponen un ope-
rador que cambia dinámicamente los pasos de quimio-
taxis según los valores de fitness obtenidos. En Abraham 
(2008) se analiza la etapa de reproducción de BFOA 
como determinante en la convergencia a través de dos 
ecuaciones diferenciales y en un escenario de dos bacte-
rias en un plano. En Dasgupta (2009b) se propone una 
versión BFOA donde la mejor bacteria se mantiene in-
tacta (elitismo) mientras las otras, que son unas cuan-
tas, se reinician. En Borovska (2011) se hace una 
paralelización de BFOA aplicado al problema de pla-
neación de tareas. 

Modelos matemáticos: en Das S.D. (2009); Das S.B. 
(2009) y Thomas (2013) se hace una descripción detalla-
da del algoritmo desde el punto de vista matemático. 

Comparativas de desempeño: en Jati (2012); Rout (2013); 
Mezura (2009); Baijal (2011) y Mezura (2008) se hace 
una comparativa del desempeño de BFOA con otros al-
goritmos de optimización y en el contexto de diferentes 
problemas. 

Hibridaciones: en Praveena (2010) existe una descrip-
ción de la hibridación entre PSO, BFOA y Diferential 
Evolution (DE). En Minshed (2012) se propone un híbri-
do entre BFOA y Firefly Optimization aplicado al pro-
blema de ruteo vehículos. En Narendhar (2012) se 
describe un híbrido entre ant colony y BFOA aplicado 
al problema de programación de labores. El trabajo en 
Moncayo (2014) es un híbrido entre algoritmo genético 
y BFOA aplicado al problema de distribución de plan-
tas de celdas de manufactura. En Shen (2009) se aplica 
un híbrido de BFOA y PSO al problema de optimiza-
ción numérica global.

En cuanto al algoritmo Immune Network Algorithm 
(AiNet), los trabajos previos también se encuentran 
en el contexto de ingeniería y optimización. Por ejem-
plo los siguientes: en Andrews (2006) se explora la 
eficiencia de un operador que asegura la diversidad 
en la población de soluciones. El trabajo de Li (2010) 

se refiere al uso de AiNet en la predicción de desas-
tres naturales a partir de bases de datos históricas del 
clima. En Ju (2012) se hace una comparativa de des-
empeño de AiNet en el problema de programación de 
tareas. Comparan resultados con el algoritmo genéti-
co, recocido simulado y colonia de hormigas. En Wei 
(2011) Aplican AiNet como estrategia de búsqueda en 
el modelo de aprendizaje cualitativo (QLM), mientras 
que en Rautenberg (2008) para la construcción de re-
des neuronales. El trabajo en De Franca (2010) y Agiza 
(2011) se refiere al desarrollo de dos versiones de Ai-
Net para comparar su desempeño en funciones bench-
mark. En el contexto de la medicina, el trabajo de 
Tsankova (2007) se refiere al uso de AiNet en la pre-
dicción del desarrollo de Cáncer a partir de bases de 
datos genéticas y casos fatales versus casos de cura. 
En el contexto de la ingeniería, en Campelo (2006) 
existe una Aplicación de AiNet en el diseño de dispo-
sitivos electromagnéticos. 

En el área optimización es frecuente hacer compa-
rativas de desempeño entre algoritmos en problemas 
de interés, una de las prácticas comunes es trabajar 
con promedios de repeticiones de forma que faciliten 
la comparativa, y en algunos casos se realizan pruebas 
estadísticas como la conocida prueba t para contrastar 
promedios. Sin embargo, este procedimiento no per-
mite observar en términos globales el desempeño de 
un conjunto de algoritmos a la luz de un conjunto de 
problemas. Ante esto existen herramientas como el 
perfil de comportamiento numérico. Este trabajo in-
troduce la aplicación de esta herramienta como com-
parativa para estos algoritmos y se realiza para tres 
diferentes métricas. Se trata de un aporte para docu-
mentar y contrastar la eficiencia y eficacia de los algo-
ritmos presentados.

Métodos inspirados en la naturaleza

Desde el comienzo de la humanidad, el hombre fue ca-
paz de obtener recursos de la naturaleza, como alimen-
tos y refugio que encontraba a su paso. Con el tiempo, 
fue posible comprender mejor las bases de diferentes 
procesos naturales hasta lograr cultivar alimentos, do-
mesticar animales y construir refugios según las necesi-
dades. Gradualmente, el conocimiento del hombre 
sobre los procesos naturales se ha incrementado, hasta 
los días modernos en que es posible “manejar la vida” 
en diferentes niveles, por ejemplo, crear alimentos 
transgénicos, combatir enfermedades y cultivar cepas 
de organismos unicelulares (Castro et al., 2004). 

Actualmente con los recursos de cómputo es posible 
observar la naturaleza como fuente de inspiración para 
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el desarrollo de técnicas de optimización y solución de 
problemas complejos en ingeniería y otros contextos. 
En el área de la computación inspirada en procesos na-
turales, existe la rama de computación inspirada en 
procesos biológicos que se refiere particularmente a 
procesos naturales de los organismos vivos. Entre los 
procesos naturales no biológicos existe por ejemplo el 
recocido de materiales que inspira el algoritmo de reco-
cido simulado Kirkpatrick (1984). 

En el área optimización existen modelos inspirados 
en procesos biológicos:

a)	 Bacterial Foraging (forrajeo de bacterias). Este mode-
lo se inspira en la forma en que las colonias de bac-
terias son capaces de trasladarse hacia un punto en 
el que perciben mayor cantidad de nutrientes. Así 
mismo, son capaces de apartarse de toxinas y facto-
res desfavorables para la colonia. Este es un modelo 
relacionado con el algoritmo de quimiotaxis bacterial 
de Muller (2002) así como otros basados en el modelo 
de enjambres. Las bacterias como E.Coli segregan 
sustancias que atraen y repelen a otras bacterias de 
la misma especie. La movilidad bacterial está deter-
minada por el uso de flagelos que se mueven en di-
rección o contra-dirección de las manecillas del 
reloj. El movimiento de una bacteria se puede dar en 
forma de tumbos (tumble) o nado (swim), y esto se 
determina por su percepción del entorno, es decir, el 
gradiente de nutrientes/toxinas en conjunto con la 
interacción de otras bacterias (Brownlee, 2011). Este 
trabajo se centra en el algoritmo BFOA.

b)	 Immune System (sistema inmune). El área de sistemas 
inmunes artificiales (SIA) está relacionada con los mé-
todos computacionales inspirados en el sistema in-
muno-biológico de los organismos, principalmente 
el de los mamíferos, que permite la detección y eli-
minación de patógenos que significan un riesgo 
para el organismo en cuestión. Los patógenos pue-
den ser bacterias, virus, parásitos y polen. La identi-
ficación de patógenos se logra por diferenciación. El 
sistema inmune adquirido, también llamado adap-
tativo, es responsable de especializar la defensa 
para amenazas específicas. Este tipo de sistema de 
defensa está presente en organismos vertebrados, a 
diferencia del sistema inmune innato. Una caracte-
rística del sistema inmune es la capacidad de rete-
ner información de los patógenos que atacan al 
sistema, como estrategia para futuras apariciones 
del mismo patógeno. Las células conocidas como 
glóbulos blancos, son los principales actores en el 
sistema inmune, ya que están involucrados tanto en 

la identificación como en la eliminación de los pató-
genos (Brownlee, 2011). Los trabajos por incorporar 
a este modelo biológico en modelos algorítmicos en-
focados a la optimización tienen orígenes en traba-
jos previos (Hoffmann, 1986 y Hofmeyr, 1999). Los 
SIA modernos están inspirados en alguna de las tres 
sub-áreas de estudio: clonal selection, negative selec-
tion o immune network. Estos modelos se emplean en 
problemas de optimización, clasificación y reconoci-
miento de patrones. Destaca el trabajo de Castro 
(2002) que es una introducción a inmunología con el 
grado de detalle para diseño de algoritmos. Este tra-
bajo se centra en el algoritmo AiNet.

Algoritmo BFOA

La optimización por enjambre de bacterias o bacterial 
foraging optimization algorithm (BFOA) representa una 
aproximación diferente a la búsqueda de valores ópti-
mos en funciones no lineales, desarrollado por Passino 
(2010), se basa en el comportamiento quimiotáctico de 
la bacteria Escherichia Coli (E. Coli). Si bien, utilizar la 
quimiotaxis como modelo para optimización se propu-
so por primera vez en Bremermann (1974) y se ha utili-
zado en trabajos de Leiviskä (2006), el trabajo de Passino 
incluye algunas modificaciones como la reproducción y 
la dispersión de los agentes. La E.Coli es quizá el mi-
croorganismo más comprendido, ya que su comporta-
miento y estructura genética están bien estudiados.

Esta consta de una cápsula que incluye sus órganos 
y flagelos, que utiliza para su locomoción; posee capa-
cidad de reproducirse por división y también es capaz 
de intercambiar información genética con sus congéne-
res. Además, es capaz de detectar nutrientes y evitar 
sustancias nocivas, efectuando un tipo de búsqueda 
aleatoria, basado en dos estados de locomoción: el des-
plazamiento o nado (swim) y el giro o tumbo (tumble). 
La decisión de permanecer en alguno de estos dos esta-
dos se basa en la concentración de nutrientes o sustan-
cias nocivas en el medio. Este comportamiento se de- 
nomina quimiotaxis. A continuación se describen los 
pasos de la optimización con el algoritmo BFOA (Regis 
et al., 2011).

Paso 1: El ciclo de la quimiotaxis se describe en la figu-
ra 1. En este proceso el movimiento de E.Coli se simula. 
El movimiento se efectúa de dos formas: dando tumbos 
o a nado, una operación a la vez. Se calcula el valor de la 
función objetivo. La bacteria cambia su posición si el va-
lor de la función objetivo modificada es peor que la ante-
rior. Al completar la quimiotaxis la bacteria estará 
rondando un punto en el espacio de búsqueda.
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Paso 2: El proceso de reproducción. El valor de la 
función objetivo se calcula para cada una de las bacte-
rias en la población ordenada. La peor mitad de la po-
blación se descarta y la mejor mitad se duplica. Para 
esta nueva generación de bacterias el ciclo de quimio-
taxis se inicia y el proceso continúa por el número de 
pasos de reproducción.

Paso 3: En el ciclo de eliminación-dispersión, algunas 
bacterias se eliminan con baja probabilidad y se disper-
san en un punto aleatorio del espacio de búsqueda. Este 
proceso mantiene constante el número de bacterias.

Los parámetros de entrada son el número de bacte-
rias S b,  límite de pasos de quimiotaxis Nc, límite de 
pasos de nado Ns, límite de ciclos de reproducción Nre, 

número de bacterias a producir Sr, límite del ciclo de 
eliminación-dispersión Ned, tamaño de paso Ci, y proba-
bilidad de eliminación-dispersión Ped. El costo de cada 
bacteria se optimiza por su interacción con otras bacte-
rias. La función de interacción se calcula de acuerdo 
con la expresión g().

donde 

cellk 	 = bacteria en cuestión 
dattr y wattr  	 = coeficientes de atracción 
hrepel  y  wrepel  	= coeficientes de repulsión 
S 	 = número de bacterias en la población 
P 	 = número de dimensiones o variables a op- 

   timizar en cada bacteria 

La representación “other” es “otra célula” interactuan-
do con cellk .

Algoritmo AiNet

Recientemente el algoritmo de optimización basado en 
el sistema inmune (Castro y Timmis 2002) ha llamado la 
atención de los investigadores por su potente capacidad 
de manejo de información. El sistema inmune natural es 
complejo y con diferentes mecanismos de defensa contra 
organismos invasores, tiene características como: especi-
ficidad, reconocimiento de patrones, diversidad, toleran-
cia a fallas, memoria y aprendizaje, auto-organización, 
cooperación entre capas, entre otros.

El objetivo de una red inmune es el de preparar o 
construir un repertorio de detectores para un problema 
dado, donde las células con mejor desempeño supri-
men a aquellas con baja afinidad en la red. Este objetivo 
se alcanza exponiendo a la población a información ex-
terna, a partir de la cual se generan respuestas en forma 
de clonaciones y dinámica iter-celular. 

Las dos teorías que principalmente motivaron el 
desarrollo de este modelo de optimización son (Ara-
gón et al., 2010): Immune Netrwork Theory (IN) y Clonal 
Selection Theory (CS). El principio de CS es la teoría 
que se emplea para describir la respuesta adaptativa 
del sistema inmune hacia estímulos antigénicos. La 
premisa de este modelo establece que el sistema inmu-
ne reacciona únicamente cuando se invade por estí-
mulos externos. Así que la respuesta del sistema es la 
producción de anticuerpos por las células B una vez 
que el antígeno ha entrado al sistema. Entonces en la 
presencia del antígeno, aquellos anticuerpos con ma-
yor afinidad o capacidad de reconocer el antígeno son 
los privilegiados para proliferar, produciendo enor-
mes cantidades de anticuerpos clones con diversidad 

Figura 1. Proceso de Quimiotaxis: Las células o bacterias realizan movimiento en forma de nado (swim) o tumbos (tumble) como 
estrategia para su movilización en busca de nutrientes o apartarse de condiciones desfavorables
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basada en mutación. Por otro lado, la teoría IN esta-
blece que los anticuerpos (receptores de las células B) 
tienen partes llamadas idiotopes que pueden recono-
cerse por otros anticuerpos en otras células B. Esta ca-
racterística de reconocer y ser reconocido le da al 
sistema una dinámica intrínseca. A continuación se 
describe el pseudo código y la estrategia de optimi- 
zación del algoritmo AiNet (Brownlee, 2011).

La cantidad de mutación de los clones es proporcio-
nal a la afinidad de la célula original (padre) con la fun-
ción objetivo en términos de que a una mejor aptitud 
(afinidad) le corresponde menor mutación. También se 
adicionan células aleatorias. Para limitar la redundancia 
se efectúa la eliminación de células según su similitud 
con otras. El tamaño de la población es dinámico y si 
continúa creciendo, puede significar que el espacio de 
búsqueda tenga múltiples mínimos locales o que el um-
bral de afinidad necesite un ajuste. La mutación propor-
cional a la afinidad se hace con c’ = c + a x N (1, 0) donde  
a = 1/b x exp (–f ),  N es un número gaussiano aleatorio y 
f es el grado de aptitud o fitness de la célula original (pa-
dre), c´ es la mutación de la célula c, β controla el decre-
mento de la función y puede establecerse en 100. El 
umbral de afinidad es específico del problema y su re-
presentación. Por ejemplo, dicho umbral de afinidad se 
puede establecer en 0.1 como valor arbitrario o se puede 
calcular como porcentaje del tamaño del espacio de bús-
queda. El número de células aleatorias insertadas puede 
ser 40% de la población. El número de clones a partir de 
una célula dada suele ser pequeño, por ejemplo 10. 

Funciones Benchmark 

Para asegurar una diversidad de pruebas se emplea un 
conjunto de 18 funciones de problemas conocidos en el 
área de optimización (Chase et al., 2010; Molga, 2005) ver 
tabla 1. Estos se clasifican según la similitud y forma del 
espacio de búsqueda (Surjanovic, 2013), algunas funcio-
nes tienen múltiples mínimos locales, otras tienen forma 
plana, forma de valle o profundidad como tazón, otras 
son escalonadas y de varias formas. Para esta comparati-
va todas las funciones son bidimensionales (d=2).  

Parámetros y recursos 

Los algoritmos BFOA y AiNet se desarrollaron en len-
guaje Ruby, en equipo de cómputo con procesador In-
tel core i7, 10Gb en memoria RAM y sistema operativo 
Windows 7. Las gráficas se generaron en el software Ex-
cel de Microsoft. En cuanto a los parámetros de los al-
goritmos, se adoptaron los considerados default, 
reportados por Brownlee (2011).

Determinación de los perfiles numéricos

La comparación del comportamiento numérico (robus-
tez, eficiencia) de los métodos BFOA y AiNet se realizó al 
emplear el concepto de perfil de comportamiento numé-
rico. El perfil de comportamiento para un método de op-
timización se define como la función de distribución 
acumulativa para una métrica de comportamiento o des-
empeño numérico (Dolan, 2002). Dicha métrica puede 
corresponder a algún factor de interés en la comparativa 
de desempeño, como el tiempo necesario para alcanzar 
la convergencia del método de optimización, la cantidad 
de funciones evaluadas durante la secuencia de cálculo o 
la capacidad del método para localizar al óptimo global 
de la función objetivo. En este trabajo, las siguientes mé-
tricas se consideran para la comparación de los dos mé-
todos: la distancia relativa entre el óptimo localizado por 
el método de optimización y el óptimo global conocido: 
d. La  cantidad de funciones evaluadas durante la se-
cuencia de optimización (NFE) y el tiempo de ejecución 
(T) para la convergencia. La primera métrica se asoció 
con la robustez del método (es decir, la capacidad de la 
estrategia numérica para localizar al óptimo global de la 
función objetivo) mientras que la segunda y tercera co-
rresponden a una medida de la eficiencia de los métodos 
estocásticos (Ali et al., 2005).

Para la evaluación de estas métricas, se asume que 
existen ns = 2 métodos de optimización y np = 18 proble-
mas o casos de estudio. Cada uno de los casos de estu-
dio se resolvió en 30 ocasiones con estimaciones ini- 
ciales aleatorias y diferentes secuencias de números 
aleatorios, considerando una  tolerancia de 1.0E-06 en 
el valor de la función objetivo como criterio de conver-
gencia para ambos métodos. Para cada problema y mé-
todo de optimización, las métricas tp,s  se calcularon 
empleando los resultados de 30 cálculos y las siguientes 
expresiones.

donde 

 	 = valor promedio de la función objetivo cal- 
   culado por el método de optimización 

 	 = óptimo global de la función objetivo 
 	 = valor máximo para la función objetivo en- 

   contrado dentro la secuencia de cálculo 
  	 = valor promedio del número de funciones  

     evaluadas y el tiempo para alcanzar la con-       
    vergencia del método de optimización 
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Tabla 1. Conjunto de funciones 

Benchmark Función var Espacio de 
Búsqueda Mínimo Global

Cross in Tray xi  [-10, 10] -2.06261

Drop Wave xi  [-5.12, 5.12] -1

Holder Table xi  [-10, 10] -19.2085

EggHolder xi  [-512, 512] -959.6407

Rastrigin xi  [-5.12, 5.12] 0

Shubert xi  [-10, 10] -186.7309

Schwefel xi  [-500, 500] 0

xi  [-100, 100] 0

Ackley xi  [-32.768, 32.768] 0

Booth xi  [-10, 10] 0
Matyas xi  [-10, 10] 0

Zakharov xi  [-5, 10] 0

xi  [-5.12, 5.12] 0

Rosenbrok  [-5, 10] 0

Michaelwicz m=10 xi -1.8013

Easom xi  [-100, 100] -1

Beale xi  [-4.5, 4.5]

Styblinski-Tang xi  [-5, 5] -39.16599d
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Es importante señalar que los valores de     ,         y   
se determinaron empleando los 30 experimentos numé-
ricos realizados para el caso de estudio. Conforme a lo 
establecido por Ali et al. (2005) y Bonilla et al. (2011), en 
la literatura se suelen usar valores promedio para las 
métricas de comportamiento con el objeto de describir 
el desempeño de los métodos. Con base en lo anterior, 
este estudio también emplea dicho enfoque. Por otro 
lado, para las tres métricas, la tasa de comportamiento 
numérico rp,s se define como

Donde S corresponde al conjunto de métodos de optimi-
zación analizados. Se puede observar que el valor de di-
cha tasa es igual a 1 para el método que presenta el mejor 
comportamiento en un problema específico, ya que para 
ambas métricas es deseable obtener el valor mínimo po-
sible (Dolan, 2002 y Ali et al., 2005). Finalmente, la tasa de 
probabilidad acumulativa ρs(τ) para el método de opti-
mización s y la métrica en cuestión se define como

Donde τ es un factor que se define en (1,∞). La gráfica del 
perfil de comportamiento, es decir, el gráfico de ρs versus 
τ, compara el desempeño relativo entre los métodos de 
optimización para el grupo de problemas considerados  
(Dolan, 2002). Hasta el momento los perfiles de compor-

tamiento se han utilizado por Montaz et al. (2005) em-
pleando funciones objetivo clásicas del área de 
optimización, y por Bonilla et al. (2011) empleando fun-
ciones del área de la ingeniería química. No obstante, 
dicho concepto no se ha empleado en la comparativa de 
los métodos descritos en este estudio.

Resultados y discusión

El perfil de comportamiento para la métrica      , que se 
asocia a la capacidad del método de optimización para 
acercarse al óptimo global en los problemas considerados, 
se muestra en la figura 2. Como se puede observar, el mé-
todo AiNet presenta un mejor comportamiento para esta 
métrica, en contraste con el método BFOA dentro del ran-
go analizado para τ. También estos resultados  indican 
que en 81% de los casos de estudio el método AiNet pro-
porciona mejor solución (τ = 1), mientras que BFOA sola-
mente lo consigue en 19% de los casos. 

Para el caso de la eficiencia, en la métrica         es in-
dudable que el método BFOA supera al método AiNet 
(figura 3) para todos los casos de estudio.

Para el caso de la eficiencia, en la métrica del tiempo 
empleado por el método de optimización   , se puede 
observar en la figura 4 que el método AiNet tuvo un 
mejor desempeño en contraste con BFOA.

Con el objeto de proporcionar más elementos para 
el comparativo de estos métodos de optimización, en la 
tabla 3 se muestran los valores de      ,                para las 
dos estrategias de optimización en todos los casos de 
estudio considerados. 
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Tabla 2. Parámetros de los algoritmos BFOA y AiNet

Algoritmo BFOA Algoritmo AiNet

Parámetro Valor Parámetro Valor

Población 50 Límite de Generaciones 150

Step size 0.1 Población 20

Ciclos de eliminación-
dispersión (Ned) 1 Número de Clones 10

Ciclos de reproducción (Nre) 4 Beta 100

Ciclos de quimiotaxis (Nc) 70 Números aleatorios 2

Longitud de nado (Ns) 4 Umbral de afinidad 0.05 del espacio de búsqueda

Prob. de eliminación (Ped) 0.25

d_attr 0.1

w_attr 0.2

h_rep d_attr

w_rep 10

ˆ
objf
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Es de notar el valor de la métrica      para el caso de las 
funciones de optimización Schewfel y EggHolder para 
los algoritmos de optimización, donde se observa una 
diferencia que contrasta con el resto de los experimentos. 

Los parámetros de atracción y repulsión en el caso del 
algoritmo BFOA son determinantes y para este estudio 
todos los experimentos se realizaron con valores pro-
puestos en la literatura, pero pueden ajustarse con base 
en el juicio (Dasgupta et al., 2009). En este sentido, para el 
caso de la métrica que corresponde al número de funcio-
nes evaluadas        , destaca el resultado del algoritmo 
AiNet para la función de optimización Easom, donde 
considerablemente el algoritmo realiza un esfuerzo com-
putacional mayor que BFOA. De acuerdo con la literatu-
ra, el parámetro de umbral de similitud puede ajustarse 
para problemas específicos (Brownlee, 2011). En cuanto 
al tiempo empleado por el método de optimización, la 
métrica    describe dicha característica para los casos de 
estudio. Destaca el algoritmo AiNet haciendo uso de me-
nos tiempo en todos los experimentos excepto el corres-
pondiente al de la función Easom, que como es de 
esperarse y en congruencia con la métrica     pre- 
senta mayor tiempo de ejecución.

ˆ
objf

ˆ ˆyNFE T

ˆ ˆyNFE T

T̂Figura 4. Perfil de comportamiento numérico para la métrica 

Figura 2. Perfil de comportamiento numérico para la métrica de 
costo ,

d
p st

Figura 3. Perfil de comportamiento numérico para la métrica ˆ ˆyNFE T

Tabla 3. Promedios de las métricas a comparar para los algoritmos BFOA y AiNet
BFOA AINET BFOA AINET BFOA AINET

Núm Óptimo Benchmark
1 0 Ackley 9.3442 4.3250 28616.8333 150853.1000 3764.5153 1829.0026
2 –1.8013 Michaelwikcz –1.8012 –1.7999 29372.3667 75678.2000 3873.6549 1253.0574
3 0 Rastrigin 0.7107 0.2212 28588.8000 129441.1330 3762.2486 2043.7369
4 0 Rosenbrok 0.0007 0.0762 32261.7667 136271.8330 4275.7113 2134.2732
5 0 Schwefel 201.1314 79.9905 40398.7333 149165.7000 2474.1749 1192.5015
6 0 Sphere 0.0000 0.0000 38576.7667 76409.0333 4499.3907 1091.4825
7 –78.33198 Styblinski –78.3323 –78.2564 32229.9000 108285.3670 1959.0027 1093.2016
8 0 Zakharov 0.0001 0.0033 38901.1333 100223.0000 5398.3088 1015.1348
9 0 Beale 0.0000 0.0026 31692.7000 107971.2000 5485.3804 1063.6682

10 0 Booth 0.0001 0.2168 37141.1333 128546.3000 4843.2103 1405.6686
11 –2.06361 Cross In Tray –2.0626 –2.0527 43420.5667 144084.0670 5238.7663 1565.3355
12 –1 Drop Wave –0.8708 –0.9426 33297.1667 150218.1330 4514.5249 1609.6689
13 –1 Easom –0.0333 –0.0232 56335.3333 4007564.3700 6101.5156 15623.0552
14 –959.6407 Egg Holder –719.0541 –838.0015 40293.5667 151782.8670 5974.6418 1639.7758
15 –19.2085 Holder Table –19.2081 –19.1766 35989.3333 114001.6000 4941.5826 1607.4575
16 0 Matyas 0.0000 0.0031 40177.0000 112702.1330 5371.4072 1679.3944
17 0 Schaffer 2 0.0023 0.0002 26183.6000 146886.2330 3376.0931 2373.0716
18 –186.7309 Shubert –178.8117 –186.5650 28487.7667 146344.9670 3935.1918 2535.8996
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Conclusiones 

Este trabajo describe la aplicación del método BFOA y 
AiNet en comparativa, empleando el modelo de perfil 
de comportamiento numérico (Dolan, 2002) para un 
conjunto de conocidas funciones benchmark. Los resul-
tados obtenidos indican que el método AiNet (Castro, 
2002) es más robusto que el método BFOA (Passino, 
2010) para los casos de estudio considerados en este tra-
bajo. Sin embargo, existen diferencias en la eficiencia 
(número de funciones evaluadas y tiempo de conver-
gencia) entre ambos métodos. Donde BFOA es el algo-
ritmo con mejor desempeño en cuanto al número de 
funciones evaluadas.

Con base en los resultados obtenidos, para futuras 
aplicaciones de los algoritmos aquí descritos se hacen 
los siguientes contrastes:

El algortimo AiNet tuvo mejor desempeño en térmi-
nos globales en comparación con BFOA, pero debe se-
ñalarse el caso de la función benchmark Easom, en la 
que AiNet tuvo particularmente dificultades. Esto apa-
rentemente se debe a que la naturaleza de su estrategia 
basada en clonación puede ser ineficiente en la región 
plana del espacio de búsqueda, donde el algoritmo “pa-
rece perderse”, se recomienda observar la gráfica del 
espacio de búsqueda Easom. Esto debe tomarse en 
cuenta para futuras aplicaciones.

En el caso de la función  benchmark Schwefel, los 
dos algoritmos tuvieron resultados alejados del óptimo 
esperado, donde BFOA fue el peor. Al observar la gráfi-
ca del espacio de búsqueda destacan los múltiples mí-
nimos locales. Tal parece que ambos algoritmos tienen 
dificultades en un escenario de tal complejidad. Se re-
comienda hacer una sintonización no basada en los de-
fault para el  parámetro de umbral de afinidad respecto 
a AiNet y los parámetros de atracción/repulsión (d_attr, 
w_attr, h_rep, w_rep) respecto a BFOA.
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