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ABSTRACT

Background. One of the most relevant topics in ecology and evolution is understanding the relationship be-
tween biological and functional diversity at the ecosystem level; both important in the evolutionary processes
and the structuring of complex communities. Goals. In this essay, the explanatory hypotheses focused on
global patterns of the distribution of species are described along with selected hypotheses relating species
richness/biodiversity to ecosystem function, and the differentiation of the terms guild and functional group
are discussed. Methods. Both biodiversity and functional diversity are key in the evolutionary processes and
the structuring of complex communities and thus examples of functional equivalence of convergent evolution
derivatives are presented in terms of the form and ecological habits of fishes of the Tropical Eastern Pacific
Ocean. Finally, the importance of redundancy in ecosystem functioning is examined as well as the impact of
environmental disturbances on ecosystem function. Results. In general, systems with low species richness
and redundancy within functional groups are more vulnerable to disturbances. However, despite the exten-
sive effort to understand the relationship between species richness/biodiversity and ecosystem functioning,
there is no consensus on the effect of species loss on the functioning of the ecosystem. Some hypothesize
that each species is unique and plays a unique role in the ecosystem whereas alternate hypotheses indicate
that species overlap in function supporting sustainability at the ecosystem level, such that the removal of
one species function may be replaced by another. Gonclusions.The most widely accepted concept is that
a greater number of species increases the efficiency in the use of resources and also provides resilience
against environmental changes or impacts through functional redundancy.

Keywords: biological diversity, ecological redundancy, evolutionary convergence, functional equivalence

RESUMEN

Antecedentes. Un tema relevante en ecologia y evolucion es la relacion entre la diversidad biologica y
la funcional a nivel del ecosistema; ambas importantes en los procesos evolutivos y la estructuracion de
comunidades complejas. Objetivos. Discutir hipdtesis explicativas centradas en los patrones globales de la
distribucion de las especies junto con hipdtesis seleccionadas que relacionen la riqueza y la biodiversidad de
especies con la funcion del ecosistema. Diferenciar los términos de gremio y grupo funcional. Metodologia.
Presentar ejemplos de equivalencia funcional de los derivados de evolucion convergente en términos de la
forma y los habitos ecologicos de los peces del océano Pacifico oriental tropical. Examinar la importancia
de la redundancia en el funcionamiento de los ecosistemas, asi como el impacto de las perturbaciones am-
bientales en la funcion del ecosistema. Resultados. En general, los sistemas con baja riqueza de especies y
redundancia dentro de grupos funcionales son mas vulnerables a las perturbaciones. Sin embargo, a pesar
del extenso esfuerzo por comprender la relacion entre la riqueza de especies/biodiversidad y el funciona-
miento del ecosistema, se encontrd que no existe consenso sobre el efecto de la pérdida de especies en el
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funcionamiento del ecosistema. Algunos suponen que cada especie es Unica y desempefia un papel particular en el ecosistema, mientras que las
hipdtesis alternativas indican que las especies se superponen en funcion de la sustentabilidad a nivel de ecosistema, de modo que la eliminacion
de la funcion de una especie puede ser reemplazada por la de otra especie. Conclusiones. El concepto mas ampliamente aceptado es que un
mayor nimero de especies aumenta la eficiencia en el uso de los recursos y también brinda resistencia contra los cambios o impactos ambientales

a través de la redundancia funcional.

Palabras clave: convergencia evolutiva, diversidad biologica, equivalencia funcional, redundancia ecoldgica

INTRODUCTION

Biological classification (taxonomy) aims to simplify and order the di-
versity of life into coherent units called taxa; however, there is current-
ly no consensus among taxonomists concerning which classification
scheme to use (Ruggiero et al., 2015). Simply, taxonomy integrates di-
verse, character-based data in a phylogenetic framework, which allows
the use of this knowledge of shared biological properties of taxa but
there is still strong debate over their accounting for evolutionary diver-
gence or information content other than the branching pattern (Stuessy
& Hoerandl, 2014). In contrast to taxonomy and phylogeny approaches
to Earths biodiversity, a central issue in population and community eco-
logy is species’ geographical distribution and range size, which are im-
portant components needed for a better understanding of biodiversity.
Generally, studies have focused on two different aspects: (1) patterns
in species’ range size distributions (Gaston, 1996; MacPherson, 2003);
and (2) the effect of latitude on species’ range sizes, e.g. Rapoport’s
rule (Stevens, 1989; 1996).

However, in contrast to earlier research on mechanisms driving
known biodiversity patterns (Winemiller et al., 2015; Pianka et al.,
2017), recent work highlights that evolution works on ecological simila-
rities (redundancy) and differences (complementarity) of individuals and
not on the number of species (Cadotte et al., 2013). A number of early
studies that simultaneously examined aspects of species biodiversity
and functional diversity (reviewed in Tilman et al., 1997) have shown
that species biodiversity is an important indicator of ecosystem functio-
ning but functional diversity and species composition together are most
important in grassland ecosystems. Functional diversity (trait-based) is
generally defined as “morpho-physio-phenological traits which impact
fitness indirectly via their effects on growth, reproduction, and survival,
the three components of individual performance” (Violle et al., 2007).
There is also evidence that functional traits strongly link to species
composition and shifts in ecosystem processes (Villéger et al., 2010)
and that the choice of functional traits is key to quantifying functional
diversity and its use to examine anthropogenic modifications of ecosys-
tems. This relationship is strong when many species have unique func-
tional traits that are important in ecosystem functioning, whereas if
many species have similar characteristics (redundancy), the relations-
hip between species biodiversity and functional diversity is weak.

Natural or human-induced environmental modifications (e.g., fi-
shing, climate change, habitat fragmentation) have had drastic impacts
on habitats and species and thus biodiversity and ecosystem function
worldwide (Costanza et al., 1997; Vitousek et al., 1997; Lotze et al.,
2006; Halpern et al., 2008). These impacts are generally focused on
habitat modification or loss as it relates to species loss and biodiversity
reduction since it has long been postulated that habitat is the ‘templa-
te for ecosystem strategies’ (Southwood, 1977; Ferraro & Cole, 2010;
Ferraro, 2013) and that habitat provides the organizing structure for

ecosystem functionality. However, there are generally two approaches
to assessing local and regional community assembly relative to diver-
sity and ecosystem function: 1) taxonomic (phylogenetic); and 2) func-
tional (trait-based) (Cadotte et al., 2013; Winemiller et al., 2015; Pianka
etal., 2017).

The traditional approach is to examine changes by using species
richness/biodiversity metrics but more recently a growing literature on
functional diversity and its importance in better understanding ecosys-
tem function (Violle et al., 2007; Villéger et al., 2010; Parravicini et al.,
2014) is emerging, and, in particular, relative to species invasions and
habitat degradation, and fishing pressure (Pecuchet et al., 2017; Sil-
va-Junior et al., 2017; Villéger et al., 2017). For example, it has been
shown in coral reef fish communities that functional diversity is lower
than taxonomic diversity because of redundancy (Villéger et al., 2012,
2013; Mouillot et al., 2014) which suggests that one cannot use taxo-
nomic diversity to predict changes in functional diversity nor one cannot
use taxonomic diversity alone to assess habitat degradation and subse-
quent ecosystem functional capacity relative to stable and sustainable
ecosystems (Villéger et al., 2014; Loiseau & Gaertner, 2015; Pecuchet
et al., 2017; Silva-Junior et al., 2017).

The study of functional traits important to the community ecolo-
gy and, by extension, ecosystem function has been most noticeable
in plant communities worldwide with fewer examples in other taxa,
including fishes and avifauna (Villéger et al., 2017). As a result of our
empirical perception, we tend to assign a key role to a relatively sma-
Il number of generally abundant and larger species, considering that
their conservation is enough to maintain ecosystem processes and thus
services. However, it was found that rare or unique species with the
highest risk of extinction have, in some cases, a quantifiably important
impact toward maintaining the functioning of the ecosystem, acting as
key species (Lyons et al., 2005; Mouillot et al., 2013; Friedman et al.,
2016; Escobar-Toledo et al., 2017).

Recent examination of freshwater, estuarine and marine fishes has
illustrated the value of examining these communities based on func-
tional traits in order to address pressing ecological issues associated
with climate change, overfishing, invasive species, and habitat loss or
alterations (Mouillot et al., 2014; Parravicini et al., 2014; Villéger et al.,
2014; Chuang & Peterson, 2016; Pecuchet et al., 2016, 2017; Rodri-
gues-Filho et al., 2017; Silva-Junior et al., 2017).

With this essay, we aim to (1) summarize patterns of fish species
richness/biodiversity and distribution in the Tropical Eastern Pacific
Ocean (TEP), (2) provide a selective review of hypotheses relating fish
species richness/ biodiversity/functional diversity to ecosystem func-
tion, and (3) review the importance of redundancy in ecosystem func-
tion and the impact of environmental disturbances. This essay will focus
on marine fishes of the TEP but may provide examples from freshwater
and estuarine fishes, and other vertebrate groups to illustrate a point.
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MARINE FAUNAS TROPICAL EASTERN PACIFIC

The shallow, warm-water marine faunas of the world are traditiona-
lly divided into the Indo-West Pacific, Eastern Pacific, and western and
eastern Atlantic regions (Ekman, 1953; Briggs, 1974). The Isthmus of
Panama was established as one of the greatest natural events of the
Cenozoic, driving profound biotic transformations on land and in the
oceans, so faunas on the east and west sides are closely related and
sister species are common (0’Dea et al., 2016). Furthermore, the TEP
is divided from the rest of the Pacific by a wide expanse of deep ocean,
with very few islands, coupled with cold water masses flowing along
west coasts of both North and South America towards the equator. This
is not a complete barrier to shallow-water invertebrate dispersal, but
rather is a filter, allowing only those larvae with an exceptionally long
life to be transported from the central tropical Pacific (Scheltema, 1988).

There is a substantial variation in species composition from north
to south through the TEP region, but boundaries among biogregra-
phical provinces are not always well defined. For example, mainly
on ichthyological evidence, Briggs (1974) define four main provinces
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(Fig. 1), and places a boundary in the Gulf of Tehuantepec to separate
the Mexicana province (Sinaloa to Oaxaca, on the coast of Mexico)
and the Panamic province (Nicaragua to Ecuador, including Cocos
and Malpelo). The Revillagigedo Islands was considered as part of the
offshore Ocean Island province. However, the northern boundary of
the Panamic province is debatable, the southern boundary is clearly
defined by the cold Peruvian Current diverting offshore around Punta
Aguja, Peru. Briggs (1974) set the northern boundary of the Mexican
province in the Gulf of California and on Baja California at about 23°N.
The Galapagos Islands are treated as a separate faunistic region and
included in the offshore Ocean Island province along with the Re-
villagigedo and Clipperton Islands. The province of Cortez (southern
Baja and the central Gulf of California) is isolated from its counterpart
in the Mexican province by the Gap of Sinaloa, a band of 370 km
of sandy and muddy shoreline extending between Topolobampo and
Mazatlan, Mexico, whereas the Mexican province is separated from
its counterpart in the Panamic province by the gap of Central America,
a large 1,000 km section of coastline sand between the Gulf of Te-
huantepec (south of Mexico) and El Salvador (Hastings, 2000).
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Biogeographically, the TEP is fascinating in several respects. Its
marine shore biota is most similar to that of the tropical western Atlan-
tic, but, as a result of the independent evolution of their faunas in very
different environments over the past 3.5 million years, the two regions
share relatively few fish species (Rosenblatt, 1967; Castellanos-Galin-
do et al., 2013). The TEP includes five oceanic islands or archipelagos
whose fish faunas are relatively well known (McCosker & Rosenblatt,
1975; Robertson & Allen, 1996; Grove & Lavenberg, 1997; Garrison,
2000; Galland et al., 2017). These islands harbor subsets of the main-
land fauna, a significant number of insular endemics, and numerous
species that also occur on the western side of the east Pacific barrier
(Leis, 1984). The geographic isolation of the TEP has resulted in its ha-
ving the highest level of regional endemism among shore fishes of any
comparably sized region in the world. About 85 percent of its fishes
are found nowhere else, although many of them regularly or periodi-
cally cross the thermal barrier to the north and are found in California
(e.g., during EI Nifio events; Lea & Rosenblatt, 2000). Although less well
documented, a similar periodic transgression of the southern terminal
barrier presumably also occurs.

Many TEP fish species have wide distributions within the region.
Others have more limited distributions, with the Panamic province and
the Cortez province serving as centers of regional endemism (Fig. 1).
Precise distributions of many species of fishes between these provin-
ces, along with the coast of southern Mexico southward to Honduras,
are not well documented. Some species, particularly small, benthic reef
fishes, support the recognition of a third, Mexicana province located
between the Cortez and Panamic province (Hastings, 2000), as sugges-
ted by several studies on the systematics of coastal fishes (e.g., Hubbs,
1952; Briggs, 1955; Springer 1959; Stephens, 1963).

SPECIES RICHNESS / BIODIVERSITY AND
DISTRIBUTION PATTERNS OF THE TEP FISHES

Species richness/biodiversity is distributed irregularly among ecosys-
tems across biospheres. For example, there are 34 phyla alive in the
marine environment, 17 in freshwater, and only 15 on land (Briggs,
1994; Mora et al., 2011). The contrast is higher when considering only
animals, as there are 32 marine phyla and only 12 terrestrial fauna
(Benton, 2001). However, although the ocean has the greatest wealth
of phyla and it is about 300 times larger than the Earth’s terrestrial
environment, species richness/biodiversity of the terrestrial realm is
25 times greater than the one found in the marine environment (Bri-
ggs, 1994; Mora et al., 2011). This difference in species richness/ bio-
diversity is probably caused by three key conditions (Benton, 2001).
First, land offers more endemism opportunities because of the effect
of geographic isolation and independent evolution; marine environment
barriers are not as efficient at reducing the possibility of endemism
and diversification (e.g., soft barriers; Cowman & Bellwood, 2013).
Second, terrestrial habitats are more diverse and heterogeneous, with
large fluctuations in temperature and humidity throughout the day both
seasonally and latitudinally; the physical marine environment is more
stable compared to land. Third, the size of primary producer’s plays
an important role as marine primary producers are mostly unicellular
organisms that serve as food source for benthic and pelagic animals,
but are unable to provide important habitat for other species of animals
and plants like in terrestrial systems (Briggs, 1994; Mora et al., 2011).

Palacios-Salgado D. S. et al.

Fishes worldwide consist of about 33,395 known species (Esch-
meyer & Fong, 2013). They have very diverse latitudinal, longitudinal,
and bathymetric distributions and very complex morphological, biolo-
gical and behavioral characteristics such that it is possible that both
allopatric and non-allopatric speciation processes are involved in the
formation of this biodiversity. How disjunct distributions (e.g., distribu-
tions composed of multiple geographically discrete and widely spaced
populations) arise is an interesting question in biogeography and has
long been subject of the dispersalist-vicariance debate (Cowman &
Bellwood, 2013; Cowman, 2014). Dispersalist theories emphasize the
importance of species traits and dispersal in explaining the occurrence
of highly isolated populations, whereas vicariant theories invoke lands-
cape evolution and fragmentation of a species’ ancestral range as the
principal drivers of these biotic patterns. Species with geographically
disjunct ranges are important for understanding the factors controlling
species’ distributions, population connectivity, and the process of allo-
patric speciation (Ronquist, 1997; Cowen & Spongaugle, 2009; Cow-
man, 2014). In both cases, allopatric speciation can take place if the
gap in a species’ range sufficiently limits gene flow (Crisp et al., 2010).

In the Mexican Pacific Ocean, two geological events have played
a key role in the formation of the current fish fauna - the formation of
the Gulf of California and the rise of the Isthmus of Panama (Jacobs et
al., 2004). The formation of the Gulf of California dates about 5-8 mya
during the Pliocene-late Miocene (De la Cruz-Agtiero, 2000). The geo-
logical formation of Baja California divided a group of fish species that
are disjunct populations on the Pacific coast and in the northern Gulf of
California (Table 1); these eleven species represent an interesting case
for studies of incipient speciation (Bernardi et al., 2003). The origin of
these species from Magdalena-Almejas Bay and San Ignacio Lagoon
is explained by the existence of interpeninsular Pleistocene-Holocene
channels (0.115 - 2.6 mya) on sandy plains that connected the Pacific
with the Gulf of California.

The geological development and endemism of species of tropical
lineage support this hypothesis (Castro-Aguirre et al., 1995, 2005; De
la Cruz-Agliero, 2000). In fact, most of the disjunct species of the Pa-
cific and Gulf of California (Table 2) show few morphological and color
differences, but in some cases divergence has been detected, as in
members of the genus Leuresthes, Gillichthys, Girella, and Hypsoblen-
nius (Crabtree, 1983; Orton & Buth, 1984; Huang & Bernardi, 2001; Ber-
nardi, 2014). Bernardi et al. (2003) analyzed 12 species with disjunct
populations and found that eight species had strong genetic differences
between populations of the Gulf of California and the Pacific and four
of them are in the process of incipient speciation, indicating that the
physic separation of populations (considered as the first step towards
speciation) is very commonly responsible for the creation of new ge-
minate species.

In the TEP, families that experienced wide speciation patterns are
Gobiidae (111 species), Sciaenidae (82 species), Serranidae (56 spe-
cies), Labrisomidae (48 species), Gobiesocidae (43 species), Ophich-
thidae (41 species), Haemulidae (37 species), Labridae (36 species),
Carangidae (35 species), Chaenopsidae (34 species), and Muraenidae
(33 species). A number of these species groups can be partitioned into
habitat-based subcategories like soft-bottom environments, coastal pe-
lagic environments, estuarine, coastal lagoons, coastal pelagic zones,
coral reef and rocky intertidal habitats where redundancy is higher, and
subtidal habitats (Table 3). Another remarkable example of adaptive ra-
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diation in the TEP is the moray eels of the genus Gymnothorax, with 11
indigenous species; some species inhabit subtidal reefs (G. angusticeps
(Hildebrand & Barton, 1949), G. castaneus (Jordan & Gilbert, 1883), G.
dovii (Glinther, 1870), G. mordax (Ayres, 1859), G. panamensis (Stein-
dachner, 1876), G. porphyreus (Guichenot, 1848), and G. serratidens
(Hildebrand & Barton, 1949)), and other soft bottoms (G. equatorialis
(Hildebrand, 1946), G. eurygnathos Bohlke, 2001, G. phalarus Bussing,
1998, and G. verrilli (Jordan & Gilbert, 1883)). This genus has been enri-
ched with the addition of species of Indo-Pacific or trans-Pacific affinity
(G. buroensis (Bleeker, 1857), G. flavimarginatus (Rippell, 1830), G. ja-
vanicus (Bleeker, 1859), G. meleagris (Shaw & Nodder, 1795), G. pictus
(Ahl, 1789) and G. undulates (Lacepede, 1803)), currently consisting of
17 species in total for TEP (Table 3).

Speciation events and the great topographic and bathymetric bio-
diversity have turned the Gulf of California into one of the most diverse
regions of the TEP with about 875 species of fish, 92 of which are en-
demic (Thomson et al., 2000); it is regarded as a center of origin along
with the Central America landscape (Mora & Robertson, 2005).

According whith 0’Dea et al. (2016), the formation of the Isthmus
of Panama resulted in the absence of further gene flow between sha-
llow marine animal populations after 3.2 millon years (mid-Pliocene)
by the interrupted the communication between the Pacific and Atlantic
and particularmente causing the effective isolatiion of fish populations,
resulting in the formation of new species as well as the disappearance
of others (Castro-Aguirre et al., 1995).

It is hypothesized that the presence of a marine Pleistocene gap
in the area of Panama (1.8-2 mya), initiated the divergence of some
transisthmian species of the genus Anisotremus (Tavera-Vargas, 2006).
While 85% of the coastal fish fauna of the TEP is derived from taxa
present before the rising of the Isthmus of Panama, the low percentage
of common species in the two regions of the American continent (>
100 sister species, pairs or transisthmian; see Table 4) is the result of
independent evolution of their faunas in very different environments
(Rosenblatt, 1967; Robertson et al., 2004; Aguilar-Medrano, 2018). In
some genera, the sister species have been separated taxonomically by
minor morphological differences or genetic differences, such as the Pa-
cific machete and Atlantic ladyfish (Elops affinis Regan 1909 - E. saurus
Linnaeus, 1766), Pacific sleeper and bigmouth sleeper (Gobiomorus
maculatus (Gunther,1859) - G. dormitor Lacepede, 1800), the Pacific
fat sleeper and fat sleeper (Dormitator latifrons (Richardson, 1844) - D.
maculatus (Bloch, 1792)), Atlantic and Pacific spadefish (Chaetodip-
terus faber (Brousonnet, 1782) - C. zonatus (Girard, 1858)), the Panamic
banged blenny and the red-lip blenny (Ophioblennius steindachneri Jor-
dan & Evermann, 1898 - 0. macclurei (Silvester, 1915)). For the latter,
a new species (0. clippertonensis Springer, 1962) has been recognized
for Clipperton Atoll, a small isolated island at the western edge of the
TEP (Allen & Robertson, 1997). In contrast, for some, the separation into
two species is not possible or even questionable including the nurse
shark Ginglymostoma cirratum (Bonnaterre, 1788), the lemon shark
Negaprion brevirostris, the leatherjacket Oligoplites saurus (Poey,1868)
the yellowfin mojarra Gerres cinereus (Walbaum, 1792) and the fringed
flounder Etropus crossotus Jordan & Gilbert 1882; these are remarka-
bly similar in external morphology, but also in their behavior and ecolo-
gy (Castro-Aguirre et al., 1995; Thomson et al., 2000).

Vol. 29 No. 1 2019

Table 1. Fish incipient speciation examples in the Mexican Pacific Ocean. Numbers= information from references below.

Reference
Bernardi et al. (2003)
Bernardi et al. (2003)
Bernardi et al. (2003)
Bernardi & Lape 2005
Bernardi et al. (2003)
Bernardi et al. (2003)
Bernardi et al. (2003)
Bernardi et al. (2003)

Common name Habitat

Species

Atherinops affinis (Ayres, 1860)

Family

Atherinidae

Nearshore generalist
'Shallow generalist
Rocky-sand bottom

Topsmelt silverside
Mexican rockfish

Xantic sargo

Sebastes macdonaldi (Eigenmann & Beeson, 1893)
Anisotremus davidsonii (Steindachner, 1876)

Scorpaenidae
Haemulidae

Near sand bottom

Black croaker

Cheilotrema saturnum (Girard, 1858)

Sciaenidae

Pink seaperch Offshore deeper water

Rock wrasse

Zalembius rosaceus (Jordan & Gilbert, 1880)
Halichoeres semicinctus (Ayres, 1859)

Embiotocidae
Labridae

2Shallow nearshore, algal-covered substrata

®Holes and crevices in rocky areas, in burrows of boring
clams or tubes of marine worms, and in mussel beds
Bays and coastal sloughs, burrowing in shallow mud

Mussel blenny

Hypsoblennius jenkinsi (Jordan & Evermann, 1896)

Blennidae

Bernardi et al. (2003)

Longjaw

Gillichthys mirabilis Cooper, 1864

Gobiidae

substrate in tidal flats and bays including coastal lagoons

'Shallow generalist

mudsucker

Bernardi et al. (2003)
Bernardi et al. (2003)
Bernardi et al. (2003)

California flounder
Ocellated turbot

Paralichthys californicus (Ayres, 1859)

Paralichthyidae
Pleuronectidae.
Pleuronectidae.

Offshore over sand and sandy mud soft substrates

"Nearshore soft bottom

Pleuronichthys ocellatus (Starks & Thompson, 1910)

Pleuronichthys verticalis Jordan & Gilbert, 1880
'Allen, L.G. & D.J. Pondella. 2006. Ecological classification. /n:Allen, L.G. D.J. Pondella & M.H. Horn (eds). The ecology of marine fishes: California and Adjacent Waters. University of California Press, Berkeley, California. pp 81-113.

2Eschmeyer, W.N., E. S. Herald & H. Hammann.1983. A field guide to Pacific coast fishes of North America. Houghton Mifflin Company, Boston, Massachuetts

Hornyhead turbot

21

3De La Cruz-Agiiero, J. M. Arellano-Martinez, V. M. Cota-Gomez & G. De La Cruz-Agiiero. 1997. Catalogo de los peces marinos de Baja California Sur. IPN-CONABIO. México, D.F.
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The Stathmonotus blennies provide a clear example of allopatric
speciation. This genus is represented by three species in the TEP, the
Gulf worm blenny S. sinuscalifornici (Chabanaud, 1942) from the provin-
ce of Cortez, the Mexican worm blenny S. lugubris (Bohlke, 1953) from
the Mexicana province and the Panamanian worm blenny S. culebrai
Seale, 1940 from the Panamic province. Hastings (2000) proposed two
hypotheses to explain the speciation of the genus. First, the final rise of
the Isthmus of Panama isolated a population into the Caribbean, which
was widely distributed in the region or initially restricted to the Panamic
province, later dispersing throughout the Tropical Pacific Ocean (TPO).
Subsequently, the gap of Sinaloa isolated S. sinuscalifornici from the
other members of the genus of the TEP, then the gap in Central America
isolated S. lugubris, and S. culebrai. The alternative hypothesis propo-
ses that speciation of the Caribbean species (S. gymnodermis Springer,
1955, S. hemphilliiBean, 1855 and S. stahli (Evermann & Marsh, 1899))
occurred before the final rise of the Isthmus of Panama, in which case
the divergence within the TEP could start before the final rise of the Is-
thmus. This hypothesis is reinforced because in all other paired species
of blenny, sister species are phenotypically very similar which is consis-
tent with a short time period since its divergence (Lin & Hastings, 2013).

Source

The hornyhead turbot is a common resident flatfish on the mainland shelf (Miller & Lea 1972; Eschmeyer et

from Magdalena Bay, Baja California, Mexico to Point Reyes, California at al., 1983)

depths from 9 to 201 m.

1987; Eschmeyer & Alvarado, 2010)

Furthermore, there are 190 trans-Pacific species, 126 coastal spe-
cies, and 64 oceanic pelagic species representing about 12% of the
fish fauna of the TPO in the TEP (Robertson & Allen 1996; Robertson et
al., 2004). The conditions that favor the establishment and residence of
these species are not clear, although the horizontal ocean temperature
gradients tend to restrict the latitudinal ranges of species, whereas ex-
tending their ranges longitudinally has fewer restrictions. According to
Briggs (1961) and Margalef (1972), the strong interspecific competition
that is generated in a very integrated ecosystem like the western Pacific
(an ecosystem of high biodiversity) can cause outward emigrations and
colonization, which are directed towards the central and eastern Pacific
(areas of low biodiversity). A similar case is observed in the fish fauna

Geographical distribution
California to lower Baja, with an isolated population in the upper half of the (Eschmeyer et al., 1983; Love et al.,

Gulf of California.
Their historical range is from Humboldt Bay, CA to Baja Mexico (Point (Domeier, 2001; Cornish, 2004;

Abreojos) and into the northern Gulf of California. However, they are primarily Hawk & Allen, 2014)

found south of Point Conception in shallow rocky reefs.
Is an estuarine flatfish ranging from Cape Mendocino to Bahia Magdalena on (Miller & Lea, 1972; Lane, 1975;

the Pacific coast of North America, and from Bahia Concepcion to Guaymas Present, 1987).

Eastern Central Pacific: Malibu in southern California, USA to central Baja Eschmeyer et al. (1983)
in the Gulf of California.

Northern California to central Baja California, plus an isolated population in Eschmeyer et al. (1983).
California, Mexico; isolated population in northern Gulf of California.

the upper and central Gulf of California.

2 of coral and rocky reefs of the TPO where richness is high and therefore

S| g - the degree of competition as well. In this way, several species inhabit

s|E 5 a § 5 these systems (e.g., Chaetodon humeralis Gunther, 1860, Diodon ho-
-~ oy = = . . . .

E = L £ § 2 5 locanthus Linnaeus, 1758, and Hippocampus ingens Girard, 1858) or

o

3 .§ § g }%_" ..q% = emigrate to soft bottom systems for feeding (e.g., Haemulon flavigutta-
S = s & §' E tum Gill, 1862, and H. maculidauda (Gill,1862). However, movement of
g o w S w [am]

species from reef systems to soft bottoms is rare, since they can hardly
compete for resources with resident species.

In the offshore Ocean Island province of the TEP, an interesting case
occurs. Briggs (1961) remarks that for the Indo-Pacific migrant fishes it
is easier to recruit to oceanic islands populations because these areas
represent less competition than the mainland. A migrant group of fishes
is well represented in the Revillagigedo Islands (18°49’ N 112°46’ W;
some 390 km southwest of Cabo San Lucas, Baja California del Sur,
Mexico; Fig. 1) with 21% of the fauna (Castro-Aguirre & Balart, 2002)
and in the Clipperton Atoll (10°17° N, 109°13’ W) with about 75% of
species (Robertson & Allen, 1996). This atoll has been regarded as a
bridge that connects the coastal biota of the TEP and western Pacific
(Robertson & Allen, 1996). Only 99 species of shore fish are endemic to
oceanic islands and — 30% of the remaining has self-sustaining insular
populations (Robertson & Allen, 1996, 2002) which may favor the colo-
nization of trans-Pacific species.

Species

Pleuronectidae  Pleuronichthys verticalis (Jordan &
Zalembius rosaceus (Jordan & Gilbert,

1880)
Stereolepis gigas Ayres, 1859
Xeneretmus ritteri Gilbert, 1915

Scorpaena guttata Girard, 1854

Gilbert, 1880)

Pleuronectidae  Hypsopsetta guttulata (Girard, 1856)

Tabla 2. Continda.
Family
Embiotocidae
Scorpaenidae
Percichthydae

Agonidae
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Review fish functional diversity

Finally, tropical trans-Pacific fishes occur on both sides of the
world’s largest deep-water barrier to the migration of marine shore or-
ganisms, the 4,000km to 7,000km-wide Eastern Pacific Barrier. They
include 64 epipelagic oceanic species and 126 species of shore fishes
known from both the TEP and the central and West Pacific. However,
although trans-Pacific species are characterized by long larval stages,
surprisingly, species with appropriate characteristics have not yet ma-
naged to colonize the TEP. While the region has a poor fauna, indigenous
species are adapted to a very dynamic ocean environment with wide
temperature fluctuations and salinity, heavy sediment discharges, re-
duced tidal ranges, many areas of upwelling, diverse estuarine-lagoon
systems, a very narrow continental shelf, few islands and coral reef
formations, extensive oxygen minimum layer, and especially the El Nifio
Southern Oscillation (Boschi, 2000; Glynn & Ault, 2000; Hastings, 2000;
Lea & Rosenblatt, 2000; Robertson & Cramer, 2009; Aguilar-Medrano,
etal., 2015).

The latter two phenomena are probably intolerant conditions for
alien species. Fish migrations of the TEP to the western Pacific (Hawaii
and the Marquesas islands) are also known but in a smaller proportion
(1:3; Robertson et al., 2004) and are characteristic of a high number
of pelagic species or species associated with floating objects (Table
5). While trans-Pacific species contribute to an increase in species ri-
chness/biodiversity of the TEP, these species have different ecological
characteristics compared to the local fauna, except in a few cases such
as the genera Acanthurus and Ctenochaetus, and the two species of
the genus Arothron. Despite these, there is no evidence of the invaders
having biological or ecological characteristics that offer adaptive ca-
pabilities that may provide an advantage over members of the native
fauna (Robertson et al., 2004).

SELECTED REVIEW OF RICHNESS / BIODIVERSITY
HYPOTHESES AND ECOSYSTEM FUNCTION

Species richness depends solely on the number of species and thus the
speciation processes whereas biodiversity depends on the abundance
of each species in the ecosystem (Willig & Presley, 2017). Overall, the-
re are about 50 hypotheses relating biodiversity to ecosystem function
through simple hypothetical relationships that generally do not exem-
plify the true complexity of relationships in ecosystems (Naeem, 1998;
Naeem et al., 2002; Thibaut & Connolly, 2012). All of these studies
use sets of traits (morphological, physiological, phenological, etholo-
gical and biochemistry convergence, or similar trophic characteristics;
Violle et al., 2007; Cadotte ef al., 2013; Laureto et al., 2015; Villéger
et al., 2017) to separate and enumerate species phylogenetically or
functionally; these traits may link phylogenetic lineages and ecological
processes in ecological and evolutionary time (Willig & Presley, 2017;
Floeter et al., 2018).

Collectively, a functional trait is defined as one that can be mea-
sured in an organism and which is related to an effect on one or more
ecological processes or a response to one or more environmental varia-
bles (Naeem & Li, 1997; Tilman, 2001; Diaz et al., 2007; Martin-Lopez
et al., 2007; Cadotte et al., 2013; Winemiller et al., 2015). This strategy
used to represent the relationship between biodiversity and ecosystem
function is a useful approach to simplify complex ecosystems based
on a set of traits into units that facilitate comparative study among
communities and are a low-resolution proxy to predict changes in the
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ecosystem. These traits can be compared directly or through calcula-
tion of functional diversity (e.g., Winemiller et al., 2015; Villéger et al.,
2017) that can further our understanding of the mechanisms and pro-
cesses shaping patterns of biodiversity. Regardless of definitions, the
functioning of ecosystems is carried out by the joint action of physical
processes and natural attributes (solar radiation, evaporation, rainfall,
currents, tides, etc.), the activities of the species (nitrogen fixation, fe-
eding, breeding, growth, competition, migration, waste excretion, etc.),
and the effects their activities have on the physical and chemical con-
ditions of their environment. Thus, the function of an ecosystem is not
singularly determined by the phylogenetic biodiversity of biota (Floeter
et al., 2018), but the functional traits of individuals, the distribution and
abundance of these individual, and their biological activity (Naeem &
Wright, 2003; Violle et al., 2007; Cadotte et al., 2013; Diaz et al., 2013;
Laureto et al., 2015; Villéger et al., 2017).

In recent years, the concept of functional groups has gained consi-
derable popularity, particularly in plant ecology. Unlike the phylogenetic
classifications, the approach is based on groups of functional traits that
are ecologically significant and provide flexible classifications (Diaz et
al., 2002; Villéger et al., 2017; Violle et al., 2007). Many of these ideas
stem from Southwood (1977) who presented a view that habitat fea-
tures provide the template for recurring properties of biotic commu-
nities and that habitats could be viewed as ecological periodic tables
organizing communities. In fact, Lopez de Casenave (2001) indicates
that the functional groups could represent the basic building blocks
of communities and become the standard currency of the ecologists
in their efforts to understand community relations. The forerunner that
considered organismal traits in the classification of plants of ancient
Greece into trees, shrubs and herbs was Theophrastus (300 BC; Diaz
et al., 2002). In animals, Root (1967) was the first to employ classifica-
tions based on bird feeding strategies; these were called “guilds” and
defined as a group of species that exploit a basic common resource in
a similar way. Guilds or functional groups are comprised by generalist
and opportunistic species with ambiguous boundaries that may in some
cases be arbitrary (Root, 2001).

Pianka (1980) characterized guilds as arenas of intense interspe-
cific competition with strong interactions, but weak interactions with
the rest of their community. In contrast, Silvestre et al. (2003) indicates
species belonging to a functional group would be those that exploited
the resources within the n-dimensional niche in different ways, with a
preference for certain portions of the food supply, differences in spatial
occupation, or are active during different periods of the day. Furthermo-
re, in tropical environments the effects of competition within functional
groups appear minimized by the provision of non-limiting resources
and the plasticity of behavioral strategies adopted by each species,
avoiding agonistic encounters.

Some authors mistakenly use guild as a synonym of functional
group. However, while functional groups simultaneously employ many
traits related to the role of the species in the ecosystem, guilds are only
based on the classification of a particular attribute (e.g., feeding, repro-
duction, etc.). Elton (1927) was one of the first to use the term niche
in the sense of the “functional state of the organism within its commu-
nity” and defined the niche as “the basic function of an organism in
the community because of relationships with food and their enemies.”
Subsequently, Root (2001) proposed to replace the Eltonian niche with
“guild”. This change produced contradictions that occur when several



26

similar species are said to occupy the same niche; niche as a category
is supposed to be a property of individual species (Blonder et al., 2014).
Therefore, species exploit niches while guilds exploit niche corners
(Root, 2001). In contrast, the more ecological traits of species (Wine-
miller et al., 2015) are employed to form functional groups, the closer
we come to the definition of the niche; the fewer variables we have
in the grouping of species, the closer we will approach the definition
of guild (Root, 1967). Thus, Hutchinson (1957) suggested that niche
could be viewed as the n-dimensional hypervolume within which the
environment allows the individual or the species to survive indefinitely.
Hutchinson also differentiated the maximum fundamental niche: “the
hypervolume inhabited abstractly “when the species is not restricted by
competition or other limiting biotic interactions, and the realized (true)
niche: the smallest hypervolume occupied” under specific biotic cons-
traints (Odum & Barrett, 2006; Blonder et al., 2014; Pianka et al., 2017).

Finally, the guild approach has been developed emphazing diffe-
rent life-history traits such that there is now a need to review the use
of guild. The wide use of the guild approach has involved increasing
overlap and/or confusion between different studies, which therefore in-
creases the need for standardization while at the same time providing
the opportunity to reconsider the types of guilds and their use world-
wide. In fact, this term has lost its accuracy since its introduction, and
has acquired a variety of meanings, ranging from functional analogs,
ecological species, community guild, structural guild, functional guild,
ecological species group, functional group, functional type, and many
more (see Lopez de Casenave, 2001 for a review).

Until 2010, more than 90% of the studies using functional classi-
fications were focused on terrestrial ecosystems. Of these, about 45%
were plants, over 40% derived from experimental studies, and more
than 30% were focused on the lifestyle of the species (Naeem & Wright
2003; Blaum et al., 2011). In plants, two main approaches are used to
form functional groups on the basis of environmentally significant traits
(Diaz et al., 2002), which can be generalized for animal studies (Barnett
et al., 2007). The a priori strategy based on a single character or a
very small number of traits to define different groups. The definition of
groups is required prior to the study in question (subjective classifica-
tion, Jaksic, 1981; Terborgh & Robinson, 1986; Blondel, 2003; Naeem &
Wright, 2003) and a posteriori method, which is based on the collection
of information on a number of traits and the subsequent identification of
functional groups from the simultaneous consideration of all these traits
through multivariate statistics (Winemiller et al., 2015; Pianka et al.,
2017). Typically, the functional groups and the most relevant traits are
not defined before starting the study, but arise as a result of the study
(objective classification; Hawkins & MacMahon, 1989; Simberloff & Da-
yan, 1991; Naeem & Wright, 2003; Winemiller et al., 2015; Pianka et al.,
2017) regarding the environment or particular influence on ecosystem
processes responses (Hooper et al., 2002).

The type and number of traits used in functional classifications vary
according to the scale of analysis and research objectives. Clearly, iden-
tifying key ecological traits involved in the processes of ecosystems is a
major challenge to understand how species biodiversity affects ecosys-
tem function. In general, most species within a specific ecosystem have
similar environmental tolerances and occupy similar niches (Elliott et
al., 2007). Naeem & Wright (2003) indicated that the relationship be-
tween taxonomic biodiversity and functional diversity is sensitive to the
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character response and effect employed, function being assessed, the
degree of redundancy and uniqueness of species, biotic interactions
and trophic structure, and the biogeographic factors controlling spe-
cies composition, distribution and abundance. Thus, if rare species are
redundant, then ecosystem function may be insensitive to the loss of
some of them, while the opposite happens if the rare species is unique.
Redundancy and uniqueness may vary depending on the trait measured
and effect response employed (Tilman et al., 1997; Petchey & Gaston,
2006; Villéger et al., 2010, 2014). In fish, morphology plays an impor-
tant role in determining the type of prey consumed and morphological
variation can lead to changes in foraging ability and a subsequently
differential exploitation of food resources (Karpouzi & Stergiou, 2003;
Cruz-Escalona et al., 2005).

For example, the caudal fin generates propulsion and is important
in maintaining swimming speed over long sustainable periods and also
provides speed and acceleration (Fulton, 2007). However, the existence
of species with different requirements and different evolutionary his-
tories hinders determining a standard functional classification scheme
to define functional groups. Some traits may be expressed by one or
a few species in an association, whereas, others may have many uni-
que traits, but it should be noted that some functional traits differently
ontogenetically within a species (Vila, 1998; Naeem & Wright, 2003;
Winemiller et al., 2015).

This variation challenges the classifications in functional a priori
groups. For example, the classic fish example is the pinfish Lagodon
rhomboides (Linnaeus, 1766) that presents an orderly progression of
changes in trophic preferences (Livingston, 2002). One-year-old young
recruits (< 20 mm standard length, SL) are primarily planktivorous, but
as they grow (21-33 mm SL) they have a gradual transition to benthic
carnivores, feeding on amphipods, mysids, and harpacticoid copepods,
and at ~60 mm SL, they prefer amphipods, shrimp, algae and detritus.
Fish between 61-120 mm SL eat crabs, shrimps and bivalve molluscs
and once they exceed 120 mm SL they generally feed on seagrass,
being practically herbivorous. The transition from one feeding stage to
the next is gradual, but, in general, related to stages of growth associa-
ted with ontogenetic changes in morphology (dimension of the mouth,
teeth, and size of the stomach) and body shape (Livingston, 2002).

Some authors suggest that there is a degree of predictability in the
process of convergence. If there are similar resources in two geogra-
phically isolated locations, it is possible that a group of similar species
may eventually converge despite phylogenetic differences (Schluter &
Ricklefs, 1993; Winemiller et al., 2015; Pianka et al., 2017). However,
despite ecosystems having quite similar structure, the organization of
the species niches may be different; that is, a function performed by
a species in an ecosystem can be equivalent within a second similar
ecosystem, but in a third ecosystem, its function can be divided among
several species, or included as part of the functions of another species
(Smith & Smith, 2001). Furthermore, as a result of convergent evolu-
tion, some groups of plants and animals worldwide with independent
evolutionary histories but under similar environmental conditions, adapt
to similar ecological niches, and thus represent ecological equivalents
(Whittaker & Levin, 1975; Pianka, 2000).
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combination of four significant factors stimulated the increase in mari-
ne biodiversity. These are (1) an increase in sea level, (2) the formation
of biogeographic barriers, (3) an increase in the areas of continental
shelves, and (4) an increase in global temperature. Then, between the
Cretaceous (~ 145 mya) and the Tertiary periods, sea level and the tem-
perature dropped, and a mass extinction occurred which extinguished
about half of the species of the planet; the recovery took two million
years. During the Cenozoic (~ 66 mya to present), the present tempe-
rature gradient from the tropics to the poles was established as well as
the consequent global gradient of organic biodiversity.

The first key process that contributed to the increase of biodiver-
sity of the Cenozoic was the formation of biogeographic regions and
provinces due to the temperature gradients, promoted by tectonic
movements and changing ocean currents. Subsequently, four centers
of evolutionary origin (Antarctica, the North Pacific, eastern Indonesia,
and the southern Caribbean) are suggested to be the main sources of
diversification in the marine environment, increasing biodiversity in
other parts of the world (Briggs, 2007). The centers of origin hypothe-
sis (Briggs, 2000; 2006; 2007) assumes that interspecific interactions
(competition, predation, etc.) are the main determinants of the number
of coexisting species in a habitat, that all available energy is used by
the resident species, and that only through finer subdivision of habitat
may increase the richness of a community (Pianka, 2000; Ruggiero,
2001; Ruggiero et al., 2015). However, adjustment of the centers of
origin hypothesis indicates that species richness at the local scale is in-
creased by processes that occur at the regional scale (Ruggiero, 2001).
Thus, typical processes of speciation and migration occurring within
biogeographic provinces can add species to these communities without
speciation and niche differentiation at the local scale.

The species occupying centers of origin appear to be highly com-
petitive, well adapted, and have the necessary genetic resources to ad-
just to environmental changes. When species extend their distribution
ranges, they can displace less competitive species, and in turn, are
exposed to a variety of barriers that can disrupt their genetic integrity
(Briggs, 2007). Eventually, the barrier can result in allopatric speciation
and ultimately, the generation of new species. Populations of geogra-
phical provinces isolated by physical barriers contribute to the overall
richness/biodiversity of populations of endemic species produced by
allopatric speciation.

The characteristic sympatric speciation within centers of origin
and the allopatric speciation of peripheral provinces seem to be the
main sources of marine biodiversity. However, Krebs (2003) notes that
environmental factors control natural selection in temperate and po-
lar areas, whereas in the tropics, biological competition is more im-
portant for evolution. This concept reflects that the core processes for
the functioning of ecosystems can be maintained by very few species
and questions if there is really a relationship between biodiversity and
ecosystem function (Tilman et al., 2014). Finally, although the centers of
origin hypothesis (Briggs, 2007) is often supported by certain patterns
of species distribution (Mora et al., 2003), it is often not considered
valid on multiple grounds by some experts (Morrone, 2002); thus, it
is necessary to be taken with caution. In contrast, the species-energy
hypothesis (Hillebrand, 2004a) based on a great number of indirect va-
riables such as air temperature, sea temperature, radiation, biomass,
productivity, and potential and actual evapotranspiration, which reflect
the availability of energy, has been widely accepted in marine environ-
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ments. However, the major disadvantage of this hypothesis, is that it
presents no mechanism that links the energy transfer to biodiversity
(Hillebrand, 2004a).

Because increased species richness is a well-established pattern
across many taxa and is pervasive in time and space (Willig & Presley,
2017), itis likely that a number of mechanisms are required to generate
latitudinal gradients and may be species and habitat dependent; gra-
dients appear not to be based solely on variation in species richness.
For example, the evolutionary time hypothesis (Rohde, 1992) that assu-
mes that tropical areas favor high rates of speciation and low rates of
extinction because they have a larger geographic area, greater produc-
tivity (energy), increased spatial heterogeneity, and a greater geological
stability. Furthermore, the area hypothesis predicts that species rich-
ness and biodiversity is generally associated with a high susceptibility
to allopatric speciation through geographical barrier formation, high
probability of covering more niches, and higher total population size
(Rosenzweig, 1992; Ruggiero, 2001; Ruggiero et al., 2015).

This hypothesis agrees well with observations of fossil record in-
dicating that tropical areas are centers of evolution, with greater evo-
lutionary speed than mild climate areas (Hillebrand, 2004b). However,
the latitudinal gradient in species richness has a few exceptions to the
observed spatial pattern. An interesting example (Bolton, 1994) is the
green (Chlorophyta), brown (Phaeophyta) and red (Rhodophyta) macro-
phytic algae that has a tendency to increase towards the poles, attribu-
ted to competition for suitable habitats with tropical coral reef species.
Another latitudinal gradient related to the distribution range of the spe-
cies is the “Rapoport’s rule.” This suggests a progressive increase in
the size of the geographic ranges of species with latitude, a pattern that
is explained as an effect of selection for greater species climate tole-
rance inhabiting higher latitudes (Stevens, 1989). As species inhabiting
temperate-cold regions are adapted to greater climatic variability than
tropical species, this allows them to extend their geographical distri-
bution. A similar pattern occurs in marine fish where fishes that live
near the ocean surface are distributed in narrow depth ranges, while
fishes in deeper areas are distributed over wide ranges (Stevens, 1989;
Hughes et al., 2002; Macpherson, 2003; Tittensor et al., 2010; Willig &
Presley, 2017).

In parallel, it has been identified that biodiversity also decreases
with altitude, aridity, depth, and environmental homogeneity, among
other factors. A model based on planktonic foraminifera (Allen et al.,
2006) indicated that environmental temperature affects the metabolic
speed of individuals and influences in the divergence rate and therefore
the tempo of speciation. This indicates that the environmental tempe-
rature may be an important controlling factor in speciation rates and,
in turn, helps explain the overall decline in species richness with in-
creases in latitude (Briggs, 2007). However, although the temperature
is a good indicator of speciation rates, this does not explain why the
distribution range can differ in the longitudinal plane. Finally, Allen &
Gillooly (2006) reported positive correlations between species richness
and speciation rates for some groups of plankton, indicating that the
speciation rate varies with species abundance; overall, new species,
genera and families evolve under conditions of high biodiversity.

Based on these models and the idea that “biodiversity generates
biodiversity,” Briggs (2007) argues that a high rate of speciation deve-
loped a high concentration of species in the Indo-Pacific and the sou-
thern Caribbean Sea, and that outward migration to warm-temperate
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latitudes occurred and from there the migration reaches the poles. One
trophic strategy driving such a pattern in tropical centers of origin, is
herbivory which is a widespread feeding strategy but is rare in tempe-
rate waters. Cold waters are a complicated physiological barrier relative
to the increase in energy demand; thus, Briggs (2006) suggests some
groups have shifted into a type of omnivorous feeding or perform sea-
sonal changes between herbivorous and carnivorous habits. In some
locations, between 57 and 79% of the species depends on their diet of
algae and sea grasses (Kieckbusch et al., 2004).

This suggests that a considerable portion of the tropical marine
biodiversity can be attributed to the presence of species that tend to
evolve by means of ecological specializations, using low energy food
sources. This shift towards an alternative food supply under high com-
petition suggests that sympatric speciation may partially drive evolution
in the tropics. The processes of sympatric speciation (or parapatric) are
suggested to be faster than allopatric processes (Bush & Butlin, 2004),
indicating that the exponential increase in biodiversity during the Ceno-
zoic might be mainly due to the production of centers of origin (Busch &
Butilin, 2004; Mittelbach et al., 2007).

IMPORTANCE OF FUNCTIONAL REDUNDANCY
IN ECOSYSTEM FUNCTION AND THE IMPACT OF
ENVIRONMENTAL DISTURBANCES

Naeem et al. (2002) grouped the biodiversity and ecosystem functioning
hypotheses that emerged as mechanisms into three classes according
to how the relationship is modified by removing or adding species that
can include temporally or trait-based trait redundancy. First, species
are mostly redundant. This premise assumes that systems are sensi-
tive to variation in biodiversity and implies that the loss of species is
compensated by other species or by the incorporation of alien species
that do not add new functions to the system. The basis of this premise
is a classification of species into functional groups formed by redun-
dant species (Walker, 1992). Functional redundancy is based on the
premise that some species perform the same function in communities
and ecosystems, and can, therefore, be replaced with little impact on
ecosystem processes (Walker, 1992; Rosenfeld, 2002).

For the maintenance of ecosystem functions, a minimum number
of species is required in each functional group or ecosystem stability
may become reduced or lost to the extent that the functional groups
disappear (Lawton & Brown 1993); thus, to ensure stable ecosystem
functions, redundancy is required. Second, species are mostly unique
which implies that each species contributes to ecosystem functioning
in a unique way, therefore, species loss or addition causes a noticeable
change in ecosystem function and stability (Naeem et al., 1994; Naeem
& Li, 1997; Pratchett et al., 2011).

Keystone species or ecosystem engineering species are often cited
as examples of unique species. Engineer species modify the available
resources for the other members of the community through the modi-
fication of the habitat (e.g., oysters or beaver dam builders; Lawton,
1994). These species have a disproportionate functional impact (positi-
ve or negative depending on the processes under study) on community
or ecosystem abundance and biodiversity (Scherer-Lorenzen, 2005).
Third, the impacts of species are context-dependent and therefore
idiosyncratic or unpredictable (Farifia et al., 2003). The idiosyncratic
response hypothesis (Lawton, 1994) argues that the impact based on
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the loss or addition of a species in an ecosystem can be insignificant or
highly significant, depending on environmental conditions (e.g., fertility,
food availability, disturbance regime, etc.), the nature of the added or
loss species, and the nature of the species with which it interacts.

To illustrate how the functional redundancy of species in a com-
munity depends on the environmental context (premise three above),
Wellnitz & Poff (2001) developed a theoretical scenario based on a
hypothetical feeding guild formed by three lotic species (A, B and C).
These three species belong to a guild of grazers and current velocity
is vital to their permanence. These species are potentially redundant at
low velocities since they feed on algae and associated organisms and
detritus, with overlap in their fundamental niche. On average, all three
species have the same effect on the rate at which algae are removed
from the substrate. However, the relative importance of each species
in this process changes dramatically as velocity increases with their
functions being similar under low speed conditions, but not redundant
at intermediate and high current velocities. Thus, if we conclude that
the three species are redundant based on their functional contributions
in the low velocity or the average value of the three gradients, and then
we remove species C, the community would lose an important functio-
nal component in the system. Unfortunately, there are a limited number
of studies that address this type of issue that provides an unlimited
overview of the functions of the species, and thus may give a false
diagnosis of redundancy.

Studies that do address such changes or impacts indicate variable
results depending on duration/frequency of disturbances and these are
scale-dependent (local, regional). For example, Bellwood et al. (2006)
conducted an experimental study in the Great Barrier Reef, simulating
changes from a macroalgae-dominated to a coral- and epilithic-do-
minated state, inducing the reversal of the dominance of macroalgae
through functional herbivorous fishes. Surprisingly, the reversal through
direct removal of macroalgae was not the result of grazing parrotfish
(Scaridae) and surgeonfish (Acanthuridae), the most common herbivo-
rous reef fish, or any of the other 43 herbivores species in the area, but
primarily from a single species, the batfish Platax pinnatus (Linnaeus,
1758) (Ephippidae, that was previously listed as zoobentivore). The spe-
cies was observed consistently ingesting large pieces of Sargassum
(the dominant macroalgae) and algae. The batfish is relatively rare in
the Great Barrier Reef (1.6 individual/ha), but it has the ability to remove
12,750 kg/yr; however, the importance of removing macroalgae by this
species was unknown.

This species, according to Bellwood et al. (2006), represents a
‘sleeping’ functional group-species or group of species able to perform
a particular function role but only under certain exceptional circumstan-
ces. This case highlights the importance of identifying and protecting
these species or species groups that support resilience and regenera-
tion of complex ecosystems. Similarly, the green humphead parrotfish,
Bolbometopon muricatum (Valenciennes, 1840), from the Indo-Pacific,
was primarily responsible for bioturbation of coral reefs, each fish con-
sumes about five tons of carbonate coral reef per year, corresponding
to about half of the live coral (Bellwood et al., 2003, Bellwood & Choat,
2011). Overfishing of this species has changed the dynamics of accre-
tion of reefs (Bellwood et al., 2003; Bellwood & Choat, 2011).

Coral reef ecosystems are increasingly subject to severe, lar-
ge-scale disturbances caused by climate change (e.g., coral bleaching)
and other more direct anthropogenic impacts causing coral loss; the-
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se cause changes in habitat structure, which has additional effects on
abundance and biodiversity of coral reef fishes (Wilson et al., 2006).
Declines in the biodiversity and abundance of coral reef fishes are of
considerable concern, given the subsequent loss of ecosystem function
(reviewed in Pratchett et al., 2008). Pratchett et al. (2011) reviewed the
effects of coral loss throughout the world on the biodiversity of fishes
and also on individual functional responses of fishes. Extensive (> 60%)
coral loss led to declines in fish biodiversity; most fishes declined in
abundance following disturbances that caused > 10% declines in local
coral cover. Response biodiversity, which is considered critical in main-
taining ecosystem function and promoting resilience, was very low for
corallivores, but was much higher for herbivores, omnivores and carni-
vores. They indicated that sustained climate change poses a significant
threat to coral reef ecosystems and biodiversity hotspots are no less
susceptible to projected changes in biodiversity and function (Pratchett
et al., 2011). Although there is no global agreement on the effects of
species loss on ecosystem functioning, it has been noted that defores-
tation, introduction of exotic species, habitat destruction, isolation or
fragmentation of habitats and pollution can contribute to local, regional
and global extinction of species causing an inevitable ecosystem degra-
dation and loss of services to society (Sodhi et al., 2009).

However, Cheal et al. (2008) suggested that coral reef fish biodi-
versity may not be a reliable indicator of reef resilience but predicted
declines in coral cover due to global warming are likely to cause chan-
ges in the observed structure of reef fish communities; the nature of
these changes and associated functional capacity to assist ecosystem
recovery will vary among reefs because of differences in functional di-
versity. Finally, Denis et al. (2017) based on the 1983 severe coral reef
bleaching data off Tikus Island Indonesia, found clear signs of coral as-
semblage complexity recovery approaching pre-El Nifio conditions five
years after the event. They also noted that, independent of the changes
in species richness, this return in structural complexity was accompa-
nied by a global decrease in species number associated with functional
redundancy (each morphological entity) and an increase in the functio-
nal vulnerability (number of unique single-species/functional groups).
They suggested an overall functional erosion of the coral assemblage
and indicated that the role of the coral reef habitat could be strongly
imperiled under repeated or synergistic disturbances.

Currently, there has been a surge of studies examining the rela-
tionship between phylogenetic (species) biodiversity, functional diver-
sity, and ecosystem sustainability (e.g., Cowman, 2014; Floeter et al.,
2018) using different approaches and relative to a better understanding
of anthropogenic-induced impacts on sustainability. Although there are
multiple definitions (Naeem & Li, 1997; Tilman, 2001; Diaz et al., 2007;
Martin-Lopez et al., 2007; Cadotte et al., 2013; Winemiller et al., 2015),
all agree on the importance of evaluating the functional role of spe-
cies within an ecosystem. The approaches vary but most are through
multidisciplinary and multivariate studies (Schulze & Mooney, 1994;
Winemiller et al., 2015; Pianka et al., 2017; Floeter et al., 2018) where
functional groups are defined according to the concept that species
with high overlap of information on ecological and morphological traits
are placed together and thus play similar ecological roles (Alvarez-Filip
& Reyes-Bonilla, 2006; Cadotte et al., 2013; Winemiller et al., 2015;
Pianka et al., 2017).

Each group is characterized by its own unique combination of func-
tional features and outcomes provide a manageable number of groups
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that maximize the biological coherence of its members (Field et al.,
1982; Simberloff & Dayan, 1991; Petchey & Gaston, 2002; Winemiller
et al., 2015). Recently, Floeter ef al. (2018) documented that functional
traits and the environment influence phylogenetic lineages, such that
acquiring a functional trait may drive evolution of other traits or beha-
viors and that an improvement of our understanding of mechanisms
of species assemblages are enhanced using both metrics in coral reef
fish communities.

In theory, the presence of multiple dominant or subordinate spe-
cies increases the functional redundancy within each functional group
and provides ecosystem resilience to respond or adapt to disturbances
(Giller & 0’Donovan, 2002). Further, functional redundancy also reduces
the likelihood of invasion of exotic species (Naeem et al., 1994; Walker
et al., 1999; Steneck, 2001; Rosenfeld, 2002; Hooper et al., 2005). The
greater the number of functionally similar species, each with different
responses to environmental constraints, the greater the likelihood that
at least one species survives against possible disturbances (Walker,
1992, 1995; Naeem, 1998; Diaz et al., 2013).

For example, let us assume that an ecosystem is facing a drought,
then a fire, and then is on flood. According to the functional diversity
hypothesis, the ecosystem will have species that can tolerate drought,
some that are fire-tolerant, and some that are resistant to flooding. If
true, then two scenarios are likely: 1) the ecosystem may show resis-
tance, remaining unchanged because species richness moderates the
damage; or 2) the ecosystem may show resilience, quickly returning to
its original state because tolerant species contribute to recovery and
compensate for the functional loss of other species who showed less
resistance (Naeem, 2002).

After removing a species within a fully formed group, reduced re-
dundancy makes the remaining species increase their density to offset
the functional contribution of the lost species. For example, in algae
when a compensating effect between species of the same functional
group is observed; biomass remains relatively constant despite fluctua-
tions in species abundance (Steneck, 2001). Functional redundancy is
good because it increases ecosystem resilience (Walker, 1992; Cheal et
al., 2008) and important functional groups comprised of a few or a sin-
gle species deserve attention regarding conservation priority because
their functions may be rapidly lost (Walker, 1992).

CONCLUSIONS

The analysis of functional diversity is a powerful and complementary
tool to the classic indices of biological biodiversity (richness, dominan-
ce, equity, etc.) and taxonomic biodiversity indices (taxonomic biodi-
versity, taxonomic differentiation, average taxonomic differentiation,
variation in taxonomic distinction). Biodiversity indicates richness and
proportions, taxonomic biodiversity reflects the structure and phyloge-
netic variability, and functional diversity suggests the role of species in
the ecosystem. Moreover, functional diversity studies can be used as
a tool to predict the functional consequences of invasions or invasion
front speciation events (Chuang & Peterson, 2016) and biotic changes
caused by humans like overfishing, habitat loss, and climate change
(Heenan & Williams, 2013; Villéger et al., 2017). The functional diversity
approach offers an opportunity for a better understanding of coral reef
ecosystem responses, and the associated fish communities, to natural
and anthropogenic disturbances.
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