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Resumen

Antecedentes: Factores ambientales y genéticos determinan el síndrome metabólico (SMet), el cual constituye un problema 
de salud nacional en adultos y niños, con mayor incidencia en individuos indígenas que en mestizos. Objetivo: Evaluar la 
asociación de las variantes rs1801282, rs5219, rs1111875, rs1800961, I/D, rs9939609 y rs9282541 de los genes PPARG, 
KCNJ11, HHEX, HNF4A, ACE, FTO y ABCA1, respectivamente, con el SMet o sus componentes en niños mayas de Yucatán 
sin obesidad. Material y métodos: Se reclutaron 508 niños de nueve a 13 años. Se utilizaron modelos univariados y multi-
variados ajustados por sexo, edad e índice de masa corporal. Resultados: La frecuencia de SMet en niños mayas sin obe-
sidad de áreas rurales y urbanas fue de 35 y 39 %, respectivamente. El análisis genotipo-fenotipo en niños mayas de áreas 
rurales reveló que rs9282541 se asoció a glucosa alta (p = 0.011); rs9939609, a presión arterial alta (p = 0.048); rs1800961, 
a insulina alta y HOMA-IR (p = 0.038, p = 0.043). En niños de áreas urbanas, I/D se asoció a presión arterial alta (p = 0.022); 
rs1111875, a triglicéridos altos (p = 0.050) y rs1800961, a colesterol-HDL bajo (p = 0.048). Conclusiones: Los hallazgos 
proporcionan evidencia sólida del papel de las variantes estudiadas para conferir susceptibilidad genética para el desarrollo 
del síndrome metabólico en niños mayas sin obesidad de México.

PALABRAS CLAVE: Genes. Niños mayas. Resistencia a la insulina.

High frequency of metabolic syndrome in non-obese Maya children from 
México: Implications of PPARG, KCNJ1, HHEX, HNF4A, ACE (I/D), FTO and ABCA1 
genetics variants

Abstract

Background: Both environmental and genetic factors determine metabolic syndrome (MetS) and eventually result in metabolic 
diseases. MetS is a national health problem in adults and children, with a higher incidence in Indigenous than mestizo indi-
viduals. Objective: Evaluate the association of PPARG/rs1801282, KCNJ11/rs5219, HHEX/rs1111875, HNF4A/rs1800961, 
ACE-I/D, FTO/rs9939609 and ABCA1/rs9282541 variants with MetS or its components in the Maya children from Yucatan. 
Material and methods: A total of 508 Maya children of 9 to 13 years were recruited. We analyze the association of genetic 
variants with MetS in non-obese Maya children by univariate and multivariate models adjusted by sex, age, and BMI. 
Results: Interestingly, the frequency of MetS in non-obese Maya children from rural and urban areas was 35 % and 39 %, 
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Introducción

El síndrome metabólico (SMet) es un conjunto de fac-
tores de riesgo para el desarrollo de enfermedades car-
diovasculares y diabetes mellitus tipo 2 (DMT2). El SMet 
incluye obesidad central, hipertrigliceridemia, hipertensión, 
concentración baja de colesterol-HDL (c-HDL) y concen-
tración alta de glucosa en ayunas.1 Para fines diagnósti-
cos, el SMet se define por la presencia de al menos tres 
de estos cinco factores de riesgo en niños y adultos.2 La 
prevalencia de SMet en adultos mexicanos es de 36.8 a 
49.8 %, dependiendo de la definición utilizada.3

Los factores genéticos y ambientales contribuyen a 
la predisposición a SMet. Sin embargo, la aportación 
de cada factor es difícil de determinar debido a las 
diferentes combinaciones de los rasgos metabólicos 
que conforman esta enfermedad.4 La búsqueda de la 
implicación de factores genéticos en el origen del 
SMet es más complicada cuando la subestructura 
genética de la población es compleja, como la de los 
mexicanos.5 Estudiar grupos indígenas en México 
resulta clave, ya que más de 11 % de la población es 
indígena. En este contexto, la población maya es el 
segundo grupo indígena más grande de México, con 
un componente genético ancestral único.6 Los indíge-
nas mayas se ubican en la península de Yucatán, que 
comprende los estados de Yucatán, Campeche y 
Quintana Roo. Además, en esta región también habita 
población mestiza, con una proporción de ascenden-
cia genética amerindia de 53 %, europea de 42 % y 
africana de 5 %.6,7 En este contexto, varios estudios 
han demostrado que la etnicidad influye en la apari-
ción y frecuencia de alteraciones metabólicas en dife-
rentes grupos poblacionales, tanto en la infancia 
como en la edad adulta, incluso después de ajustar 
por factores ambientales.8,9 Tales hallazgos llevan a 
plantear la hipótesis de que los niños mayas son más 
susceptibles a SMet y sus trastornos metabólicos.

Aunque las variantes en los genes PPARG, KCNJ11, 
HHEX, HNF4A, ACE (I/D), FTO y ABCA1 se han asociado 
a DMT2 en numerosas poblaciones,10-16 se desconoce 

el papel de estas variantes en el desarrollo del SMet 
en niños. Está bien establecido que algunas variantes 
están involucradas en los trastornos que componen 
el SMet, principalmente en adultos; por ejemplo, 
rs1801282 en PPARG y rs9939609 en FTO se rela-
cionan con el índice de masa corporal (IMC) y la 
obesidad, respectivamente.17,18 Los genes HHEX y 
HNF4A desempeñan un papel en el desarrollo del 
páncreas19 y en la regulación del metabolismo de la 
glucosa y los lípidos. Específicamente, las variantes 
rs1111875 en HHEX y rs1800961 en HNF4A se han 
asociado a DMT2.20 La variante rs5219 en KCNJ11 se 
ha asociado a la alteración de la sensibilidad a la insu-
lina, que predispone a los portadores a resistencia a la 
insulina.21 Por otro lado, variantes privadas como 
rs9282541 en ABCA1 se han asociado a bajas concen-
traciones de c-HDL en la población mexicana, incluidos 
niños mestizos y población maya adulta.15,22,23 La variante 
genética I/D en ACE se ha asociado fuertemente a 
riesgo cardiovascular debido a que influye en la modula-
ción del tono vascular y la presión arterial.24,25 Considerando 
la información mencionada, el objetivo del presente 
estudio fue evaluar el papel de las variantes genéticas 
de PPARG, KCNJ11, HHEX, HNF4A, ACE, FTO y 
ABCA1 en el síndrome metabólico en niños mayas sin 
obesidad de la península de Yucatán.

Material y métodos

Se diseñó un estudio transversal. La muestra incluyó 
a 508 niños mayas, 405 sin obesidad: de estos últimos, 
216 niños de tres escuelas rurales y 189 niños de cua-
tro escuelas urbanas. Todos los niños mayas vivían en 
la península de Yucatán, México. Los criterios de inclu-
sión fueron los siguientes: niños con al menos un 
padre que hablara maya, de nueve a 13 años, ayuno 
de 12 horas durante la noche, consentimiento infor-
mado firmado por los padres o tutores y asentimiento 
verbal de los niños. El proyecto fue aprobado por los 
Comités de Ética e Investigación del Hospital Juárez 
de México.

respectively. The genotype-phenotype analysis in rural Maya children revealed that rs9282541-ABCA1 was associated with 
high glucose (p = 0.011); rs9939609-FTO, with high blood pressure (p = 0.048) and rs1800961-HNF4A, with high insulin and 
HOMA-IR (p = 0.038, p= 0.043). In urban children, I/D-ECA was associated with high blood pressure (p = 0.022); rs1111875-
HHEX, with high triglycerides (p = 0.050) and rs1800961-HNF4A, with low HDL-c (p = 0.048). Conclusions: These findings 
provide strong evidence of the role of the studied variants in conferring genetic susceptibility to develop MetS in non-obese 
Maya children from Mexico.

KEYWORDS: Genes. Maya children. Insulin resistance.
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Evaluación clínica

Se llevó a cabo la evaluación antropométrica de todos 
los participantes según métodos estandarizados. Para 
controlar la variabilidad interobservador, el mismo exami-
nador capacitado realizó las mediciones antropométricas 
(estatura, peso, circunferencia de cintura y circunferencia 
de cadera) de todos los niños. La circunferencia de cin-
tura (CC) se midió en el punto medio entre la última 
costilla y la cresta ilíaca; posteriormente, se calcularon los 
percentiles basados en tablas según la edad y el sexo.26 
Se registró la presión arterial en cada niño.

Pruebas de laboratorio

Los parámetros bioquímicos se determinaron en el 
Laboratorio de Endocrinología Molecular del Hospital 
Juárez de México, utilizando kits comerciales conforme 
a las instrucciones del fabricante (sistemas de química 
ADVIA® 1800). La insulina se midió por quimioluminis-
cencia (IMMULITE® 2000). Para definir el SMet, se 
emplearon los criterios pediátricos establecidos por de 
Ferranti en 2004; estos criterios consideran la presencia 
de tres o más de las siguientes características: triglicé-
ridos en ayunas >100 mg/dL, c-HDL < 50 mg/dL, glu-
cosa en ayunas > 100 mg/dL, CC > percentil 75 para la 
edad y el sexo; y presión arterial sistólica > percentil 90 
para la edad, el sexo y la estatura.27

Genotipificación

De acuerdo con Miller et al., se extrajo ADN genó-
mico de la muestra de sangre total. Las variantes 
genéticas se genotipificaron con ensayos Taqman 
(ViiA™ 7 Applied Biosystems®). También se llevó a 
cabo un panel de 10 marcadores informativos de 
ascendencia (MIA): rs4884, rs2695, rs17203, rs2862, 
rs3340, rs722098, rs203096, rs223830, rs1800498 y 
rs2814778, que distinguen principalmente ascenden-
cia amerindia y europea, para confirmar el compo-
nente indígena en 108 padres de los niños en estudio. 
La genotipificación fue realizada dos veces en 10 % 
de las muestras, las tasas de genotipificación de cada 
MIA superaron el 95 %, y no se observaron genotipos 
discordantes en 52 muestras duplicadas.

Análisis estadístico

El equilibrio de Hardy-Weinberg se calculó mediante 
χ2. Las comparativas de frecuencias alélicas entre 
niños mayas de áreas rurales y urbanas se realizaron 

con χ2. Se utilizaron pruebas uni y multivariadas para 
examinar la asociación del genotipo con rasgos cuanti-
tativos, ajustando por IMC, edad y sexo en un modelo 
dominante. Se empleó la prueba de Kolmogorov-Smirnov 
para evaluar la normalidad y la prueba t de Student 
(bilateral) para comparar variables continuas; un valor 
de p < 0.05 se consideró estadísticamente significa-
tivo. Se utilizó la prueba no paramétrica U de Mann-
Whitney cuando no se pudo asumir la normalidad y 
la igualdad de varianzas.

Resultados

La frecuencia de SMet en la población rural total fue de 
41.3 % y la prevalencia de obesidad fue de 10.9 %; sin 
embargo, también se identificó bajo peso (8 %). Por su 
parte, los niños de áreas urbanas mostraron una frecuen-
cia de SMet de 50 % y de obesidad de 29 % (Tabla 1).

Tabla 1. Características bioquímicas y somatométricas de niños 
mayas (n = 508)

Variable Área rural
(n = 242, 
47.6 %)

Área urbana
(n = 266, 
52.4 %)

p*

Niño/niña 114/128 110/156

pIMC (mediana y 
p25, p75)

54 (23, 87) 87 (59, 95) 1 × 10−4

pCC (mediana y 
p25, p75)

50 (25, 75) 75 (50, 90) 1 × 10−4

Glucosa (mg/dL) 95 (89-99) 91 (87-95) 1 × 10−4 

Insulina (mU/mL) 8.6 (5.8-13.3) 10.4 (7.2-16.5) 0.01 

Obesidad (%) 10.9 29 1.4 × 10−3

Síndrome 
metabólico (%)

41.3 50 0.20

Media ± DE Media ± DE

Edad (años) 10.8 ± 1.15 10.6 ± 1.2

pPA 68 ± 21 73 ± 22 0.008

Triglicéridos 
 (mg/dL)

111.5 ± 55.9 115.7 ± 67.0 0.89

Colesterol (mg/dL) 157.2 ± 32.2 170.3 ± 30.5 3 × 10−6

Colesterol-HDL 
(mg/dL)

50 ± 11.4 49.6 ± 11.0 0.60

Colesterol-LDL 
(mg/dL)

89.2 ± 22.2 100.4 ± 27.9 1 × 10−6

DE: desviación estándar; HOMA-IR: índice de resistencia a la insulina según el modelo 
de homeostasis; p25, p75: percentiles 25 y 75; pCC: percentiles de la circunferencia de 
cintura; pIMC: percentiles del índice de masa corporal; pPA: percentiles de la presión 
arterial. *p < 0.05 comparativas entre niños de áreas rurales y urbanas.
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Las características bioquímicas y somatométricas de 
los niños sin obesidad de áreas rurales y urbanas se 
muestran en la tabla 2. El hallazgo más importante fue 
que el SMet se encontró con mayor frecuencia en niños 
sin obesidad en ambos grupos (> 37  %). Además, 
teniendo en cuenta que la frecuencia del SMet es mayor 
que la de obesidad, es predecible que un grupo de 
niños con SMet no esté condicionado por el exceso de 
peso corporal.

Los niños de áreas rurales con SMet presentaron 
mayores percentiles de CC y presión arterial, así 
como concentraciones más altas de parámetros bio-
químicos y hormonales que los niños sin SMet. Se 
observaron resultados similares en los niños de áreas 
urbanas, excepto en las concentraciones de coleste-
rol y c-LDL, que no mostraron diferencias estadísti-
camente significativas.

Las asociaciones de las variantes genéticas con los 
componentes del síndrome metabólico se muestran 
en las tablas 3 y 4. En los niños de zonas rurales 
encontramos cuatro asociaciones (p < 0.05):

–	 rs9282541 en ABCA1 con altas concentraciones 
de glucosa.

–	 rs1800961 en HNF4A con altas concentraciones 
de insulina y HOMA-IR.

–	 rs9939609 en FTO con presión arterial alta.
–	 rs1801282 en PPARG con c-HDL alto.

Por otro lado, en los niños de áreas urbanas se iden-
tificó rs5219 en KCNJ11 con baja glucosa, rs1111875 
en HHEX con altas concentraciones de triglicéridos y 
rs1800961 en HNF4A con bajas concentraciones de 
c-HDL. Respecto a los parámetros somatométricos, 
I/D en ACE se asoció a percentiles altos de presión 
arterial.

Discusión

El SMet es un excelente predictor de riesgo cardio-
vascular y DMT2.28 Su prevalencia en México se ha 
convertido en un problema de salud nacional, tanto en 
adultos como en niños. En esta investigación se decidió 
utilizar la definición establecida por de Ferranti,27 una 
clasificación pediátrica basada en los criterios de ATP 
III (Adult Treatment Panel III) para adultos, que consi-
dera los efectos de la edad, el sexo y la pubertad. Esta 
definición ofrece la ventaja de reducir resultados falsos 
positivos en los diagnósticos de SMet.

Se identificó SMet en 35.2 y 38.6  % de niños sin 
obesidad de áreas rurales y urbanas, respectivamente. 
Una consideración adicional a estos resultados inespe-
rados es que los niños pertenecen a una comunidad 
rural que, además de ser de bajos ingresos, carece de 
los servicios y comodidades de la vida urbana. Este 
hallazgo sugiere un componente genético involucrado 

Tabla 2. Presencia de síndrome metabólico en niños mayas sin obesidad (n = 405)

Variable Niños del área rural (n = 216) Niños del área urbana (n = 189)

Sin Smet
(n = 140, 64.8 %)

Con Smet
(n = 76, 35.2 %)

p Sin Smet
(n = 116, 61.4 %

Con Smet
(n = 73, 38.6 %)

p

Niño/niña 69/71 30/46  43/73  24/49

Edad (años) 11 (10, 12) 11 (10, 12) 0.443 10 (9, 11) 11 (9, 11) 0.974

pCC (%) 50 (25, 75) 75 (75, 90) 0.0001 50 (50, 75) 75 (75, 93) 0.0001

pPA (%) 60 ± 18 80 ± 19 0.0001 61 ± 19 83 ± 19 0.0001

Glucosa (mg/dL) 94 (88, 97) 98 (91, 102) 0.002 91 (88, 94) 93 (88, 98) 0.016

Triglicéridos (mg/dL) 80 (65, 97) 129 (103, 164) 0.0001 78 (63, 97) 124 (94, 170) 0.0001

Colesterol (mg/dL) 150 (125, 173) 163 (142, 188) 0.0001 165 (149, 189) 172 (145, 188) 0.977

Colesterol-HDL (mg/dL) 53 (45, 60) 46 (41, 51) 0.0001 54 (50, 62) 44 (39, 49) 0.0001

Colesterol-LDL (mg/dL) 84 (73, 99) 94 (77, 109) 0.012 91 (77, 110) 104 (83, 117) 0.117

Insulina (mU/mL) 7 (5, 10) 11 (8, 16) 0.0001 8 (6, 10) 12 (8, 17) 0.0001

HOMA-IR 1.6 (1.0, 2.3) 2.6 (1.9, 3.7) 0.0001 1.7 (1.2, 2.3) 2.7 (1.9, 4.2) 0.0001

Los datos se expresan en mediana y percentiles 25 y 75 o en medias y desviación estándar.
HOMA-IR: índice de resistencia a la insulina según el modelo de homeostasis; pCC: percentiles de la circunferencia de cintura; pPA: percentiles de la presión arterial; SMet: síndrome 
metabólico. p < 0.05 comparativa entre no SMet y sí SMet. *p < 0.05 
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en el desarrollo de este síndrome, en el cual la obe-
sidad no es un factor condicionante que conduzca al 
SMet en la población maya.

La estrategia de este estudio implicó evaluaciones 
durante la infancia para eliminar los efectos acumu-
lativos medioambientales a lo largo de la vida, lo cual 
permite revelar la participación de factores genéticos 
en el desarrollo del SMet.17 La evaluación de la aso-
ciación genotipo-fenotipo en los niños sin obesidad 
muestra varias diferencias en ambas poblaciones 
(Tablas 3 y 4). El mayor número de asociaciones 
genéticas con rasgos metabólicos identificadas en los 
niños de áreas rurales revela el efecto del compo-
nente genético en el desarrollo del SMet; los niños no 
están expuestos al impacto perjudicial de los cambios 

en la dieta y el estilo de vida, ni a la globalización y 
el desarrollo económico de las regiones urbanas. No 
obstante, no se puede descartar que la participación 
de otras variantes genéticas desconocidas pudiese 
contribuir al desarrollo de alteraciones metabólicas a 
edades tempranas. Por ello, se deben efectuar más 
estudios para aclarar este componente genético cru-
cial involucrado en la aparición prematura del SMet.

En México, se han realizado pocos estudios sobre la 
contribución de los genes en el desarrollo del SMet y 
sus complicaciones; no obstante, la variante rs9282541 
en el gen ABCA1 se ha asociado a dos componentes 
del SMet (hipertrigliceridemia y HDL-C bajo) en niños 
mexicanos.23 La variante rs9282541 en ABCA1 es una 
variante privada derivada de la ascendencia nativa 

Tabla 3. Asociaciones genotipo-fenotipo en niños mayas sin obesidad de áreas rurales (n = 216)

SNP/gen Variante pCC pPA Glucosa 
(mg/dL)

Colesterol 
(mg/dL)

Triglicéridos 
(mg/dL)

C-HDL 
(mg/dL)

C-LDL 
(mg/dL)

Insulina 
(µU/mL)

HOMA-IR

rs928254 CC 54 ± 26 66 ± 20 93 ± 8 154 ± 31 107 ± 53 51 ± 11 88 ± 22 11 ± 21 2.5 ± 4.4

ABCA1 CT/TT 54 ± 27 70 ± 21 96 ± 8 159 ± 33 110 ± 57 50 ± 13 90 ± 20 10 ± 7 2.4 ± 1.8

p 0.684 0.206 0.011 0.346 0.975 0.860 0.366 0.601 0.736

rs1111875 TT 53 ± 25 66 ± 20 93 ± 9 152 ± 34 109 ± 62 50 ± 10 89 ± 22 9.0 ± 7.0 2.0 ± 1.5

HHEX CT/CC 54 ± 27 67 ± 21 95 ± 8 158 ± 31 107 ± 50 51 ± 12 88 ± 21 12 ± 21 2.7 ± 4.5

p 0.749 0.845 0.122 0.237 0.773 0.307 0.849 0.258 0.212

rs5219 CC 59 ± 27 70 ± 21 95 ± 7 160 ± 32 116 ± 63 50 ± 12 91 ± 21 10 ± 7 2.4 ± 1.6

KCNJ11 CT/TT 50 ± 26 65 ± 20 94 ± 8 153 ± 31 102 ± 47 51 ± 11 87 ± 22 11 ± 22 2.5 ± 4.7

p 0.734 0.236 0.305 0.163 0.320 0.803 0.353 0.632 0.698

rs1800961 CC 54 ± 27 67 ± 21 94 ± 8 155 ± 32 109 ± 57 51 ± 12 88 ± 22 10 ± 7 2.21 ± 1.6

HNF4a CT/TT 55 ± 27 66 ± 21 94 ± 7 162 ± 29 101 ± 43 49 ± 10 92 ± 21 16 ± 41 3.6 ± 8.6

p 0.059 0.949 0.579 0.202 0.708 0.192 0.237 0.038 0.043

rs1801282 GG 55 ± 27 67 ± 21 94 ± 8 155 ± 32 109 ± 53 50 ± 11 89 ± 22 11 ± 20 2.6 ± 4.2

PPARg GC/CC 52 ± 25 67 ± 21 93 ± 8 158 ± 31 105 ± 58 54 ± 13 87 ± 21 10 ± 8 2.2 ± 1.7

p 0.560 0.873 0.289 0.564 0.893 0.026 0.634 0.636 0.548

rs9939609 TT 55 ± 26 66 ± 20 94 ± 8 155 ± 32 106 ± 53 50 ± 12 88 ± 22 11 ± 20 2.5 ± 4.2

FTO TA/AA 52 ± 29 71 ± 21 96 ± 8 159 ± 31 112 ± 59 53 ± 11 90 ± 19 9.5 ± 6 2.2 ± 1.3

p 0.726 0.048 0.161 0.414 0.438 0.148 0.618 0.537 0.550

I/D II 51 ± 26 63 ± 20 91 ± 6 134 ± 22 87 ± 42 46 ± 9 83 ± 16 8.6 ± 4.6 1.98 ± 1.16

ACE ID/DD 54 ± 27 67 ± 21 94 ± 8 157 ± 32 109 ± 55 51 ± 12 89 ± 22 10.8 ± 18 2.5 ± 3.9

p 0.943 0.597 0.174 0.021 0.248 0.102 0.384 0.658 0.630

C-HDL: colesterol-HDL; C-LDL: colesterol-LDL; HOMA-IR: índice de resistencia a la insulina según el modelo de homeostasis; pCC: percentiles de la circunferencia de cintura; 
pPA: percentiles de la presión arterial; SNP: polimorfismo de nucleótido único (single nucleotide polymorphisms). *Bajo el modelo dominante de herencia, ANCOVA,  
*p < 0.05.  Variables fijas: IMC, edad y sexo.



Peña-Espinoza B et al.  Frecuencia de síndrome metabólico en niños mayas

121

americana que podría influir en la DMT2 en la pobla-
ción mexicana, particularmente en los adultos mayas.15 
Respecto a los niños en edad escolar, Flores Dorantes 
et al. mostraron asociación entre rs9282541 y c-HDL 
bajo, IMC alto y puntuación z alta de IMC.29 También 
se ha descrito que la población adulta de grupos 
indígenas de México tiene la frecuencia más alta de 
rs9282541.30 En el presente estudio, la variante 
rs9282541 de ABCA1 se asoció a altas concentracio-
nes de glucosa en niños de áreas rurales. La asocia-
ción entre rs9282541 y altas concentraciones de 
glucosa probablemente se deba a que el gen ABCA1 
desempeña un papel esencial en la regulación de la 
secreción de insulina; el ratón knockout específico a 
ABCA1 en las células beta mostró alteración en la 
tolerancia a la glucosa, derivada de una disminución 

en la secreción de insulina, si bien en los humanos 
existe poca información al respecto.29 Se sabe que la 
variante rs9282541 de ABCA1 ejerce un efecto funcio-
nal al reducir el flujo de colesterol in vitro (27 %), lo cual 
provoca la acumulación de colesterol en las células beta 
y una peor capacidad secretora de insulina.30 Además, 
entre los SNP (polimorfismo de nucleótido único, single 
nucleotide polymorphisms) seleccionados en este estu-
dio, la única variante previamente asociada a la diabe-
tes en la población maya fue la R230C en ABCA1.15 En 
este sentido, su relación con la hiperglucemia en niños 
de áreas rurales sugiere que esta variante es clave en 
las etapas tempranas de la patogénesis de la diabetes 
en la población maya.

La variante más asociada a la obesidad en adultos 
y niños de diferentes poblaciones es rs9939609 en 

Tabla 4. Asociaciones genotipo-fenotipo en niños mayas sin obesidad de áreas urbanas 

SNP/gen Variante pCC pPA Glucosa 
(mg/dL)

Colesterol
(mg/d$L)

Triglicéridos 
(mg/dL)

C-HDL 
(mg/dL)

C-LDL
(mg/dL)

Insulina
(µU/mL)

HOMA-IR

rs928254 CC 67 ± 24 70 ± 22 93 ± 11 170 ± 32 107 ± 67 52 ± 11 98 ± 28 10 ± 6 2.4 ± 1.7

ABCA1 CT/TT 62 ± 26 68 ± 22 91 ± 6 164 ± 25 105 ± 52 49 ± 12 99 ± 25 11 ± 7 2.4 ± 1.7

p 0.776 0.683 0.606 0.275 0.855 0.067 0.510 0.215 0.397

rs1111875 TT 69 ± 23 69 ± 22 93 ± 10 167 ± 30 94 ± 52 50 ± 9 97 ± 23 11 ± 8 2.6 ± 2.2

HHEX CT/CC 64 ± 25 69 ± 21 92 ± 10 169 ± 30 112 ± 67 52 ± 12 99 ± 29 10 ± 5.8 2.3 ± 1.4

p 0.191 0.994 0.671 0.358 0.050 0.258 0.395 0.287 0.221

rs5219 CC 64 ± 25 71 ± 22 95 ± 15 163 ± 24 108 ± 68 50 ± 10 96 ± 24 10.6 ± 7.4 2.6 ± 2.1

KCNJ11 CT/TT 66 ± 24 68 ± 21 91 ± 6 172 ± 33 106 ± 60 52 ± 12 100 ± 29 10.1 ± 6 2.3 ± 1.4

p 0.943 0.339 0.015 0.078 0.665 0.127 0.506 0.318 0.097

rs1800961 CC 65 ± 25 70 ± 22 93 ± 11 168 ± 30 109 ± 65 52 ± 11 97 ± 27 11 ± 7 2.5 ± 1.8

HNF4a CT/TT 69 ± 21 64 ± 21 90 ± 5 172 ± 28 97 ± 52 47 ± 10 103 ± 28 8.6 ± 5 1.9 ± 1.1

p 0.540 0.173 0.154 0.786 0.294 0.048 0.575 0.065 0.062

rs1801282 GG 65 ± 25 69 ± 22 93 ± 11 167 ± 30 107 ± 64 51 ± 10 98 ± 27 10.3 ± 6.4 2.4 ± 1.7

PPARg GC/CC 71 ± 23 70 ± 22 91 ± 6 177 ± 30 103 ± 58 52 ± 15 98 ± 28 10.1 ± 7.6 2.3 ± 1.7

p 0.087 0.768 0.407 0.171 0.727 0.683 0.655 0.985 0.742

rs9939609 TT 64 ± 25 66 ± 21 92 ± 11 168 ± 31 97 ± 43 51 ± 12 97 ± 27 10 ± 6.3 2.3 ± 1.6

FTO TA/AA 68 ± 23 71 ± 22 92 ± 10 170 ± 27 110 ± 70 51 ± 10 101 ± 27 11 ± 7 2.5 ± 2.0

p 0.947 0.128 0.971 0.684 0.138 0.777 0.397 0.879 0.756

I/D II 59 ± 25 54 ± 13 89 ± 5 175 ± 30 90 ± 45 54 ± 13 99 ± 16 8 ± 4.2 1.8 ± 1

ACE ID/DD 66 ± 25 70 ± 22 92 ± 10 168 ± 30 107 ± 63 51 ± 11 98 ± 28 10.4 ± 6.7 2.4 ± 1.7

p 0.118 0.022 0.463 0.731 0.527 0.552 0.648 0.416 0.414

C-HDL: colesterol-HDL; C-LDL: colesterol-LDL; HOMA-IR: índice de resistencia a la insulina según el modelo de homeostasis; pCC: percentiles de la circunferencia de cintura; 
pPA: percentiles de la presión arterial.
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FTO.31-33 Si bien se ha relacionado con obesidad en 
la población adulta mexicana,32,34 solo un estudio ha 
confirmado que existe una relación con el IMC alto en 
niños.35 En el presente estudio se encontró que la 
variante de FTO se asoció a presión arterial alta, 
hallazgo que coincide con lo descrito por García Solís 
et al.35 En la actualidad, se desconocen los mecanis-
mos mediante los cuales la variante rs9939609 está 
implicada en el control de la presión arterial. Las hipó-
tesis apuntan a que está asociada a la regulación del 
tono vasomotor simpático.31,36 Por otro lado, el estudio 
de Xi et al. avala la relación de rs9939609 en FTO a 
nivel del hipotálamo con la presión arterial alta.31

La variante rs1801282 en PPARG se ha asociado a 
incremento del IMC en individuos mestizos mexica-
nos.17 Esta variante es más frecuente en población 
caucásica (12  %), seguida por población mexicana 
americana (10 %); la frecuencia más baja se identificó 
en población china (1  %).37 PPARG desempeña un 
papel clave en la diferenciación de adipocitos y la 
expresión génica, con lo que mejora la sensibilidad a 
la insulina.38 Solo un estudio ha asociado la variante 
rs1801282 de PPARG a la insulina en ayunas en niños 
mexicanos; no obstante, esta relación es modificada 
por la dislipemia.39 En este trabajo, los niños de áreas 
urbanas portadores de la variante rs1801282 mostra-
ron c-HDL alto. Hasta donde sabemos, este hallazgo 
no podría explicarse por los reportes en la literatura, 
en los cuales se ha informado que PPARG ha estado 
implicado en la regulación de la glucosa, la elevación 
de los niveles de lípidos y la sensibilidad a la insulina. 
La activación de PPARG fomenta la diferenciación de 
adipocitos y otros tipos celulares, lo cual se asocia a 
la inducción de enzimas lipogénicas y proteínas glu-
correguladoras que ayudan a los tejidos a exhibir un 
estado normal de sensibilidad a la insulina.33,40 La 
variante rs1801282 se ha relacionado con DMT2 
durante la edad adulta en poblaciones caucásicas y 
japonesas; no obstante, los sujetos diabéticos con la 
variante genética de PPARG tuvieron concentracio-
nes más bajas de glucosa en plasma en ayunas que 
aquellos con el genotipo salvaje.40

Varios estudios han confirmado la relación entre 
rs5219 de KCNJ11 y DMT2. Esta variante provoca una 
menor acción de la insulina al comprometer la seña-
lización de la insulina y la captación de glucosa.41 La 
variante rs5219 podría influir en la vía de secreción 
de la insulina. Diversas investigaciones han mostrado 
que el alelo A de este locus afecta esta vía al reducir 
la sensibilidad al ATP del canal KATP, lo cual induce 
la sobreactividad del canal y la posterior supresión de 

la secreción de insulina y un mayor riesgo de DMT2.12,42 
La variante rs5219 de KCNJ11 también se ha aso-
ciado a altas concentraciones de glucosa en otras 
poblaciones.43

A diferencia de otros estudios, en México esta 
variante solo se ha asociado a bajas concentraciones 
de leptina en adultos de Yucatán. Los autores espe-
culan que esta asociación refleja el papel de la leptina 
en la regulación de la secreción de insulina a través 
del canal KATP.44 En la presente investigación, la 
variante se asoció a concentraciones bajas de glu-
cosa en niños de áreas urbanas, a diferencia de los 
hallazgos en adultos, lo cual podría deberse a la 
plasticidad celular de los primeros.45

La variante rs1111875 en HHEX está asociada a 
DMT2 en múltiples estudios. En niños, rs1111875 se 
ha relacionado con bajo peso al nacer y alto IMC pediá-
trico.46,47 En el presente trabajo, rs1111875 de HHEX 
se asoció a concentraciones altas de triglicéridos en 
niños mestizos. En México, no existen investigaciones 
que confirmen la implicación de esta variante de HHEX 
en el desarrollo del SMet ni sus componentes en niños. 
Por ello, este trabajo sería el primero en encontrar una 
relación entre esta variante y las concentraciones altas 
de triglicéridos, lo cual se avala con la hipótesis de 
Liu-Sijun et al.,48 quienes explican que HHEX influye 
en las concentraciones de triglicéridos por su papel en 
la señalización de la insulina y la función de los islotes 
pancreáticos. En este sentido, este importante resul-
tado merece una investigación más profunda.

Otra variante estudiada en este trabajo fue I/D en el 
gen  ACE; lamentablemente, las frecuencias genotípicas 
encontradas no mostraron equilibrio de Hardy-Weinberg.

La variante rs1800961 de HNF4A se ha asociado a 
DMT2 en varias poblaciones; resulta interesante que 
en la población mexicana la variante T130I se asoció 
a la DMT2 de debut temprano.49 En este estudio, 
T130I se asoció a concentraciones altas de insulina 
y HOMA-IR en niños de áreas rurales, lo cual sugiere 
que esta variante incrementa la susceptibilidad al 
desarrollo de DMT2 a edades tempranas en la pobla-
ción maya. Se conoce que el incremento de HOMA-IR 
se asocia a un estado de hiperinsulinemia compen-
satoria sostenida que provoca el agotamiento de las 
células β y la DMT2.50

Por último, estos resultados sugieren que la pobla-
ción maya presenta un estado de riesgo que no nece-
sariamente implica obesidad, lo cual lleva a alteraciones 
metabólicas en edades escolares. Nuestros hallazgos 
señalan la participación de estas variantes genéticas 
en el SMet en niños mayas.
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