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Abstract

In this work the changes occurring in cement pastes irradiated by 10.6μm CO2 laser 
at diff erent stages of hydration after preparation are presented. Raman spectroscopy, 
X-ray diff raction and Scanning Electronic Microscopy (SEM) techniques were used 
to observe molecular structural changes. Intensity of cement paste Raman peaks af-
ter laser irradiation was monitored in samples irradiated 2, 3, 4, 5, 6, 7, 8, 9, 10 and 
11 days after their preparation. Applied laser power changed Raman peaks intensity 
at 187.5cm-1, 563cm-1, 695cm-1, 750cm-1, 897cm-1, 1042cm-1 and 1159cm-1 that 
correspond to compounds already present in cement pastes. X-ray diff raction, SEM 
images and changes in the Raman peaks confi rm the recrystalization of cement paste 
compounds into new phases (alite and belite) after irradiation. The produced chang-
es show a clear dependence on the applied laser power density and age of samples.
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Introduction   

Unique characteristics of laser radiation make it useful 
for material processing and characterization (Tirumala 
et al., 2005). Laser techniques have been already used on 
concrete surfaces for several tasks. CO2 laser can re-
move contaminated surface layers of concrete and 
modify the surface appearance as well as surface prop-
erties of cement-based materials. Laser treatments pro-
duce novel surfaces with textures, properties and 
appearance unique to treated materials (Lawrence et al., 
2000). Eff ects of laser radiation on the structure of ce-
ment paste or concrete have been reported a litt le. 
Using commercially batched ready-mix concrete, a li-
near relationship was established for compressive 
strengths at 28 days (wet-cured) and 6 h (microwave-
cured). The relationship is important because the im-
pact of concrete mix adjustments is quickly appreciated, 
reducing the frequency and fi nancial severity of rework 
or litigation (Tumidajski et al., 2003).

Under intense laser radiation, heat generation is ex-
pected from the absorbed light. The eff ects of elevated 
temperatures on concrete properties have been exten-
sively studied. In general, concrete compressive 
strength decreases as temperature increases.

Kim et al. (1998) modeled the development of com-
pression strength in concrete according to curing tem-
peratures. They showed that concrete cured at high 
temperatures reaches higher strength at early ages, 
although it decreases with time. Weather conditions 
have a direct impact on cement hydration, sett ing, har-
dening and strength development. The temperature at 
which these processes occur aff ects concrete micros-
tructure (Ortiz et al., 2008 and 2009). The absorption co-
effi  cients of aggregates are greater at high temperatures, 

with reference to saturation times, after 30 min and 24 
hours decreases at high temperatures. Both these facts 
have consequences for workability of concrete (Ortiz et 
al., 2009). On the other hand, concrete cured at low tem-
peratures starts with lower strength but it reaches simi-
lar or higher strength values after certain elapsed time.

Around 100°C the physiabsorbed moisture begins 
to evaporate and elasticity reduces by about 10-20%, 
but compressive strength remains unchanged. For tem-
peratures above 300°C, the hydration water of silicates 
is released causing a contraction of cement paste but 
solid aggregates expand. Compressive strength de-
creases slowly between 450°C and 500°C, whereas at 
temperatures higher than 500°C it falls rapidly. Around 
600°C, the crystals in the aggregate undergo a α-β-SiO4 

conversion increasing their specifi c volume. Calcium 
hydroxide begins to dehydrate deteriorating the con-
crete structure. As temperature approaches 900°C, cal-
cium carbonate decomposes losing all free or bound 
water and the compressive strength falls to zero (Wei et 
al., 2000).

Another factor that has a clear infl uence on com-
pressive strength is the pore structure of porous media, 
which has been recognized as a vital parameter infl uen-
cing the properties of cemented material, such as 
strength, fl uid transport ability and thus durability 
(Fall et al., 2008).

High power laser treatments on concrete produce 
instantaneous heating in specifi c surface areas, indu-
cing superfi cial structure changes in the concrete. These 
changes may be aff ected by the traverse speed and the 
depth of the laser interaction. CO2 laser radiation at 
10.6μm interacts with water molecules and its eff ect is 
stronger compared to other lasers as high power diode 
laser.

Resumen

En este trabajo se presentan los cambios ocurridos en la pasta de cemento 
irradiada con láser de CO2 a 10.6μm a diferentes edades después de su pre-
paración. Las técnicas de Espectroscopía Raman, Difracción de Rayos X y 
Microscopia Electrónica de Barrido (SEM) se usaron para observar cambios 
en la estructura molecular. La intensidad de los picos Raman de las pastas de 
cemento después de la irradiación fue monitoreada en muestras irradiadas a 
2, 3, 4, 5, 6, 7, 8, 9, 10 y 11 días después de su preparación. La potencia de 
láser aplicada cambió la intensidad de los picos Raman a 1875cm-1, 563cm-1, 
695cm-1, 750cm-1, 897cm-1, 1042cm-1 and 1159cm-1, que corresponden a los 
compuestos ya presentes en la pasta de cemento. Las imágenes de difracción 
de rayos X y SEM, confi rman la recristalización de los compuestos de la pas-
ta de cemento en nuevas fases (alita y belita) después de la irradiación. Los 
cambios producidos muestran una clara dependencia de la densidad de po-
tencia del láser aplicado y la edad de las muestras.
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Raman Spectroscopy, a useful tool for material char-
acterization, allows the detection of changes occurred 
in the laser treated materials. The sensitivity of certain 
materials to laser irradiation may be an advantage 
when the study involves laser-induced oxidation and/
or crystallization processes (Witke et al., 1998).

Alarcón et al. (2005) reported studies of cement pas-
te exposed to fi re at temperatures over 800°C heated by 
stages of 100°C for periods of 24 hours. They used ther-
mal analysis techniques to study the eff ect of the tem-
perature in the mineralogical composition of hydrated 
cement. This kind of analysis assumes that during hea-
ting, the cement paste suff ers a continuous sequence of 
±1 reaction of irreversible decomposition. They conclu-
ded that irreversible reactions of dehydration and de-
carbonation in cement paste can be used as reference to 
estimate the temperature reached by concrete during 
fi re exposition.

X-rays diff raction and hydration heat techniques 
may be used to characterize the amount of hydrates in 
cement. These methods can only be used in certain sta-
ges of the hydration.

Hydration progressively reduces the intensity of the 
bands, but does not generate band a new locations. It is 
tentatively suggested that the fl uorescence aff ect may 
be somehow associated with the status of the cement 
components as orthosilicates (Newman et al., 2005).

Furthermore, they involve some assumptions about 
the chemical nature of the cement mixture.

Scanning Electronic Microscopy (SEM) has been 
used to analyze changes in microstructure and hydrate 
grade in samples subjected to diff erent types of cured. 
The analysis by SEM images carried out by Goncalves-
Silva et al. (2002) may be considered a valid option in 
relation to other techniques; the analysis of cement-ba-
sed materials is useful in the evaluation of mechanical 
properties, water absorption, air permeability and evo-
lution of hydration degree.

New advantageous techniques of analysis based on 
the image information are possible using electronic mi-
croscopy. They propose here an alternative procedure 
to the segmentation of microstructures of cement and 
aggregates in concrete. The central idea consists of a 
particular use of the morphological operator waters-
hed.

Characterization methods like X-ray diff raction and 
Raman spectroscopy are used in materials like cement 
minerals, cements and their reaction products (Skibsted 
et al., 2008). Raman spectroscopy has received att ention 
in its application to the characterization of pure cement 
phases. Various confi gurations of instrumentation and 
laser excitation sources have been used. The study of 

Potgieter et al. (2006a) reported studies of pure synthe-
sized cement phases and hydration of pure cement 
phases.

Also Potgieter et al. (2006b) reported the characteri-
zation of OPC (Ordinary Portland Cement), fl y ash and 
slag, using UV-VIS, VIS and NIR excitation in micro-
Raman spectrometry and their results were compared 
with previously published results. Also, they reported 
a summary of Raman shifts for non-irradiated cement 
in which they used as excitation lasers He-Ne, Ar and 
IR. They found that the Raman shifts for the pure mine-
ral phases and those in the clinkers investigated with a 
NIR excitation source (1064nm) diff ered signifi cantly 
from the shifts observed with VIS excitation with res-
pect to the silicate phases. In this work we used a semi-
conductor excitation laser with a wavelength of 830nm 
to obtain Raman shifts of the irradiated cement.

Another study show a scanning electron microsco-
pe (SEM) pint-counting technique to study the hydra-
tion of plain Portland and blended cement pastes 
containing fl y ash and or slag (Feng et al., 2004).

In this work we report surface changes measured in 
cement paste samples after being irradiated by a 10.6μm 
CO2 laser. The changes were monitored by Raman spec-
troscopy, X-ray diff raction and Scanning Electronic Mi-
croscopy (SEM). As shown by the reported results, the 
changes in cement paste depend on laser intensity and 
they can be used to know their initial state of hydration.

Materials and methods

Materials

Cement paste samples were prepared with an Ordinary 
Portland Cement (CPO) that corresponds to an ASTM 
C 150 type I cement and distilled water to eliminate any 
infl uence of trace impurities. The cement compressive 
strength obtained by the procedure described by ASTM 
C 109 resulted 32.5MPa at an age of 7 days.

A CO2 laser Synrad 40W was coupled to a 0.6cm fo-
cal length external lens to have a laser spot size of 0.1cm 
of ratio at sample surface. An area of 0.0078 cm2 of the 
paste surface was irradiated applying diff erent laser 
powers of 20, 26, 30 and 33W.

Methods

The cement paste samples were mixed according to the 
ASTM C 305 “Standard Practice for Mechanical Mixing 
of Hydraulic Cement Pastes and Mortars of Plastic 
Consistency” (ASTM C305-99, 1999) with a water/ce-
ment ratio of 0.5.
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Laser radiation of cement paste samples started 48 
hours after their manufacture, treatment consisted of a sin-
gle laser scan at a speed of 1.27m/s and which reached a surfa-
ce temperature of 170°C. Laser irradiation treatment was 
applied on samples at diff erent ages. Ages considered 
started at two days old and they were increased by one 
day steps up to 11 days old.

Laser treated samples were characterized by Raman 
spectroscopy, x-ray diff raction and Scanning Electronic 
Microscopy (SEM). Profi le intensity changes were re-
corded in the Raman spectra of the cement paste sam-
ples after CO2 laser radiation treatment. Raman spectra 
were taken with a Renishaw model 1000 Raman spec-
trometer (excitation wavelength of 830nm) for all sam-
ples. Several spectra (up to 5) were taken and averaged 
for samples of a given laser treatment and age.

X-rays diff raction spectra were obtained for cement 
paste samples before and after laser treatment with a 
Rigaku model Dmax-2100 x-ray difractometer.

SEM micrographs were taken from the surface of 
the cement paste samples, before and after laser treat-
ment with a XL30 SEM equipped with an EDAX Spec-
trometer for X-ray dispersion elemental analysis. 

Results and analysis

Both Raman spectra, from irradiated and not irradiated 
samples can be compared in fi gure 1. The Raman spec-
trum from two days old cement paste not exposed to 
CO2 laser irradiation presents weak peaks at 187 and 
the irradiated strong peaks are 187.5, 563, 695, 750, 897, 
1042 and 1159cm-1. These peaks correspond to com-
pounds usually found in cement as the one located at 
187.5cm-1 due to the presence of Fe2O3; the peak at 
563cm-1 indicates the presence of Si-Si bond, alumina 

(Al2O3) produces peaks at 695cm-1 and 750cm-1 from the 
Al-O bond. Peaks at 897 and 1042cm-1 reveal the presen-
ce of calcium silicates. Peak at 1159cm-1 indicates the 
presence of gypsum (CaSO4 . 2H2O).

Fe2O3 and Al2O3 peaks do not exist independently in 
the cement paste but belong to agglomerate as C4AF 
(tetracalcium aluminoferrite) that are not chemically 
bonded but can be detected independently by means of 
Raman spectroscopy.

The series of spectra taken for cement paste samples 
of the same age (two days old), under diff erent CO2 la-
ser irradiation conditions are plott ed in fi gure 2a. Simi-
lar series of Raman spectra were obtained for older 
samples in diff erent stages of hydration, which were ir-
radiated from three up to eleven days after preparation.

Although it is not a strongly marked trend, the in-
tensity of the diff erent peaks present in the Raman 
spectra, increase with the increment in power density 
of the CO2 laser applied with the exception of the peak 
located at 187.5cm-1 of Fe2O3 that shows a negative ten-
dency. Raman Spectroscopy can detect only com-
pounds or functional groups, chemically pure metals 
cannot be detected by this technique, which is why the-
re is a negative trend in the growth of Fe2O3 peak with 
increasing radiation power, because of energy deposi-
ted in the sample by the laser is suffi  cient to break the 
covalent bond between the iron and oxygen.

The heats of formation (which are the same disso-
ciation) of Al2O3 and Fe2O3 are respectively: -1675.7KJ/
mol and 820KJ/mol where negative sign indicates that 
this is a reaction that releases heat and being provi-
ded a number of additional energy cause an inhibi-
tion in the same and, therefore, will not break the 
covalent bond that links the Al and O, showing that 
less energy is needed to break the covalent bond that 
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Figure 1.  Raman spectra from an untreated cement paste and a 
sample irradiated with a 33W 10μm CO2 laser. Identified origin 
of vibration modes are indicated

Figure 2a. Raman spectra of cement paste samples irradiated at 
several laser powers two days after preparation. A) 107W/cm2, 
B) 186W/cm2, C) 200W/cm2, D) 215W/cm2 y E) 229w/cm2
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links the Fe and O, that breakup is possible by laser 
radiation.

This can be seen fi rst in the Raman, noting a negati-
ve slope at the peak of that element, indicating that it is 
reducing the amount of the compound (Fe2O3), on the 
other hand, the SEM (elemental analysis) indicates a in-
crease of Fe in the sample, the product of the dissocia-
tion of Fe2O3.

The intensity of the peaks in the Raman spectra tak-
en at diff erent days after preparation presents a linear 
trend versus age. In fi gure 2b this trend is clear from the 
slope of growth of the Raman picks of those samples as 
observed. Peaks at 750 and 1159cm-1 are the least aff ec-
ted by laser irradiation. All other peaks corresponding 
to Si-Si, Al-O, Ca-O, Ca-Si bonds have minor diff erence 
between their slopes that fall around 0.016.

Figure 3, shows SEM micrographs from the surface of 
cement paste samples two days after preparation. Figu-
re 3a shows cement paste without laser treatment. Figu-
re 3b shows two clearly distinguished regions, left side 
shows non irradiated surface and right side shows laser 
irradiated surface. Figure 3c shows an amplifi ed image 
of the CO2 laser irradiated zone were spheres smaller 
than ten microns in diameter can be seen. 

Table 1 presents the elemental composition for ce-
ment paste with an age of two days with 33W and wi-
thout CO2 laser irradiation. In the laser irradiated 
surface, two phases can be seen (alite and belite), one 
without a defi ned morphology (belite) and the second 
one spherically shaped (alite) respectively. The elemen-
tal analysis of these two phases is shown in table 2 whe-
re both phases are compared for samples irradiated 
with diff erent intensities. 

Figure 2b. Intensity trend in Raman peaks with time. Slope of 
intensity growth of the peaks identified in the Raman spectra of 
cement paste samples irradiated two days after preparation

Figure 3. SEM micrographs from the surface of cement paste, 
a) cement paste without laser treatment, b) interface zone of 
cement paste sample with and without CO2 laser irradiation, c) 
cement paste treated with laser radiation with power of 33W
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Figure 4 shows the x-ray diff raction spectrum for ce-
ment paste samples, a) natural sample and b) CO2 laser 
irradiated, some identifi ed peaks are indicated.

The following sample was irradiated two days after 
preparation and was analyzed by XRD at the age of 28 
days.

The range used in this diff ractogram is needed to 
identify the alite and belite.

Discussion

The SEM results reveal the formation of two phases in 
the CO2 laser irradiated area, with clearly diff erentiated 

morphology that we call them phase A (alite) and phase 
B (belite). The composition of CO2 laser irradiated sam-
ples show a diff erent composition from the original ce-
ment paste as revealed by the elemental analysis whose 
results are displayed in table 1. There, it is clear that 
elements like Sodium (Na), Sulfur (S) and Potassium 
(K) present in the original sample were removed by the 
CO2 laser. The power density was suffi  cient to evapora-
te those elements, in fact, the laser has been used to 
clean the concrete surface, and in general, to remove 
surface impurities.

The elemental composition of the laser treated zone 
reveal the presence of calcium carbonate and calcium 
silicate.

Phase belite with irregular morphology and phase 
alite composed of spherical particles of diameter 
around 10μ as shown in fi gure 3c, also show diff erent 
compositions.

As shown in table 2 where the elemental analysis of 
both materials allow to compare the composition of 
both phases for samples irradiated with intensities, of 
28, 30, 31 and 32W, phase alite contains more calcium 
and less oxygen and carbon than phase belite, all other 
elements as Mg, Al, Si y Fe are similar in both phases. It 
is also observed that the ratio X/Ca were X is C, O and 
Si is higher for phase B. 

The changes observed through the SEM images, can 
be related to the changes observed in the X-ray diff rac-
tion patt ern shown in fi gure 4, where a laser induced 
crystallization process is revealed the laser radiation in-

Table 1. Comparative table of elements registered from non 
irradiated cement paste samples and CO2 laser irradiated 
cement paste samples by the EDAX Spectrometer for x-ray 
dispersion elemental analysis of the SEM

Element
Non Irradiated

Atomic %
CO2 laser irradiated

Atomic %
C 14.73 15.47
O 56.07 51.90

Na 0.57 ----
Mg 0.98 0.87
Al 1.43 2.15
Si 6.55 6.74
S 0.50 -------
K 0.99 ―
Ca 17.53 21.77
Fe 0.65 1.10

Table 2. Comparative table of the 
elemental analysis of phase A (alite) 
and phase B (belite) in the CO2 laser 
irradiated cement paste samples 
irradiated with different intensities. All 
samples were irradiated at a speed of 
0.0127m/s
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C 10.06 14.58 15.17 14.50 11.49 10.34 12.28 18.32
O 49.11 49.29 48.63 52.66 46.08 52.07 48.40 49.26

Mg 1.16 1.00 1.57 1.21 1.01 1.13 1.09 0.99
Al 2.73 2.32 4.21 2.15 2.15 2.68 2.06 2.34
Si 8.47 8.30 6.53 7.63 7.87 7.89 8.25 6.70
Ca 27.12 23.55 22.08 20.77 29.90 24.77 26.95 21.25
Fe 1.36 0.96 1.82 1.08 1.50 1.11 0.97 1.14

Figure 4.  X-ray diffraction spectra from cement paste samples 
before A and after B CO2 laser irradiation. Peaks of the 
Portlandite (Ca(OH)2) are indicated by P letter and peaks of 
Silicate (Ca3SiO5) are indicate by S letter
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duces an increase in temperature and consequently in-
creases the rate of cement hydration, producing more 
quantity of portlandite crystals.

The normal sett ing of Portland cement appears to 
result from the hydration of C3S and C3A and the for-
mation of CSH phases and AFT. According to other stu-
dies reported (Ortiz, 2005), the sett ing of Portland 
cement is due to a re-crystallization of the primary mi-
crocrystalline ett ringite crystals highly developed. The 
crystal phases revealed by SEM and X-ray analysis can 
be tracked by Raman spectroscopy because of the Ra-
man spectrum provides information on the crystallinity 
of the material: if the Raman peak is narrower then the 
material is more crystalline, thus showing the recrysta-
llization of the irradiated material.

The negative slope of the peak of Fe2O3 in the Raman 
spectra refl ects the loss of this compound in the sample, 
that decreasing is because laser radiation is breaking the 
covalent bond between iron and oxygen, and it explains 
why the analysis performed with SEM elemental revealed 
an increase of iron produced by the dissociation of Fe2O3.

Further research is under way to relate these results 
to chemical reactions in cement and concrete, including 
aggregates such as sand and gravel to assess hydration 
process in cement products.

Conclusions

CO2 laser irradiation induced structural changes in ce-
ment paste that were revealed in the present study. Ab-
sorption of laser radiation by cement paste increases the 
local temperature high enough to recrystallize the surfa-
ce material. Some material as Na, S and K were removed 
from the irradiated zone. Recrystalized material is 
mainly alite which shows a spherical morphology with 
less than 10μm in diameter immerse in a connected net 
of belite. Used characterization techniques proved to be 
valuable when identifying these changes. The produced 
changes show a clear dependence on the applied laser 
power density and age of samples. 

The laser induces an increase in the surface tempe-
rature of the cement paste why accelerates the produc-
tion of crystals of portlandite, observed in the XRD, 
SEM and corroborated with the narrowing of the Ra-
man peaks. Measured Raman peaks correspond to 
compounds already present in cement however; laser 
irradiation promotes the growth of crystalline phases.
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