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Abstract

A mixture experiment is one where the response depends only on the relati-
ve proportions of the ingredients present in the mixture. There are different
regression models used to analyze mixture experiments, such as Scheffé mo-
del, slack-variable model, and Kronecker model. Interestingly, slack-varia-
ble model is the most popular one among practitioners, especially for-
mulators. In this paper, I want to emphasize the appealing properties of
slack-variable model. I discuss: how to choose the component to be slack
variable, numerical stability for slack-variable model and what transforma-
tion could be used to reduce the collinearity. Practical examples are illustra-
ted to support the conclusions.

Resumen

Un experimento para mezclas es aquel en donde la respuesta depende solo de las
proporciones relativas de los ingredientes presentes en una mezcla. Existen dife-
rentes modelos de regresion empleados para analizar experimentos para mezclas,
tales como el modelo Shceffé, variable de holgura y Kronecker. Es interesante men-
cionar que el modelo de variable de holgura es el que goza de mayor popularidad
entre profesionistas, especialmente formuladores. En este articulo, se enfatizan las
atractivas propiedades del modelo de variable de holgura. También se discute cémo
seleccionar el componente que deberd ser la variable de holgura, estabilidad nu-
mérica para el modelo de variable de holgura y qué transformacion puede utilizarse
a modo de reducir colinealidad. Ejemplos prdcticos se ilustran para sustentar las
conclusiones.
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Selecting the Slack Variable in Mixture Experiment

Introduction

The development of products generated by the mixing
of different components is a special case of the response
surface methodology (Ralph, 1984). The experimenter
may be interested in modeling a response variable as a
function, where different predictor variables (compo-
nents) modify the behavior of the response. Mixture
experiments are performed in many product-develop-
ment activities. Mixtures problem examples include as-
sessing the octane index in gasoline blend components;
measuring the compressive strength of a standard con-
crete block; blends of bread flours, consisting of wheat
and various permitted additives; fertilizer, consisting of
blends of chemical; wines, blended from several varie-
ties of grapes, or several sources of similar grapes; and
the measurement of the characteristics of a fish cake fla-
vor made of a mixture of three types of fish.

Data from experiments using mixtures are usually
modeled using quadratic Scheffe model (S-model) in-
troduced by Scheffe (1958)

E(Y) = f1x1 + Box, + -
(1)

+ ﬁqxq + ,[)’12x1x2 + -+ ﬁq_l_qxq_lxq

An alternative model, the quadratic Kronecker model
(K-model), was introduced by Draper and Pukelsheim
(1998). This model contains second order terms only
and takes the form

EQY) = ay1xf + @pox3 + - 4 agqx2 + agpx1%;
)
+ ot Agoq,gXg-1%Xg

Another alternative model is the so-called Slack-Varia-
ble models (SV-model) which are obtained by designa-
ting one mixture component as a slack variable. The
purpose of this model is to produce mixture models
that depend on k — 1 independent variables. The qua-
dratic SV-model takes the form

E(Y) = yo +v1x1 +V2x2 + -+ Vgxq
(3)
+ Vi2X1X2 + r+ Vg_1,9gXg-1%Xq

These three models are re-parameterizations of one
another and all lead to the same fitted response con-
tours and residuals. There are a number of different
ways of writing a polynomial model, of any specified
order, obtained by re-parameterization using the mix-
ture constraint, see Prescott et al. (2002) for a discussion

of model specification and ill-conditioning. All such re-
parameterized models are equivalent in the sense that
they lead to the same predicted values and basic analy-
sis of variance. However, the coefficients of the various
terms in the models can be confusingly different and
thus difficult to interpret Prescott ef al. (2009).

In mixtures problems, the response variable de-
pends only on the relative proportions of the ingre-
dients or components of the mixture. Other types of
mixture experiments involving the total amount of the
mixture or certain process variables (Piepel and Cor-
nell, 1985; Goldfarb et al., 2004; Kowalski et al., 2002) are
out of the scope of this paper. These proportions are
connected by a linear restriction

Xt ttx =1 4)

Commonly the design region (1) is subject to additional
constraints of the form

a4, <x, <D, ©)

to one or several components, these additional restric-
tions may result in extremely small range in terms of
the mixtures. Further, mixture experiments with large
number of ingredients may result in extremely small
range too.

A general mixture model, in matrix terms, can be pre-
sented as Y =Xp + € or E (Y)=Xp. To estimate the para-
meters in the 3 matrix via least squares the following
expression can be used

B=x'X)"Xy (6)

Where the covariance matrix is V(E) = (X’ X)™" o®. The
vector of fitted values is given by § = X3 and the resi-
dual vector is e =y — § =y — X B. Usually, the vector €
is assumed to follow a normal distribution, that is
e ~N (0, 0.

If an exact linear dependence between the columns
of X exist, that is, if there is a set of all non-zero
¢;s such that

p

j=1

then the matrix X has a rank inferior to p (predictor va-
riables), and the inverse of X’ X does not exist. In this
case many software packages would give an error mes-
sage and would not calculate the inverse. However, if
the linear dependence is only approximate, it is
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P
Z Gxj = 0 ®)

=1

then we have the condition usually identified as colli-
nearity or Ill-conditioning (some authors use the term
multicollinearity). In this case many software packages
proceed to calculate (X’ X)" without any signal fore-
seeing to the potential problem.

When there is presence of Ill-conditioning computer
routines used to calculate (X’ X)™" can give erroneous
results. In this case the least squares solution (6) may be
incorrect. Moreover, even if (X’ X)" is correct, the va-
riance of [3 J's, given by the diagonal terms in V( 3) =
(X’ X)™ 0® can be inflated by Ill-conditioning (Ralph, 1984).

In this paper we investigated an alternative model
for which functional forms are more appropriate than
the S-model.

Prescott et al. (2002) show that the quadratic K-mo-
del is the quadratic model specification that is less sus-
ceptible to ill-conditioning than the S-model. They
investigated which model form is best conditioned
among all the possible variations of a second-order mo-
del obtainable by using different substitutions of the
model restriction (4) into a full quadratic regression
model. They also give their main theoretical results mo-
tivating their preference for the quadratic K-model.
They concluded that the quadratic K-model always re-
duces the maximum eigenvalue of the information ma-
trix compared with that of the S-model, but, the
minimum eigenvalue does not necessarily increase.

Many practitioners and researchers alike profess to
have been successful using the SV-model approach.
When the presence of collinearity among the terms in S-
models is a possibility and the appearance of the comple-
te model form is of concern, the choice of using the
SV-model makes sense. Reference to the SV-model form
of the mixture model appears in Snee, (1973), Snee and
Rayner (1982), Piepel and Cornell (1994). Examples of
the use of a slack variable found in the literature are Cain
and Price (1986); Fonner et al. (1970) and Soo et al. (1978).

The pros and cons of the use of SV-models, as oppo-
sed to S-model, have generated a lot of discussions
among research workers and practitioners. Snee and
Rayner (1982) very briefly discussed using SV models
as a way to reduce collinearity and test hypotheses of
interest for mixture experiment problems. However,
they concluded that the intercept forms of mixture ex-
periment models (which they discuss) were preferable
for hypothesis testing purposes. Piepel and Cornell
(1994) discussed and illustrated several approaches for
mixture experiments, including the SV approach. They

used the four components shrimp patty data set of Soo
et al. (1978) to compare the SV and mixture experiment
approaches, and show how the SV approach yielded
could misleading conclusions regarding the effects of
the non-SV components. This issue was recently discus-
sed by Cornell (2000). One of the questions raised by
him was “does it matter which component is designa-
ted the slack variable?” He attempted to answer this
question by discussing three numerical examples. Both
complete and reduced models were fitted to the mixtu-
re data. He noted that there are situations where fitting
the SV-model is reported to be more satisfying to the
user than fitting the S-model. Khuri (2005) discussed
and examined the same issue discussed by Cornell
(2000) from a different perspective. Emphasis is placed
on model equivalence through the use of the column
spaces of the matrices associated with the fitted models.
It is shown that while complete S-model and its corres-
ponding SV-models are equivalent, their reduced mo-
dels, or submodels, provide different types of information
depending on the vector space spanned by the columns
of the matrix of the fitted model. For some reduced mo-
dels of a given size, S-model may provide the best fit, but
for other reduced models some SV- models may be pre-
ferred. Landmesser and Piepel (2007) analyzed data
from several examples using the mixture experiment
and SV approaches.

The motivation of this paper comes from the fact
that there are no clear guidelines to help practitioners
to decide which model is most suitable for use under
certain circumstances. Especially in those cases where
the SV-model appears to be the best alternative.

Although the SV-model is very popular among prac-
titioners due its simplicity, is not so advocated by litera-
ture. Cornell (2000) argues that the idea behind using a
SV-model undermines the fundamental property of mix-
ture experiments, which is, that the relative proportions
of the mixture components are not independent. Piepel
and Landmesser (2009) mentions that practitioners who
use the SV approach with traditional statistical methods,
can be misled in making conclusions about the effects of
mixture components and in developing models for res-
ponse variables. Considering the relationships between
SV and S-model would avoid misleading results and
conclusions, but typically practitioners who use the SV
approach do not consider these relationships.

The main objective of this paper is to promote the
SV-model for mixture experiments showing its nice
features and more importantly, we provide guidelines
on how determine the slack variable.

The remainder of this paper is organized as follows.
Section 2 presents the definition of the SV-model, its
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features and benefits, and the introduction of the con-
cept of “filler” ingredient. In section 3 we propose a
new criterion to determine which ingredient in the mix-
ture has to be selected as a slack variable based on the
correlation between the columns of the information
matrix. In section 4 we introduce two alternative trans-
formations for the SV-model, which make the SV-mo-
del a better conditioned model. Finally in section 5 the
main conclusions are given.

Slack-Variable Model
Definition of the SV-model

In a mixture experiment with components x, (i=1,2, ...
q), the SV approach involves designating one of the
components as the “Slack Variable”, and designing the
experiment and/or analyzing the data in terms of the
remaining g —1 components. In this paper x, is designa-
ted as the SV. Thus, x, to x, ; would be used to design
the experiment, develop models for the response varia-
ble, and perform other data analysis.

The quadratic models in equations (1) and (2) are
equivalent. This means the coefficients (and their esti-
mates) in equation (2) is a simple function of the coeffi-
cient (and their estimates) Y, Y; and Y} in equation (1),
and vice versa (Cornell, 2000). In fact, for equation (2)
and (1)

YOZ [347’ Yiz (:))i_ [317+ [‘))iq’
Yi = _ﬁ’iq/ Yi= (51,‘_ ([D)iq + ﬁjq)

See Cornell (2002, Section 6.13) for more discussion of
these relationships.

Hereafter when referring to any slack-variable mo-
del with component x, being the slack component, we
shall abbreviate the model using SV,

In the SV approach, traditional experimental desig-
ns such as factorial, fractional factorial, central compo-
site, Box-Behnken, and others are typically used (Myers
et al., 2009).

Introduce the concept of “filler” ingredient

The SV approach is widely used by practitioners in
many disciplines; however, there is limited information
in the mixture experiment literature.

Snee (1973) discusses using the SV approach when
one component makes up a large percentage (> 90%) of
the mixture. He explains that “when a mixture experi-
ment is designed and analyzed in terms of 4 — 1 compo-
nents, the scientist is interested in the effect of changes

of the levels of the components with respect to the
slack component.

Snee and Marquardt (1974) prefer the mixture expe-
riment approach unless one component makes up “an
overwhelming proportion” of the mixture. In that case,
they say “it may not be appropriate to view the pro-
blem as a mixture problem.” This advice might be ap-
propriate if the SV has no effect and only the trace
components have substantive effects.

The SV approach has been mentioned in the litera-
ture and by practitioners as being useful in four situa-
tions (Piepel and Landmesser 2009). Situation 1 occurs
when the SV component makes up the majority of the
mixture (Snee, 1973). Situation 2 occurs when the SV
plays the role of a diluent and blends additively with
the remaining components in the mixture. The SV ap-
proach can yield misleading conclusions in this situa-
tion (Cornell, 2002; Section 6.5). Situation 3 occurs when
there is not a natural SV, but the data analyst is willing
to consider models using each of the mixture compo-
nents as the SV (Cornell, 2000 and Khuri, 2005). Situa-
tion 4 occurs when the component selected as the SV
has no effect on the response. An example of such a si-
tuation is when the SV component is an inactive “filler”
and the other components are the active ingredients. In
this situation, a mixture experiment approach can be
used to verify the filler component has no effect on the
response. Then, mixture compositions and mixture ex-
periment models can be expressed using the relative
proportions of the remaining components.

The advantages of the SV model

Some advantages of the SV-model are mentioned be-
low:

e If a “filler” is involved, classic factorial experimental
design methods can be applied to the other ingre-
dients, if only lower and upper bounds and no other
constraints are imposed on them.

e If at the design stage, the “filler” ingredient is identi-
fied. Proper designs can be used such that the qua-
dratic SV model has the diagonal information matrix,
thus has the best conditional number.

e If “filler” cannot be identified, choosing the suitable
ingredient as slack variable, with a proper linear
transformation, the information matrix of SV model
has the smallest condition number (see Section 3).

¢ Slack variable has much clearer interpretation than
the other mixture model. For example, the linear effect
of an ingredient is the change in the response when
this ingredient is increased for a certain amount while
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only the filler is decreased for the same amount, or the
other way around.

® S5V model is more suitable to perform variable selec-
tion, thus can lead to more accurate prediction on
new data set. Scheffé model can have variable selec-
tion on the condition that all the linear effects are
kept in the model. K-model is not able do variable
selection.

e Much easier to use and understand, thus already
very popular among formulators.

Choice of slack variable

As mentioned above, the information matrix of the
mixture models can easily become ill conditioned. Co-
llinearity is a condition among the set of 4 components
Xy Xy vy X, ID the model, where an approximate linear
dependency exists. When the condition of near colli-
nearity is present, the inverse matrix (X’ X)™' exists but
is so poorly conditioned and some of the estimates and
their variances are affected adversely.

This section proposes a criterion to determine which
component proportion should be used as the slack varia-
ble, so that the SV-model has the least collinearity. The
choice of which component proportion should be used
as the slack variable has not been defended from either a
theoretical or practical point of view (Cornell, 2002).

Let us denote X as the design matrix for the mixture
experiment of total g ingredients and n experimental
settings.

Allow A, >A, > .. > A > A, to be the eigenvalue
of X"X, which are p solutions to the determinant equa-
tion

min

I X'X-AIl =0

which is a polynomial with g roots.

The general definition of conditional number (CN)
used in applied statistics is the square root of the ratio
of the maximum to the minimum eigenvalues of X'X
denoted by

cond(X'X) = /% =CN )

Small values of A, and large values of A, indicate the
presence of collinearity. Low values of the condition
number indicate some level of stability or conditioning
in the least squares estimate.

We propose as a criterion for selection of the slack
variable the SV, model with the smallest CN value.

Suppose the case where there are only three compo-
nents: x,, x, x;. Here we would want to determine
which component should be used as slack variable.
When we have three components we can fit three diffe-
rent SV models, this is, we can fit the SV model using x,
as a slack variable (SV,), or use x, as a slack variable
(SV,) or use x, (SV ;). These three SV models have the
form

SV = Yot Y2, +V5X;
SVo= Yot YiX; +V5X;
SVia= Yot YiX; + V2%,

Thus, we can calculate the CN (9) to each of the three
models, and for example, if SV, has the minimum CN
that mean that x, is the component that have to be use
as a slack variable.

In assessing the conditioning of information matrix
for estimating the parameters in a regression model, as-
sessment of the variance inflation factors associated
with the regression coefficients of the X’X matrix, is wi-
dely used method.

The variance inflation factor (VIF) associated with
the estimated regression coefficients v, is given by

VIF(y;)) = (1-R?) ", j=1,...q, (10)

To evaluate the overall collinearity level of a model, we
propose the mean variance inflation factor (MVIF),

q
1

MVIF = — VIF (y; 11
‘HZ ) (11)

Following are four numerical examples:
Example 1

Piepel (2009) use an artificial example involving mixtu-
res of two drugs (x, and x,), an enhancer (x;), and a filler
(x,), where

0.01 <x,<0.03, 0.01<x,<0.03, and 0 <x,<0.02.

An 18-point, face-centered cube was used as the design,
which contains 8 factorial points, 6 face centroids, and 4
center point replicates. The experimental design points
and values of the response variable are listed in Table 1.
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Table 1. Efficacy data from mixtures of two drugs. Piepel and
Landmesser (2009)

Blend X x, X5 Xy Efficacy (Y)
1 0.01 0.01 0 0.98 5.06
2 0.03 0.01 0 0.96 5.11
3 0.01 0.03 0 0.96 3.8
4 0.03 0.03 0 0.94 494
5 0.01 0.01 0.02 0.96 4.74
6 0.03 0.01 0.02 0.94 5.62
7 0.01 0.03 0.02 0.94 4.29
8 0.03 0.03 0.02 0.92 5.27
9 0.01 0.02 0.01 0.96 4.79
10 0.03 0.02 0.01 0.94 5.58
11 0.02 0.01 0.01 0.96 5.64
12 0.02 0.03 0.01 0.94 5.06
13 0.02 0.02 0 0.96 4.79
14 0.02 0.02 0.02 0.94 5.27
15 0.02 0.02 0.01 0.95 5.16
16 0.02 0.02 0.01 0.95 5.24
17 0.02 0.02 0.01 0.95 5.46
18 0.02 0.02 0.01 0.95 5.29

Listed below are the CN values for the four quadratic
SV models using (9) and the data in table 1.

Table 2. Numbers for the Quadratic SV,,, SV,,, SV,;, and SV,
models

CN
SV, 222.626
v, 222,626
SV, 223.704
SV, 30.037

x4

According to the proposed criterion x, should be used
as a slack variable.

Table 3. VIF and MVIF for the Piepel and Landmesser (2009).
Example 1

Constant SV, SV, SV, SV,
x - 152283.54  155429.44 66.29
x, 152283.54 - 155429.44 66.29
X 153024.67  153024.67 - 25.76
x, 425341.74  425341.75  434077.28 -

X% x, - - 162.90 11.00
X% x, - 107.36 - 7.25
X% x, - 138647.79  138647.79 -
x,* 107.36 - - 7.25
x,* ¥, 138647.79 - 138647.79 -
X% x, 141545.94  141545.94 - -
x - 98.86 98.86 60.68
x3 98.86 - 98.86 60.68
x3 26.71 26.71 - 16.40
x3 399724.33  399724.33  399724.33 -
MVIF 156,755 156,755 158,035 35

Table 3 shows that the VIFs for the SV, are generally
considerably smaller than those for the SV,, SV, and
SV . The MVIF for the SV, is less that of the SV, SV,
and SV, as well, indicating a more stable analysis.

Example 2

Prescott (2002) described an experiment to study the
effects of different mixtures in which

0.05<x,<0.5,0.005<x,<0.1 and 0.4 < x,< 0.945.

The 13-Points Optimal Design is provided in Table 4.

Table 4. The 13-Points D-optimal design. Prescott (2002)

Point X, X, X, Y
1 0.495 0.500 0.005 0.136
2 0.945 0.050 0.005 0.486
3 0.400 0.500 0.100 0.946
4 0.850 0.050 0.100 0.361
5 0.720 0.275 0.005 0.663
6 0.448 0.500 0.053 0.610
7 0.898 0.050 0.053 0.846
8 0.625 0.275 0.100 0.122
9 0.645 0.350 0.005 0.158
10 0.550 0.350 0.100 0.357
11 0.700 0.200 0.100 0.865
12 0.83814 0.75000 0.25000 0.25000
13 0.56309 0.66284 0.25000 0.75000

Listed below are the CN values for the four quadratic
SV models using (9) and the data in table 5.

Table 5. Numbers for the Quadratic SV,,, SV,,, SV,; and SV,
models

CN
sV, 1.161
SV, 1.493
5% 3.831

x3

According to the proposed criterion should be used as
a slack variable (Table 6).
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Table 6. VIF and MVIF, Prescott (2002). Example 2

Constant SV, SV, SV,
X, - 124 126.408
X, 19 - 122.341
X5 27 61 -

x,*x, - - 24.346
X% x, - 26 -
X, % x, 5 - -
X - 105 64.295
x3 18 - 11.399
x; 2 25 -
MVIF 18 68 69.757

The VIFs for the SV, are generally considerably smaller
than those for the SV, and SV ,. The MVIF for the SV,
is less that of the SV, and SV, indicating a more stable
analysis.

Example 3

Cornell (2000) describes a study where the solubility of
butoconazole nitrate, an anti-fungal agent, was studied
as a function of the proportions of the co-solvents po-
lyethylene glycol 400 (x,), glycerin (x,), polysor polysor-
bate 60 (x;), along with water (x,). Constraints on the
component proportions were

0.10 <x, <0.40
0.10 <x,<0.40

0.005 <x,<0.03
0.30 <x,<0.795

A 10-point D-optimal design was selected for fitting a
quadratic model. The design consisted of 6 of the 10 ex-
treme vertices and midpoints of 4 of the edges of the
constraints region. Listed in Table 7 are the coordinates

Table 7. 10-point D-optimal design. Cornell (2000)

of the components and the solubility values ranging in
magnitude from 3.4 to 12.4 mg/ml.

Listed below are the CN values for the four quadra-
tic SV models using (9) and the data in Table 8.

Table 8: Numbers for the Quadratic SV, SV,,, SV, and SV, models

CN
SV, 72.937
sV, 72.901
SV, 391.490
sV, 66.420

According to the proposed criterion x, should be used
as a slack variable (Table 9).

Table 9. VIF Values and Conditional Numbers Cornell (2000)

Constant SV, SV, SV, SV,
X, - 23.460 270.214.273 608
X, 9.152 - 235.310.602 2.701
X, 820 1.109 - 618
X, 8.882 38.857 433.532.271 -

X% x, - - 23154701 46
XX, - 27 - 5
X, %X, - 3.926 29967691 -
x,%x, 21 - - 9
X, %, 822 - 36959174 -
x5 x, 41 92 - -
xl2 - 4.080 17955912 620
x; 3.619 - 16033761 2.524
k% 552 555 - 549
xf 4.760 21.848 137212407 -
MVIF 3.185 10.439 133.371.199 853

The VIFs for the SV,, are generally considerably smaller
than those for the Sv,,-, SV, and SV,,. The MVIF for the

Polyethylene Polysorbate
Glycol Glycerin 60 Water Solubility
Blend X, X, X5 X, Y
1 0.400 0.270 0.030 0.300 7.7 9.1
2 0.100 0.400 0.030 0.470 6.6 52
3 0.100 0.100 0.030 0.770 3.3 48
4 0.400 0.295 0.005 0.300 9.5 8.2
5 0.100 0.100 0.005 0.795 3.9 34
6 0.100 0.400 0.005 0.495 6.9 6
7 0.280 0.400 0.020 0.300 10.2 11.1
8 0.400 0.100 0.020 0.480 11.7 12.6
9 0.400 0.200 0.005 0.395 10.7 11.8
10 0.200 0.400 0.005 0.395 8.7 9.5
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SV, is also less that of the SV, SV,, and SV, indicating a
more stable analysis.

Example 4

Cornell and Gorman (2003) describe a study involving
three components and seven design points in the redu-
ced region constrained by the inequalities
015<x,<0.5 02<x,<0.7, 0.015<x;<0.65

The data for the example are reproduced in Table 10
below

Table 10. Three components and seven design points Cornell
and Gorman (2003)

Point X, X, X5 Y
1 0.50000 0.20000 0.30000 14.3
2 0.32500 0.45000 0.22500 17.2
3 0.15000 0.70000 0.15000 8.8
4 0.15000 0.40000 0.45000 9.2
5 0.15000 0.20000 0.65000 10.4
6 0.30000 0.20000 0.50000 8.9
7 0.26700 0.36650 0.36650 10.8

Listed below are the CN values for the four quadratic
SV models using (9) and the data in Table 11.

Table 11. Numbers for the Quadratic SV,

x17

SV, and SV models

CN
sV, 270
SV, 152
SV, 184

According to the proposed criterion x, should be used
as a slack variable (Table 12).

Table 12. VIF Values and Conditional Numbers Cornell and
Gorman (2003)

Constant SV, SV, SV,
x, - 63 103
X, 303 - 106
x, 376 55 -

x,*x, - = 19
X% x, - 18 -
X% x, 30 - -
4 - 34 56
X 136 - 55
X 164 41 -
MVIF 201 42 67

The VIFs for the SV, are generally considerably smaller
than those for the SV, and SV,,. The MVIF for the SV, is
less that of the SV, and SV,, indicating a more stable
analysis.

Linear transformations

Thirty two years ago, Gorman (1970) pointed out that
fitting polynomials to mixture data by linear least
squares often leads to inaccurate computer solutions
when are restraints on composition. By restraints on
composition, he meant that data are collected from a
highly constrained region inside the mixture simplex.
As illustrated by Prescott and Draper (2009) if the de-
sign space is restricted to a reduced region within the
simplex, and these models are fitted in terms of the
original x, variables, the estimated coefficients might
bear little resemblance to the magnitudes of the actual
observations, because they are extrapolated out to the
full simplex. The coefficients may be many times grea-
ter (in absolute value) than the observations, which
some practitioners find disconcerting (Cornell and
Gorman, 2003).

Snee and Rayner (1982) proposed alternative mo-
dels to the Scheffe model in the original component
proportion when the data are collected from a highly
constrained mixture region. Montgomery and Voth
(1994) discussed ways of overcoming high leverage
points and collinearity by replicating the high leverage
points and imposing other design considerations to
combat collinearity. Cornell and Gorman (2003) intro-
duce two new mixture model forms, these models not
removing the collinearity on the coefficient estimates,
but diminish its influence. Prescott and Draper (2009)
introduce a different alternative transformation that
identifies the largest simplex-shaped space contained
within the restricted region.

In this section, we introduce two alternative trans-
formations for the SV-model, which make the SV-mo-
del a better conditioned model.

The first alternative transformation for the SV-mo-
del is given by

x; — min

%= o foT = Led (12)

where min and mdx are the minimum and maximum
value of x,.

We consider the example 2 used in section 3 (Presco-
tt et al., 2002).
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Table 13 shows the analysis of the SV fitted model
when applied to the original data without the applica-
tion of any transformations.

As we saw above, the VIFs and MVIF for the X’ X
matrices using original data are quite high. On the
other hand, comparing the range of the y-values in Ta-
ble 4 (Section 3) with the fitted model coefficients in Ta-
ble 13, we see that they bear little resemblance to one
another because the coefficients represent estimates
well outside the region of the data.

Table 13. Estimated coefficients for the three models fitted to
the original data

SV-model
Variable Coeff. Std. error t-value VIF
Constant 0.7055 0.362 1.948 -
x2 -1.625 2.211 -0.735 19.943
x3 8.460 10.544 0.802 28.008
x2x3 19.523 12.905 1.513 5.982
X272 0.718 3.694 0.194 18.184
x3"2 -119.216 90.759 -1.314 24.553
MVIF 19

To ameliorate this, we applied (12) to the data in Table
4 (Section 3). Table 14 shows the date in transformed
units x;.

Table 14. Points D-Optimal Design Prescott (2002) transformed
units (x;)

Point x x, X
1 0.17431 1.00000 0.00000
2 1.00000 0.00000 0.00000
3 0.00000 1.00000 1.00000
4 0.82569 0.00000 1.00000
5 0.58716 0.50000 0.00000
6 0.08716 1.00000 0.50000
7 0.91284 0.00000 0.50000
8 0.41284 0.50000 1.00000
9 0.44954 0.66667 0.00000
10 0.27523 0.66667 1.00000
11 0.55046 0.33333 1.00000
12 0.75000 0.25000 0.25000
13 0.66284 0.25000 0.75000

Table 15 shows the analysis of the SV fitted model when
applied to the transformed units (x}).

As can be seen in Table 15, the transformation resul-
ted in coefficients smaller than those in the models
shown in Table 13 (data without transformation). This
transformation provides a nice compromise, producing
coefficients of size similar to the observations. In the
same way the value of MVIF reduced.

The second alternative transformation for the SV-
model is given by

x; =2 7;;;23; —1fori=1,..,q (13)
where min and mdx are the minimum and maximum
value of x,.

For the second alternative transformation we consi-
der the same example that was used in the first alterna-
tive transformation Prescott et al. (2002). Table 16 shows
the date in transformed units x;'.

Table 15. Estimated coefficients for the three models fitted to
the transformed units (x;)

SV-model (x}')

Variable Coeff. Std. error t-value VIF
Constant 0.670 0.256 2.615 -
x, -0.655 0.834 -0.785 14.035
x; 0.783 0.900 0.870 22.645
X, X, 0.834 0.551 1.513 4.623
x5’ 0.145 0.834 0.194 12.566
xy? -1.075 0.900 -1.314 20.346
MVIF 14

Table 17 shows the analysis of the SV fitted model when
applied to the transformed units (x;").

As can be seen in Table 17 the second transforma-
tion appears to go too far, producing coefficients that
are generally smaller than the observations. However,
the values of the VIFs and the MVIF are considerably
lower than those shown in Table 15.

Ingenieria Investigacion y Tecnologia, volumen XVI (nimero 4), octubre-diciembre 2015: 613-623 ISSN 1405-7743 FI-UNAM 621



Selecting the Slack Variable in Mixture Experiment

Table 16. Points D-Optimal Design Prescott (2002) transformed
units (x;")

Point x) Xy x

1 -0.65138 1.00000 -1.00000
2 1.00000 -1.00000 -1.00000
3 -1.00000 1.00000 1.00000
4 0.65138 -1.00000 1.00000
5 0.17431 0.00000 -1.00000
6 -0.82569 1.00000 0.00000
7 0.82569 -1.00000 0.00000
8 -0.17431 0.00000 1.00000
9 -0.10092 0.33333 -1.00000
10 -0.44954 0.33333 1.00000
11 0.10092 -0.33333 1.00000
12 0.50000 -0.50000 -0.50000
13 0.32569 -0.50000 0.50000

Table 17. Estimated coefficients for the three models fitted to

the transformed units ( x") SV-model (x!")

Variable Coeff. Std. error t-value VIF
Constant 0.710 0.213 3.322 -
-0.046 0.113 -0.409 1.029
x) 0.062 0.095 0.655 1.010
X! 0.208 0.137 0.194 1.002
Xl ng 0.036 0.187 -1.314 1.065
) -0.268 0.204 1.513 1.084
MVIF 1
Conclusions

In this paper, we study the properties of the SV-model.
Based on our study, we would recommend the practi-
tioners to use the slack variable approach. While using
the SV-model, we can choose slack variable using crite-
rion proposed in Section 3. Reasonable transformation
should be used on the design to improve the numerical
stability.

Improvement in the conditioning of the information
matrix generally reduces the variances of individual es-
timated regression coefficients, reduces the correlation
between the estimators, and makes the model less de-
pendent on the precise location of the design points.
Although a badly conditioned fit can still provide use-
ful contour information, practitioners are more comfor-
table with better-conditioned, stable models.

We strongly recommend to practitioners consider
the relationship between SV-model and S-model in or-
der to avoid misleading results and conclusion.
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