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resUmen

Los cambios en el uso y la cobertura del suelo pueden resultar en cambios significativos en el régimen 
del flujo de una cuenca hidrográfica. Los estudios predictivos sobre el uso del suelo y su interferen-
cia con la disponibilidad del agua ayudan a identificar eventos extremos con anticipación a fin de 
proponer medidas de gestión adecuadas. De esta forma, este estudio tuvo como objetivo realizar la 
predicción del uso del suelo para el año 2030 para la subcuenca del Alto Río Grande (ARG), ubicada 
en el sureste de Brasil. Esta región fue elegida por el uso intenso de los recursos hídricos y por haber 
enfrentado, recientemente, escasez de agua como resultado de sequías prolongadas y una gestión 
inadecuada de los recursos hídricos. Para la predicción del uso del suelo en 2030 se utilizó el Land 
Change Modeler (LCM), el mapa obtenido se insertó en el modelo Soil and Water Assessment Tool 
(SWAT) previamente calibrado y validado para las condiciones ambientales y climáticas de la región. 
La subcuenca ARG fue afectada por fuertes lluvias en 2011 que resultaron en cambios en el paisaje 
debido a deslizamientos de tierra. Esta particularidad de la región contribuyó para que la predicción 
del uso del suelo para el año 2030 presente un aumento de bosques y pastos en detrimento de las 
áreas agrícolas. Al evaluar los impactos de estos cambios en la disponibilidad del agua, se observó 
que el modelo SWAT presentó, para las mismas condiciones de precipitación, una reducción en los 
caudales pico de hasta 59% y una reducción en el caudal promedio mensual de hasta 63% en 2030 
en relación con el uso del suelo observado en 2017. Es decir, este estudio hace un aporte importante 
al identificar una reducción considerable en la disponibilidad del agua. Estos resultados ayudarán a 
formular estrategias para la gestión de los recursos hídricos y la adopción de medidas para promover 
la seguridad hídrica en la región.
PaLabras cLave: Modelamiento de cambio de uso del suelo, predicción del escurrimiento, modela-
miento de cuencas hidrográficas y recursos hídricos.
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abstract

Changes in land use and land cover (LULC) can result in significant changes in a hydrographic ba-
sin flow regime. Future projections about LULC and its interference with water availability help to 
identify extreme events in advance and help propose appropriate management measures. Thus, this 
study aimed to make the LULC projection for the year 2030 for the Alto Rio Grande (ARG) sub-
basin, located in Southeastern Brazil. This region was chosen because of its intense water resources 
use and for having recently faced water scarcity as result of prolonged droughts and inadequate water 
resources management. To identify the LULC trend for the year 2030, the Land Change Modeler 
(LCM) was used, the map obtained was inserted in the Soil and Water Assessment Tool (SWAT) 
model previously calibrated and validated for the region’ environmental and climatic conditions. 
The ARG sub-basin was affected by heavy rains in 2011, which resulted in changes in the landscape 
due to landslides. This particularity of the region contributed to the projection of LULC for the 
year 2030 to present an increase in forest and pastures to the agricultural areas detriment. When 
evaluating the impacts of these changes in water availability, it was observed that the SWAT model 
presented, for the same rainfall conditions, a reduction in peak streamflows of up to 59% and a 
reduction in the average monthly flow of up to 63% in 2030 in relation to the LULC observed in 
2017. Thus, this study provides an important contribution by identifying a considerable reduction 
in water availability. These results will help to formulate strategies for water resources management 
and the adoption of measures to promote water security in the region.

Key Words: land change modeler, projection flow, watershed modelling and water resources.

introdUction

Land use and land cover (LULC) changes are factors that alter the hydrological processes in river ba-
sins, with adverse effects on flow regime and water balance. Studies carried out in different regions of 
the world have shown that forested areas to pastures or urban areas conversion decreases evapotrans-
piration, increases runoff, reduces infiltration and groundwater recharge (Anand et al., 2018; Gabiri 
et al., 2019; Jodar-Abellan et al., 2019; Natkhin et al., 2015; Zhang et al., 2020). These changes 
can result in biodiversity losses, in addition to threatening socioeconomic development (Andrade et 
al., 2019; FAO, 2011; Joly et al., 2019; Marques et al., 2019). Since half-billion people around the 
world face severe water scarcity throughout the whole year (Hoekstra, 2016), predicted flow rate 
has been a key driver to appropriate management measures. In this context, it is essential to project 
future scenarios to identify possible LULC and their consequences in flow regimes.

This is not a trivial task and requires sophisticated techniques application that take into account the 
LULC dynamic and the hydrological processes complexity. The integration of LULC prospection 
and hydrological simulation models closely related to Geographic Information Systems (GIS) are 
indicated for this function. This integration allows the definition of LULC scenarios considering a 
pattern of changes and the simulation of current and future interferences in the water resources flow 
in response to these changes (Anand et al., 2018; Van Cauwenbergh et al., 2018).

The Land Change Modeler (LCM) is a tool for land planning (Eastman and Toledano, 2018). 
In LCM, the LULC is modelled empirically as a function of a set of explanatory spatial variables 
(whether constraints or incentives) and an observed rate of change between two distinct periods 
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(Kafy et al., 2020; Mas et al., 2014). To assess LULC hydrological impacts, process-based hydrologi-
cal models, such as the Soil and Water Assessment Tool (SWAT) are being applied in different scales 
hydrographic basins, in countries with varied climatic and topographic conditions and with limited 
data quantity and quality (Bieger et al., 2013; Jodar-Abellan et al., 2019; Joorabian Shooshtari et al., 
2017; Krysanova and White, 2015; Marhaento et al., 2018; Natkhin et al., 2015; Piniewski et al., 
2019; Saha et al., 2019; Zhang et al., 2020, 2018).

By considering the hydrographic basin characteristics (such as soil type, topographic data, climate 
information and land use maps), the model is able to adequately represent water availability (Kry-
sanova and White, 2015). This capacity together with the possibility of inserting land use maps 
allows SWAT to be used to project the impact of changes in LULC on the flow of a water body. 
However, this multi-model approach through the joint use of LCM and SWAT is developing and 
there are few studies reporting this interaction.

On the other hand, the results obtained so far reveal the great potential of this application. Joorabian 
Shooshtari et al. (2017) elaborated a prospective LULC map for 2050 using LCM and identified the 
changes in interferences observed in runoff using SWAT. Authors found that the projected change 
for land use is relatively small, so the impact on discharges is also modest (annual increase of 3%), 
but not negligible. Abbasi et al. (2021) in a similar study, applied the LCM to the 2032 LULC pro-
jection and determined the impacts on green water safety using SWAT. The results obtained by the 
authors showed an increase in pastures and urban area while forests and agricultural area reduced. 
These changes, associated with the most critical climate change scenario, resulted in a reduction of 
about 9% in green water flow and 44% in green water storage for the study region.

In tropical regions, such as Brazil, hydrological processes differ from other regions due to higher 
energy inputs and rates of change (Wohl et al., 2012). The consequences of these changes and the 
knowledge of the main hydrological interactions is limited (Wohl et al., 2012), which makes it dif-
ficult to adopt effective measures to guarantee water availability in the future. Brazil’s economy is 
heavily dependent on water resources. The country stands out in agricultural production and has 
almost 7 million hectares of irrigated area with an expected increase of 3 million hectares by 2030 
(ANA, 2017). Additionally, about 90% of Brazilian energy is supplied by hydroelectric plants (Pin-
heiro et al., 2019).

Thus, the main motivation of this work is to advance in research regarding the joint use of the LCM 
and SWAT models to project water availability, contributing, together with society and the scientific 
community, in increasing the database related to the application of these two models. For this as-
sessment, the ARG sub-basin located in South-eastern Brazil was chosen, a region that has an intense 
water resources use and that recently faced one of the biggest water crises in its history. In addition, 
mass movements providing significant changes in the landscape affected the region.

materiaLs and methods 
1. stUdy area 

The study area comprises the ARG sub-basin (Figure 1), located in the western portion of Nova 
Friburgo county, in the mountain region of Rio de Janeiro state, Brazil. ARG sub-basin has an area 
of 236 km², which corresponds to 25% of Nova Friburgo county total area, with Rio Grande as its 
main watercourse. It is composed of forest remnants (62%), pastures and agricultural areas, which 
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represents 36% of the total area. There are no urban areas in the basin and the Nova Friburgo mu-
nicipality is about 12 km away (MapBiomas, 2018). ARG sub-basin has mainly Cambisol soils, 
which is usually associated with undulating mountain relief areas (Zaroni and Santos, 2018).

The municipality, inserted in the Atlantic Forest biome, rated as Montane Ombrophilous Dense 
Forest. This region presents rugged topography and high slopes, reaching 2,300 m. According to 
the Köppen classification, the climate is tropical altitude (Cwb). The average annual minimum and 
maximum temperatures are respectively 14.5°C and 25.10°C and annual rainfall average is around 
2,000 mm, with November to March being the rainiest period and April to October the driest 
months (Baptista, 2009; INMET, 2021). This study site was chosen because the region has been 
affected by critical water scarcity events resulting from prolonged droughts and inadequate water 
resource management (Britto et al., 2018).

ARG sub-basin is responsible for meeting the demand in the metropolitan region of Rio de Janeiro, 
with agricultural crops such as vegetables. Those cultures demand frequent irrigation (through ab-
stractions in Rio Grande River), which places the municipality in a prominent position in relation to 
the total irrigated area, being the fourth largest in the State. Rio Grande River’s source is still used for 
animal consumption, sand extraction, distilled beverages manufacture and aquaculture (AGEVAP, 
2014, 2013; IBGE, 2017; INEA, 2020). Since the Rio Grande River is also used for public water 
supply estimated at 185 thousands of inhabitants (IBGE, 2017), population growth expectations 

Figure 1. Study area location
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and agricultural and industrial expansion call attention to water availability, with the risk of a con-
siderable reduction, not only due to the increase in water demand, but also due to LULC. 

This work aimed to determine water availability in the ARG sub-basin for the year 2030 in response 
to LULC. To achieve these objectives, the LCM tool was applied to identify possible LULC in 2030. 
The image for 2030 obtained was inserted in the SWAT model to obtain flow regime in Rio Grande 
(Figure 2). At this stage, it was considered that the lowest rainfall observed in the ARG sub-basin will 
occur again, simulating a critical scenario in terms of water availability. For this analysis, LULC in 
2030 used for all years in the future. Year 2030 was adopted because the national and regional agen-
cies, responsible for water resources management, use this range for some demand projections (ANA, 
2017; INEA, 2014), therefore, determining water availability for 2030 consists, among others, in an 
opportunity to assist decision makers.

Figure 2. Flowchart of the methodology used in this study

2. Land change modeLer (Lcm)

LCM is an Idrisi Selva software (currently TerrSet) tool developed by Clark Labs of Clark Univer-
sity and consists of a spatially explicit dynamic model, based on an inductive pattern. The LCM is a 
LULC projection tool that uses historical land cover change to model the relationship between land 
cover transitions and explanatory variables to map future scenarios (Eastman and Toledano, 2018). 
This process of LULC modelling is organized into major stages that include: change analysis; transi-
tion predictions; validate and future projection. 

Change analysis: LCM models LULC considering a rate of change observed between two different 
periods and a set of explanatory variables. In this study, the rate of change was defined using land 
cover maps for the years 2012 and 2015. These years were selected because on January 11 and 12, 
2011, an anomalous precipitation (253 mm in 37 h) triggered mass movements in the region where 
Nova Friburgo is located. These mass movements caused significant changes in the landscape, great 
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social and economic damage that gave a new dynamic of LULC in the region which must be known 
and projected for proper management. 

The ARG sub-basin LULC map used as input data into the LCM were obtained from the Annual 
Land Cover and Land Use Mapping Project of Brazil (MapBiomas). Produced by a pixel-by-pixel 
classification of Landsat satellite images. The LULC classes were adapted to “Forest” which includes 
planted and native forests, being the second most present land cover; “Pasture”; “Waterproofed areas” 
which include rural dwellings and rocky outcrops; and the “Mosaic of agriculture and pasture”. The 
last category results from the difficulty in differentiating between certain agricultural crops and 
the grasses that compose the pastures, allowing possible spatial inconsistencies in the classifications 
(MapBiomas, 2018).

After inserting the LULC images in the LCM, on the Change Analysis tab it is possible to identify 
the changes that occurred between the evaluated years (2012 and 2015), such as the gains and losses 
for each LULC class.

Transition potential: at this stage, the model is structured and the areas with the greatest potential for 
transition are identified. For this, the variables that can act as LULC drivers are selected and tested 
according to their explanatory power and include incentives and constraints. In this study, roads and 
highways digital maps were used, since the distances from them are factors that may favour or limit 
the expansion of a given land use category. Federal and state conservation units’ maps were included 
in the modelling as constraints, especially the agriculture and pasture expansion. Table 1 presents the 
data used in the models and their source, which were pre-processed using the ArcGis™ 10.5 software 
from ESRI®.

Other variables used in LCM were predictors and consisted of elevation, slope and distance to Rio 
Grande River, distance to conservation areas, distance to mosaic of agriculture and pasture and dis-
tance to roads. These variables were adopted because, in a previous analysis (Cramer V), they were 
the most relevant and reached a minimum accuracy of 75% when tested in the multilayer perceptron 
(MLP), an artificial neural network model as can be seen in section 3.2. Cramer V determines the 

Table 1. Digital maps used in LCM

Variables Data source Scale
Land use MapBiomas Project, 3rd collection (http://

mapbiomas.org)
spatial resolution: 30m

Topography Brazilian Institute of Geography and Statistics 
- IBGE (https://downloads.ibge.gov.br/
downloads_geociencias.htm)

1:25000

Hydrography National Water Agency  - ANA (http://
metadados.ana.gov.br/geonetwork/srv/pt/
main.home)

1:25000

Roads and highways Department of Roads and Roadways of the 
State of Rio de Janeiro  (http://www.der.
rj.gov.br/mapas_n/index.htm)

1:450000

Conservation units State Institute of Environment (http://
www.inea.rj.gov.br/cs/groups/public/@
inter_dibap/documents/document/zwew/
mtiz/~edisp/inea0123058.pdf )

1:1100000
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association between two variables with a value of 0 representing no association (complete indepen-
dence) and a value of 1 representing complete association (dependence) (Boylan et al., 2018).

Validation and future projection: the 2012 and 2015 maps were used for model calibration. After 
calibration, the 2017 forecast was made and the map obtained was compared with the real 2017 map 
to validate the model. Markov Chain analysis is used to generate prediction maps for the year speci-
fied. The Markovian process is a method in which a predicted system can be estimated by finding 
its previous state and the probability of conversion from one state to another (Nelson et al., 2010). 

The test accuracy or overall performance was assessed through the Area Under the Curve (AUC) in-
dex. The AUC value ranges between 0 to 1 and was calculated by the Receiver Operator Character-
istic (ROC) which is used to compare the probability of an occurrence against a boolean map which 
shows the actual occurrences (Eastman, 2012). In the ROC curve, the horizontal axis represents the 
false positive rate and the vertical axis the true positive rate. AUC connects the points obtained by 
the various thresholds. If the true events coincide perfectly with the higher ranked probabilities, then 
the AUC is equal to 1 (ideal model) (Eastman, 2012; Mas et al. 2013). Once the model was vali-
dated, the next step was to generate the LULC map for 2030. The Change Prediction tab concludes 
the analysis, by defining a prediction year (Magalhães et al. 2020).

This work used a MLP methodology. MLP extracts samples from areas that underwent change or 
not from the two land cover maps provided. This method runs on automatic, making decisions on 
how to best use data provided to model transitions (Eastman, 2012). Decisions on the number of 
training samples size, number of iterations, and learning rates can be made by the user. All values 
used here were IDRISI’s default.

3. soiL and Water assessment tooL (sWat)

The Soil and Water Assessment Tool (SWAT) was developed by the US Department of Agriculture 
and A&M University of Texas. The steps to obtain the streamflow regime using SWAT included 
the insertion of the data used in the modelling (Table 2), followed by the discretization of 32 pa-
rameterized sub-basins in 271 hydrological response units (HRUs). A HRU is the basic unit where 
the hydrological components were simulated, aggregated for each sub-basin and routed to the basin 
outlet throughout the channel network (Arnold et al., 2012). For data standardization, this work 
used downscaling (Zhou et al., 2015).

Table 2. Input data entered in SWAT

Variables Data source Scale
DEM Obtained from topography and hydrography from the tool Topo 

to Raster application on ArcGis 10.5 software.
1:25000

Precipitation National Water Agency – ANA (http://metadados.ana.gov.br/
geonetwork/srv/pt/main.home) (stations 02242009 e 02242022)

-

Air temperature, solar 
radiation and relative 
humidity

Global Weather Database (https://swat.tamu.edu/media/99082/
cfsr_world.zip)

-

Soil map Brazilian Institute of Geography and Statistics – IBGE (ftp://
geoftp.ibge.gov.br/informacoes_ambientais/pedologia/vetores/
brasil_5000_mil)

1:5000000

Land use MapBiomas (http://mapbiomas.org/) spatial resolution: 30m
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The subsequent steps were warm-up, sensitivity analysis, model parameters calibration, validation 
and future scenarios simulation. In this phase was applied the software SWAT-Calibration and Un-
certainty Programs (SWAT-Cup) and the algorithm Sequential Uncertainty Adjustment (SUFI2). 
SUFI2 function performs the sensitivity analysis that minimizes the uncertainties imposed by the 
model parameters variations (Abbaspour et al., 2007; Narsimlu et al., 2015). The algorithm was ad-
opted because it needs a minimum number of model simulations to obtain high quality calibration 
and uncertainty results (Narsimlu et al., 2015).

In order to obtain data with high percentages for calibration, as Andrade et al. (2012) and Narsimlu 
et al. (2015) did, were used in this stage the data related to 70% of the historical series (1966-2003), 
the remaining (30%) was applied in validation (2004-2018). The first 5 years of the model were set 
aside for the warm-up period required by the system stabilization to reduce systematic error. The time 
scale used in all stages was monthly because the daily-simulated data may be less accurate and in an 
analysis with a longer period, the hydrological processes tend to be more stable (Pontes et al., 2016).

In the calibration and validation results evaluation, the Nash and Sutcliffe (NS) model efficiency 
coefficient, the coefficient of determination (R²) and the percent bias (PBIAS) were used. NS values 
vary from infinity to 1, PBIAS evaluates the tendency of the simulations as being higher or lower 
than the observed data, positive PBIAS indicates an overestimation while a negative value indicates 
an underestimation (Zhang et al., 2020). PBIAS is defined as satisfactory when obtaining values 
lower than ±10 (Moriasi et al., 2007). R² and NS values greater than 0.5 classify as satisfactory and 
equal of 1 corresponds to a perfect match (Moriasi et al., 2007; Sao et al, 2020). NS, PBIAS, and R2 
were calculated as follows (Equation 1, 2 and 3):

 Equation 1

  Equation 2

 Equation 3

Where Qobs and Qsim are the observed and SWAT simulated streamflow (m³/s), and Q-
obs and Q-

sim 
are the mean observed and SWAT simulated streamflow (m/s), respectively; N is the number of 
samples, and i is the ith sample (Zhang et al., 2020).

After model calibration and validation, a new simulation to identify streamflow data, for the period 
of 2019 to 2030, were carried out. An increase in precipitation is expected for the region where the 
ARG sub-basin is inserted as a consequence of climate change (Magrin et al., 2014), with an increase 
of 6% until 2039 (Barata et al. 2020). So, this study does not consider climate projections to inform 
future precipitation as the expected increase is low for the near future (2030). Instead, the historical 
precipitation data used was the same of 2007 to 2018 (measured by rain gauge), because this period 
recorded some of the lowest annual accumulated precipitation values, thus representing the most 
critical scenario in water availability terms.
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To obtain LULC maps applied in the new simulation, authors used the LCM tool for 2030. The 
other parameters such as the DEM and the soil type map were the same as those entered in the first 
modelling because there are not significant changes on surface relief and soil typology occurred 
within the analysed time series. In other words, in order to achieve the objectives of this study, sim-
plification was necessary by fixing some parameters (soil type, relief, precipitation) and only LULC 
was varied.

resULts 
1. cUrrent LULc and Water avaiLabiLity

In 2017, forest category predominates in the ARG sub-basin occupying 62% of the total area, 
mainly in higher altitude sites where the conservation units are located predominantly. Unlike the 
mosaic of agriculture and pasture (19% of the total area) and pasture (16% of the total area) were 
located in the flattest sites such as the Rio Grande River and its tributaries. 

Regarding water availability, Figure 3A illustrates the annual minimum flows registered at least once 
in Rio Grande between 1966 and 2018. From this time series, it is possible to observe that smaller 
flows occurred in the 70s and in the recent years of 2014, 2015, 2017 and 2018, where values lower 
than average (2.5 m³/s) were found. The lowest flow recorded in the entire historical series was in 
2015 (1.00 m³/s, occurring only once), followed by 2017 (1.24 m³/s, flow recorded during three 
consecutive days). In these years, one of the lowest annual accumulated precipitation since 1995 was 
recorded, reaching 856.5 mm in 2014 (Figure 3B).

Figure 3. Minimum flows observed in Rio Grande between 1966 and 2018 (A) and annual accumulated precipitation 
between 1950 and 2018 (B).

3.2 Projection of LULc and Water avaiLabiLity for the year 2030  

All the variables were tested, using Cramer V’s analysis (Table 3) and selected for the transition 
sub-model, that is, the transition probability between LULC categories. To determine the transition 
potential, a neural network was used, as this is the method that presented the best performance (Lin 
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et al., 2011; Sangermano et al., 2012). According to Akoglu (2018), Cramer V is used to measure as-
sociation strength between two or more variables. It varies between 0 and 1, a value close to 0 means 
no association between variables and values close to one indicates a strong association between the 
variables.

Table 3. Predictor variables used in LCM and Cramer’s V values

Variables predictors Cramer V

Elevation 0.1692

Slope 0.1961

Distance to Rio Grande river 0.1386

Distance to conservation areas 0.2037

Distance to mosaic of agriculture and pasture 0.2793

Distance to roads 0.1948

Cramer V's analysis does not limit the use of a given variable. The values obtained in this analysis 
only indicate the association degree between the variables, however, even having a value considered 
low, since the variable is determined to be important for the studied transition, it can be used regard-
less of the Cramer V value obtained (Akoglu, 2018). Thus, in addition to considering the Cramer's 
V values, the selection of variables considered the minimum accuracy of 75% (Magalhães et al. 
2020) using MLP.

The methods applied for LCM validation presented high values, with AUC equal to 0.85. AUC 
values between 0.7 and 0.8 are considered acceptable, 0.8 to 0.9 is considered excellent, and more 
than 0.9 is considered outstanding (Mandrekar 2010). The excellent performance of the LCM can 
be observed in Table 4, where the greatest difference between the projected and observed LULC 
for 2017 was 1.1 km² and occurred for the forest category. From the digital maps and the LCM 
application, it was possible to obtain the LULC map for 2030 (Figure 4) and losses and gains for 
each category (Figure 5). There was a decrease of only 0.3 km² in area for the waterproofed areas 
category between 2017 and 2030. In contrast, there was an increase in area for the forest category 
(7.6 km²) followed by the pasture (3.9 km²). Mosaic of agriculture and pasture was the category that 
most contributed to the expansion of forests and pastures, with a reduction from 45.4 km² in 2017 
to 34.2 km² in 2030.

Table 4. Areas in km² for the LULC observed in the Alto Rio Grande sub-basin

Land use categories 2012 2015 2017  
observed

2017 
projected

2030

Forest 145.1 143.3 147.3 146.2 154.9

Pasture 44.2 38.5 38.6 39.6 42.5

Agriculture and pasture 41.4 49.8 45.4 45.8 34.2

Waterproofed areas 5.3 4.4 4.7 4.4 4.4

Total 236.0 236.0 236.0 236.0 236.0
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Figure 4. Land use and land cover for Alto Rio Grande sub-basin considering the 
years 2012, 2015, 2017 and the projection for 2030

Figure 5. Land use and land cover transition matrix from 2017 - 2030 with losses 
and gains
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Figure 6 shows the expected changes between 2017 and 2030 for each LULC category. The south of 
the ARG sub-basin is the region where some conservation units are located and therefore no changes 
are expected since this location was included in the modeling as a restriction of anthropogenic use. 
For the other categories, it is possible to observe that the most significant changes actually occurred 
with the conversion of agricultural areas to pasture and forests. It is also possible to observe a dis-
placement of agricultural areas that moved from the north of the sub-basin to the central region.

Figure 6. Trend of land use and land cover dynamics for 2017 - 2030

Table 5 presents the hydrological modelling performance executed in SWAT and Figure 7 shows 
the observed versus simulated streamflow for the validation and simulation steps and R² values. The 
rates of NS and R² values were greater than 0.5, being considered satisfactory in both the calibration 
and validation steps (Moriasi et al., 2007; Sao et al, 2020). PBIAS value is considered very good for 
calibration step (< ± 10) and unsatisfactory for validation step (≥ ± 25) (Moriasi et al., 2007) which 
indicates that 37.6% of the monthly values flow rates were underestimated.

In Figure 8 it is possible to observe this behaviour in the validation step (2004 - 2018). The periods 
where the flow rates in Rio Grande were lower; there was a greater discrepancy between the observed 
and simulated values. It is also possible to observe the difficulty of the model in simulating flow 
peaks, presenting underestimated values. It is possible to observe also that the biggest discrepancies 
between the observed and simulated values occurred in the years 2011 to 2013.

In this study, only LULC was varied in the SWAT model while the other variables were fixed. Thus, 
it is possible to counteract, for example, the same rainfall conditions and the flow in Rio Grande 
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considering the land use observed in 2017 and projected for 2030. By making this comparison, it 
was possible to observe a reduction in peak stream-flows of up to 59% in 2030. Moreover, it was 
found that for the land use projected for 2030 there would be a reduction in the average monthly 
flow of up to 63% in relation to the observed flow considering the land use of 2017. Another charac-
teristic was the lower variation in flow over the year when comparing the estimated flows for land use 
projected for 2030 with the land use observed in 2017. For the same annual accumulated precipita-
tion of 1661.6 mm, the monthly flows observed considering the land use of 2017 and 2030 varied 

Table 5. Monthly performance assessment indices of the SWAT model

Parameters Calibration (1966-2003) Validation (2004-2018)
R² 0.64 0.82
NS 0.63 0.54
PBIAS (%) 2.1 37.6

Figure 7. Observed versus simulated monthly streamflow for calibration (A) and validation step (B)

Figure 8. Monthly-simulated streamflows observed (blue) and simulated (red) in Rio Grande
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between 2.4 and 27.7 m³/s (amplitude of 25.3 m³/s) and between 0.4 and 11.3 m³/s (amplitude of 
10.9 m³/s) respectively. 

These results are accompanied by a reduction in flow in Rio Grande for the next 10 years, both  
in the dry and rainy season. The most critical condition will occur if the precipitations observed in 
2014 are repeated (lowest annual accumulated precipitation, 856.5 mm). In this scenario, minimum 
flows have reached values close to zero while maximum flow will be below 6.0 m³/s. It is important 
to note that an underestimation may have occurred because the model underestimated the flows in 
the validation step.

discUssion

The ARG sub-basin is inserted in the Atlantic Forest biome, which suggests that, before coloniza-
tion, the region's main land cover was forests. After colonization, there were changes to other uses, 
such as pastures and agriculture, which occurred in the smallest slopes observed in the ARG sub-
basin. The steeper areas present limitations on agricultural mechanization because they affect the 
machines stability and the movement speed. It also does not indicate high declivities for raising 
animals, and may adversely affect growth and production. This characteristic restricts the anthro-
pogenic use of conservation areas, which are predominantly located in higher altitude regions, and 
favour the maintenance of forests.

The LULC contributed to reducing water availability in recent years in the ARG sub-basin. The 
increase in potentially agricultural areas in 2015 probably resulted in an increase in the water con-
sumption applied to irrigation activities which, added to the reduction in precipitation in the previ-
ous year, caused the decrease of groundwater stocks (decrease in the amount of groundwater) and a 
significant reduction in flow levels in the ARG sub-basin (Figure 3). In this way, the LULC associ-
ated changes in precipitation contributed to reducing water availability this year. This scenario high-
lights the need to identify future water availability considering the changes that will occur in LULC. 

The LCM was applied in the elaboration of a prospective LULC map for the year 2030 (Figure 4). 
The statistical indice obtained in the validation stage indicated that the model showed excellent pro-
jection capability. For example, there was little variation in area for the waterproofed areas category 
between 2017 and 2030 (Table 4), which is consistent, as this category includes rocky outcrops that 
are less sensitive to anthropogenic actions compared to other uses. 

On the other hand, an increase in the forests category was observed. It is possible to list three main 
factors that explain this behaviour. First (i), there were significant changes in the region's landscape 
after the 2011 disaster. Some affected sites have been converted from forests to exposed soil. In the 
following years, a gradual forest restoration was observed. Precisely the land use maps for that period 
were used as inputs in the LCM. LCM calculates rates of change in the change analysis step as well 
as transition potential maps to establish the LULC projection (Shade and Kremer 2019). In other 
words, one of the features of the LCM is to extrapolate the rate of change in LULC observed in pre-
vious years to a future scenario, for this reason an increase in forest areas was observed for the year 
2030 once this increase occurred over the years used in the modelling (2012-2015).

This aspect consists of a LCM limitation, where all the events of change, extreme or not, that occur 
before and after the time interval adopted for calibration and validation, are not counted in the im-
age produced (Amaral e Silva et al., 2020; Marques et al., 2021). In addition, LULC involves com-
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plex and dynamic processes of human nature, such as social, institutional and economic processes, 
which can be difficult to detect for the variables and algorithms available in the models (Olmedo et 
al., 2015).

Second explanatory factor (ii) is the inclusion of protected areas in the LCM. A study developed by 
the environmental agency of Rio de Janeiro showed that ARG sub-basin region has high potential 
for natural regeneration due to forest remnants and connectivity between them (INEA, 2018). This 
hypothesis is reinforced by observing one of the most significant changes projected to occur between 
2017 and 2030, which will happen close to the conservation area, with the conversion of agricul-
tural areas into forest (Figure 6). In addition, the predictor variable “distance to conservation areas” 
presented the second highest of Cramer’s V value (0.2037), which indicates that this predictor has 
a higher correlation with LULC compared to others such as ‘slope’ and ‘distance to roads’. Further-
more, a recent survey conducted in South-eastern Brazil found an increase in forest areas between 
2001 and 2015 that was attributed to two main factors: change in Brazilian legislation, with New 
Forest Code (Law 12.651/2012) implementation and silviculture expansion (Moraes et al., 2018).

A third justification (iii) refers to changes in the region's economic activities. Agriculture developed 
in the ARG sub-basin is practiced by family farmers, the landslides that occurred in 2011 resulted in 
soil fertility loss, agricultural equipment and other inputs losses and product flow pathways obstruc-
tion. The high cost associated with soil recovery and the structure existing before the disaster (Freitas 
et al., 2012) are factors that can motivate the development of other economic activities and induce 
changes in the economic structure of the region. The distance from agricultural areas presented the 
highest Cramer’s V value (0.2793) among all the variables evaluated (Table 2), in addition it was 
possible to observe that the reduction of agricultural areas occurred in several places in the basin, that 
is, not were concentrated in a single region (Figure 6). All these characteristics are indications that 
reinforce the hypothesis of a change in the economic activity developed in the region (agriculture) 
to other practices (such as silviculture and cattle breeding). When projecting LULC for 2050 in a 
watershed located in China, Wu et al. (2018) also observed an increase in forest and pasture areas to 
the detriment of agricultural regions. The authors attributed these results to environmental protec-
tion policies and changes in the local economy.

Considering the main LULC changes expected for the ARG sub-basin in 2030 (reduction in the mo-
saic of agriculture and pasture category, which was accompanied by an increase in forests and pasture 
areas) (Table 4 and Figure 4), it is possible to make some inferences in hydrological components. For 
example, the decrease in the potentially quantified agricultural areas does not necessarily represent a 
reduction in the water demand in this activity because there is expected an increase in irrigation in 
Brazil (Cunha et al., 2014).

The conversion of agricultural areas into pasture can provide greater surface runoff as there is less in-
filtration due to soil compaction by cattle, which can result in flow peaks. Conversely, the conversion 
of agricultural areas to forest can reduce runoff due to interception, presence of litter and infiltration. 
Therefore, an increase in base flow and a decrease in flow peaks can be observed, this behaviour is 
accompanied by an intensification of evapotranspiration, which may also reflect a lower flow in riv-
ers. It is important to note that although pastures or agricultural crops increase the supply of readily 
available water in a basin, this is not an environmental benefit, as forests act in the maintenance of 
the minimum flow, in protecting the soil against erosion and transport of sediments. The effects 
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of LULC on hydrological components is a complex issue as the variables that control hydrological 
behaviour are many and interdependent, for this reason the SWAT model was applied.

As for the hydrological model, it is common for the statistical validation period indexes to be less 
satisfactory compared to the values obtained in calibration. This is because parameters are optimized 
specifically for calibration period and the period used in validation may present different conditions 
(Fukunaga et al., 2015). This is the case in this study (Table 5), the lower performance in the valida-
tion stage can be attributed to the precipitation data used. When calibration and validation periods 
are similar, better results can be obtained. In this study, this did not occur because the period of 
less precipitation was accumulated in the final years of the historical series (2007 a 2018). Other 
ARG sub-basin particularities, such as changes in relief resulting from landslides, might also have 
interfered with validation performance. As shown in Figure 8, the biggest discrepancies between the 
observed and simulated values corresponds to the year of the disaster and the following two years.

Furthermore, ARG sub-basin has only one fluviometric station, so any inconsistency in recorded 
data may compromise the comparison between observed and simulated flows. Anaba et al (2017) 
obtained PBIAS of 23% at the validation stage of the SWAT model for a basin in Uganda. These 
results occurred since the use of poor observed data quality and to the possible occasional effluents 
discharge that could not be accounted for during the simulation. Lotz et al. (2018) also mention that 
the divergences between calibrated and validated values may be the result of localized precipitation 
not recorded in monitoring stations. However, this does not seem to be the case for the ARG sub-ba-
sin as the precipitation values available in the two pluviometric stations are similar, being that 65% 
of the data showed a coefficient of variation of less than 30% when compared. Another factor that 
can change the flow regime in a water body and compromise the performance of the SWAT model is 
the presence of reservoirs (Anaba et al., 2017), which was not observed in the ARG sub-basin. 

ARG sub-basin is located in a region characterized by the monsoon system, where a rainy and a dry 
period are well defined. However, it is expected that for the coming years (considering that the rain-
fall observed between 2007 and 2018 will be repeated), a reduction in the amplitude of the flows 
observed between the months of drought and rain will be reduced if compared with the land use ob-
served in 2017. This behaviour was accompanied by a decrease in both the maximum and minimum 
flow observed with the identified LULC for 2030 compared to 2017 (Figure 8).

The increase in forest areas projected for 2030 plays an important role in these changes in the hydro-
logical regime. In forested areas, an initial portion of precipitation is intercepted by vegetation; an-
other portion reaches the ground and infiltrates what reduces surface runoff and flow peaks. On the 
other hand, forest vegetation also consumes water by evapotranspiration. In tropical forests, 67.6% 
of the precipitation was lost to the atmosphere through evapotranspiration (Leopoldo et al., 1995). 
This water loss affects water availability. Saddique et al. (2020) observed a reduction in water yield of 
48.32% and an increase in evapotranspiration of 51.93% in Upper Jhelum sub-basin between 2001 
and 2018. The authors attributed these results to forest cover gain.

It is important to highlight that forests play an important role in promoting water infiltration into 
the soil and recharge of aquifers. However, this capacity can be affected by the relief and the stage of 
vegetation development. For the ARG sub-basin, which has more accentuated slopes, a higher flow 
velocity is expected which can reduce water infiltration and evapotranspiration possibly prevailed. 
In addition, Mendonça et al. (2009) mentions that for deforested regions there can be an increase 
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in flows in the first three years, followed by a decrease that can last from 15 to 20 years with the 
regeneration of the vegetation. Only after 40 to 50 years, when the plants are already mature, does 
the flow recover. These flow variations were attributed to greater evapotranspiration in the growth 
phase and to a subsequent drop with the ripening of the vegetation. 

The comparative analysis of previously published work on future water projection shows that the 
magnitudes of LULC and their impacts on the hydrological regime are different because each region 
has its own characteristics. However, the behaviour trend is similar. For example, Marhaento et al. 
(2018) evaluated the future hydrological response to changes in land use in the Samin basin (Indo-
nesia) using Markov chain, multi-criteria evaluation and SWAT. According to the authors, in 2000, 
42.3% of the total area was forest. In a more conservative scenario, it is expected that by 2050 for-
ested areas will occupy 30% and agricultural areas 52.1%. The future hydrologic response indicates a 
reduction in evapotranspiration which was accompanied by an increase in streamflow of up to 20%.

Another example, a study made by Abe et al. (2018) identified the potential future LULC impacts 
on the hydrological regime of the Upper Crepori River basin (Brazil) using the SWAT model. The 
authors considered two land use scenarios for 2050, one less conservative (50.67% of the area will 
be forest while 46.39% will be pasture) and another more conservative (76.22% forest and 20.84% 
pasture). They found that the changes expected for 2050 in the flow regime showed that the less 
and more conservative scenario presented increases of up to 11% and 22%, respectively, during the 
rainy season, and reductions of up to 19% and 32%, respectively, during the dry season. Percentages 
were calculated in relation to land use before the anthropic changes where the forests corresponded 
to 99.63% of the area.

Regional studies of LULC and water availability should be conducted in order to consider local 
particularities. In this context, the present research presents a worrying result, because in the case of 
a rainfall of less than 856.5 mm, the streamflow in Rio Grande will be close to zero. With the possi-
bility of reducing water availability in the ARS sub-basin, adopting preventive measures is extremely 
necessary in order to promote water security in the region. 

It is important to highlight that additional studies are needed because the aim of this study was to 
determine the projection of LULC for 2030 and the consequences of the projected changes on water 
availability considering a low rainfall scenario, as this is the most critical condition. The impacts of 
LULC alone on the stream flow of Rio Grande for the year 2030 was determined. Climate changes 
were not considered and this should be the focus of future research.

concLUsions

The changes in landscape that occurred in the ARG sub-basin in 2011 probably affected the results 
obtained in this study. Limitations such as LCM extrapolating the rate of forested areas recovery 
to the year 2030 and the changes in flow that occurred between 2011 and 2013 compromised the 
SWAT validation stage. Despite the limitations, results obtained in this study indicate an increase in 
forested areas and pastures to the detriment of agricultural areas. Due to these changes, a decrease in 
water availability was projected, reaching values close to zero during drought periods and a smaller 
amplitude between the peaks of maximum and minimum flow rates. 

These results, despite presenting possible inconsistencies, will help to formulate strategies for water 
resources management and the adoption of measures to promote water security in the region. In 
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addition, the combination of the LCM and the SWAT proved to be a highly valuable tool in terms 
of the management and monitoring of the water availability of the regions, as it makes possible the 
modelling of extreme events, allowing for greater adequacy and precision to the characteristic condi-
tions of the studied area.

acKnoWLedgments

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) [Finance Code 
001], supported this work.

decLaration of interest statement

The authors declare that they have no conflict of interest.

references

Abbasi A, Amirabadizadeh M, Afshar AA, Yaghoobzadeh M, 2021. Potential influence of climate and land-use changes 
on green water security in a semi-arid catchment. J Water Clim Chang. https://doi.org/10.2166/WCC.2021.055

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R., 2007. Mod-
elling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 333, 413–430. 
https://doi.org/10.1016/j.jhydrol.2006.09.014

Abe, C.A., Lobo, L.F., Dibike, Y.B., Costas, M.P.F., Santos, V., Novo, E.M.L.M., 2018. Modelling the Effects of Histori-
cal and Future Land Cover Changes on the Hydrology of an Amazonian Basin. Water, 10, 932. https://doi:10.3390/
w10070932

AGEVAP, 2013. Integrated Environmental Assessment of the Pomba, Muriaé, Piabanha, Paraíbuna and Preto Rivers - 
Paraíba do Sul River Basin – I ECOBRJ.

AGEVAP, 2014. Elaboration of the state plan for water resources in the State of Rio de Janeiro: R2-F - Environmental 
characterization.

AGEVAP, 2017. Situation Report 2017 - Rio Dois Rios Committee [WWW Document]. URL http://cbhriodoisrios.
org.br/downloads/relatorio-de-situacao-2017.pdf (accessed 6.15.20).

Akoglu, H., 2018. User’s guide to correlation coefficients. Turkish J. Emerg. Med. 18 (3): 91–93. https://doi.
org/10.1016/j.tjem.2018.08.001

Amaral e Silva, A., Braga, M.Q., Ferreira, J., Juste dos Santos, V., do Carmo Alves, S., de Oliveira, J.C., Calijuri, M.L., 
2020. Anthropic activities and the Legal Amazon: Estimative of impacts on forest and regional climate for 2030. Remote 
Sens. Appl. Soc. Environ. 18, 100304. https://doi.org/10.1016/j.rsase.2020.100304

ANA, 2017. Atlas Irrigation [WWW Document]. URL http://atlasirrigacao.ana.gov.br/ (accessed 6.15.20).

Anaba, L.A., Banadda, N., Kiggundu, N., Wanyama, J., Engel, B., Moriasi, D., 2017. Application of SWAT to Assess 
the Effects of Land Use Change in the Murchison Bay Catchment in Uganda. Comput. Water, Energy, Environ. Eng. 
06, 24–40. https://doi.org/10.4236/cweee.2017.61003

Anand, J., Gosain, A.K., Khosa, R., 2018. Prediction of land use changes based on Land Change Modeler and attribu-
tion of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 644, 
503–519. https://doi.org/10.1016/j.scitotenv.2018.07.017

Andrade, B.D.S., Singh, C.L., Santos, J.A., Gonçalves, V.V.C., Siqueira-Souza, F.K., Freitas, C.E. de C., 2019. Efeitos 
das mudanças climáticas sobre as comunidades de peixes na Bacia Amazônica. Rev. Ciências da Soc. 2, 107. https://doi.
org/10.30810/rcs.v2i4.905



Geofísica Internacional (2022) 61-1: 66-87

84

Andrade, M.A., de Mello, C.R., Beskow, S., 2012. Hydrological simulation in a watershed with predominance of Oxisol 
in the upper Grande river region, MG - Brazil. Rev. Bras. Eng. Agric. e Ambient. 17, 69–76. https://doi.org/10.1590/
S1415-43662013000100010

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., 
Van Griensven, A., Liew, M W Van, Kannan, N., Jha, M.K., Harmel, D., Member, A., Liew, Michael W Van, Arnold, 
J.-F.G., 2012. SWAT: model use, calibration, and validation. Trans. ASABE 55, 1491–1508.

Barata, M.M.L., Bader, D.A., Dereczynski, C., et al. 2020. Use of Climate Change Projections for Resilience Planning 
in Rio de Janeiro, Brazil. Front Sustain Cities. 2, 1-10. https://doi.org/10.3389/FRSC.2020.00028

Baptista, A.C., 2009. Assessment of susceptibility to mass movements, erosion and runoff in Nova Friburgo, RJ. Viço-
sa Minas Gerais. Universidade Federal de Viçosa. URL https://www.locus.ufv.br/handle/123456789/820 (accessed 
6.15.20).

Bieger, K., Hörmann, G., Fohrer, N., 2013. The impact of land use change in the Xiangxi Catchment (China) on water 
balance and sediment transport. Reg. Environ. Chang. 15, 485–498. https://doi.org/10.1007/s10113-013-0429-3

Boylan, M., Suchman, K., Vigdorchik, J., Slover, J. & Bosco, J. (2018) Technology-Assisted Hip and Knee Arthroplas-
ties: An Analysis of Utilization Trends. J. Arthroplasty, 33, 1019–1023. doi:10.1016/j.arth.2017.11.033

Britto, A.L., Maiello, A., Quintslr, S., 2018. Water supply system in the Rio de Janeiro Metropolitan Region: Open 
issues, contradictions, and challenges for water access in an emerging megacity. J. Hydrol. https://doi.org/10.1016/j.
jhydrol.2018.02.045

Cunha, D.A., Coelho, A.B., Féres, J.G., Braga, M.J., 2014. Effects of climate change on the adoption of irrigation in 
Brazil [in Portuguese]. Acta Sci. - Agron. 36, 1–9. https://doi.org/10.4025/actasciagron.v36i1.15375

Eastman, J.R., 2012. IDRISI selva manual version 17. Worcester, Mass. Clark Labs, Clark University, USA, pp. 322.

Eastman, J.R., Toledano, J. 2018. A Short Presentation of the Land Change Modeler (LCM). 499–505. https://doi.
org/10.1007/978-3-319-60801-3_36

FAO, 2011. The state of the world’s land and water resources for food and agriculture managing systems at risk.

Freitas, C.M., de Carvalho, M.L., Ximenes, E.F., Arraes, E.F., Gomes, J.O., 2012. Vulnerabilidade socioambiental, 
redução de riscos de desastres e construção da resiliência - lições do terremoto no Haiti e das chuvas fortes na região ser-
rana, Brasil. Cienc. e Saude Coletiva 17, 1577–1586. https://doi.org/10.1590/S1413-81232012000600021

Fukunaga, D.C., Cecílio, R.A., Zanetti, S.S., Oliveira, L.T., Caiado, M.A.C., 2015. Application of the SWAT hydro-
logic model to a tropical watershed at Brazil. Catena 125, 206–213. https://doi.org/10.1016/j.catena.2014.10.032

Gabiri, G., Leemhuis, C., Diekkrüger, B., Näschen, K., Steinbach, S., Thonfeld, F., 2019. Modelling the impact of 
land use management on water resources in a tropical inland valley catchment of central Uganda, East Africa. Sci. Total 
Environ. 653, 1052–1066. https://doi.org/10.1016/j.scitotenv.2018.10.430

IBGE, 2017. IBGE Cities - Panorama [WWW Document]. URL https://cidades.ibge.gov.br/brasil/rj/nova-friburgo/
panorama (accessed 6.15.20).

INEA, 2018. Rio de Janeiro public supply water atlas - subsidies for territorial organizing and planning [WWW Docu-
ment]. URL http://www.inea.rj.gov.br/wp-content/uploads/2019/01/Livro_Atlas-dos-Mananciais-de-Abastecimento-
do-Estado-do-Rio-de-Janeiro.pdf (accessed 6.15.20).

INEA, 2020. Licenses issued [WWW Document]. URL http://200.20.53.7/listalicencas/views/pages/lista.aspx (ac-
cessed 6.15.20).

INEA, 2014. Elaboration of the state plan for water resources of the state of rio de janeiro R8-B - Demand scenarios 
and water balance [WWW Document]. URL http://www.agevap.org.br/downloads/Relatorio-Cenarios-Demandas.pdf 
(accessed 6.15.20)

INMET, 2021. Brazilian climatological standards 1981-2010. [WWW Document]. URL https://clima.inmet.gov.br/
NormaisClimatologicas/1961-1990/precipitacao_acumulada_mensal_anual (accessed 09.25.21)



A. P. de Sousa Oliveira, et al., Projection of land use to 2030 and its impacts on water availability...

85

Jodar-Abellan, A., Valdes-Abellan, J., Pla, C., Gomariz-Castillo, F., 2019. Impact of land use changes on flash flood 
prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Sci. Total Environ. 
657, 1578–1591. https://doi.org/10.1016/j.scitotenv.2018.12.034

Joly, C.A., Scarano, F.R., Bustamante, M., Gadda, T.M.C., Metzger, J.P.W., Seixas, C.S., Ometto, J.P.H.B., Pires, A.P.F., 
Boesing, A.L., Sousa, F.D.R., Quintão, J.M.B., Gonçalves, L.R., Padgurschi, M. de C.G., de Aquino, M.F.D.S., de 
Castro, P.F.D., Dos Santos, I.L., 2019. Brazilian assessment on biodiversity and ecosystem services: Summary for policy 
makers. Biota Neotrop. 19. https://doi.org/10.1590/1676-0611-bn-2019-0865

Joorabian Shooshtari, S., Shayesteh, K., Gholamalifard, M., Azari, M., Serrano-Notivoli, R., López-Moreno, J.I., 2017. 
Impacts of future land cover and climate change on the water balance in northern Iran. Hydrol. Sci. J. 62, 2655–2673. 
https://doi.org/10.1080/02626667.2017.1403028

Kafy, A-Al, Hasan, M.M., Faisal, A.-A.-, Islam, M., Rahman, M.S., 2020. Modelling future land use land cover changes 
and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sens. Appl. Soc. Environ. 18, 100314. 
https://doi.org/10.1016/j.rsase.2020.100314

Krysanova, V., White, M., 2015. Advances in water resources assessment with SWAT—an overview. Hydrol. Sci. J. 60, 
1–13. https://doi.org/10.1080/02626667.2015.1029482

Kumar, N., Tischbein, B., Beg, M.K., 2019. Multiple trend analysis of rainfall and temperature for a monsoon-dominat-
ed catchment in India. Meteorol. Atmos. Phys. 131, 1019–1033. https://doi.org/10.1007/s00703-018-0617-2

Lin, Y.-P., Chu, H.-J., Wu, C.-F., Verburg, P.H., 2011. Predictive ability of logistic regression, auto-logistic regression 
and neural network models in empirical land-use change modeling – a case study. Int. J. Geogr. Inf. Sci. 25, 65–87. 
https://doi.org/10.1080/13658811003752332

Lotz, T., Opp, C., He, X., 2018. Factors of runoff generation in the Dongting Lake basin based on a SWAT model and 
implications of recent land cover change. Quat. Int. 475, 54–62. https://doi.org/10.1016/j.quaint.2017.03.057

Magalhães I.B., Pereira A.S.A.P., Calijuri M.L, et al. 2020. Brazilian Cerrado and Soy moratorium: Effects on bi-
ome preservation and consequences on grain production. Land use policy 99:105030. https://doi.org/10.1016/J.LAN-
DUSEPOL.2020.105030

Magrin, G.O., Marengo, J.A., Boulanger, J.-P., et al. 2014. 27 Central and South America Coordinating Lead Authors: 
Lead Authors: Contributing Authors: Review Editors: to the Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change.

Mallett, S., Halligan, S., Matthew Thompson, G.P., Collins, G.S., Altman, D.G., 2012. Interpreting diagnostic accu-
racy studies for patient care. BMJ. https://doi.org/10.1136/bmj.e3999

Mandrekar, J.N. 2010. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J Thorac Oncol 
5:1315–1316. https://doi.org/10.1097/JTO.0B013E3181EC173D

MapBiomas, 2018. MapBiomas - Annual Coverage and Land Use Mapping Project in Brazil [WWW Document]. URL 
http://plataforma.mapbiomas.org/map (accessed 12.17.19).

Marhaento, H., Booij, M.J., Hoekstra, A.Y., 2018. Hydrological response to future land-use change and climate change 
in a tropical catchment. Hydrol. Sci. J. 63, 1368–1385. https://doi.org/10.1080/02626667.2018.1511054

Marques, A., Martins, I.S., Kastner, T., Plutzar, C., Theurl, M.C., Eisenmenger, N., Huijbregts, M.A.J., Wood, R., 
Stadler, K., Bruckner, M., Canelas, J., Hilbers, J.P., Tukker, A., Erb, K., Pereira, H.M., 2019. Increasing impacts of land 
use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637. 
https://doi.org/10.1038/s41559-019-0824-3

Marques JF, Alves MB, Silveira CF, et al (2021) Fires dynamics in the Pantanal: Impacts of anthropogenic activities and 
climate change. J Environ Manage 299:113586. doi: 10.1016/j.jenvman.2021.113586

Mas, J.F., Filho, B.S., Pontius, R.G., et al. 2013. A Suite of Tools for ROC Analysis of Spatial Models. ISPRS Int J Geo-
Information 2013, Vol 2, Pages 869-887 2:869–887. https://doi.org/10.3390/IJGI2030869



Geofísica Internacional (2022) 61-1: 66-87

86

Mas, J.F., Kolb, M., Paegelow, M., Camacho Olmedo, M.T., Houet, T., 2014. Inductive pattern-based land use/cover 
change models: A comparison of four software packages. Environ. Model. Softw. 51, 94–111. https://doi.org/10.1016/j.
envsoft.2013.09.010

Mello, C.R., Lima, J.M., Da Silva, A.M., 2007. Surface runoff and peak discharge simulation in ephemeral watershed. 
Rev. Bras. Eng. Agric. e Ambient. 11, 410–419. https://doi.org/10.1590/S1415-43662007000400011

Mendonça, L.A.R., Vásquez, M.A.N., Feitosa, J.V., et al. 2009. Evaluation of the infiltration capacity of soils under 
ferent types of management. Eng Sanit e Ambient 14:89–98. https://doi.org/10.1590/S1413-41522009000100010

Moraes, T.C., dos Santos, V.J., Calijuri, M.L., Torres, F.T.P., 2018. Effects on runoff caused by changes in land cover in 
a Brazilian southeast basin: evaluation by HEC-HMS and HEC-GEOHMS. Environ. Earth Sci. 77, 1–14. https://doi.
org/10.1007/s12665-018-7430-6

Moriasi, D.N., Arnold, J.G., Liew, M.W. Van, Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. model evaluation guide-
lines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE.

Narsimlu, B., Gosain, A.K., Chahar, B.R., Singh, S.K., Srivastava, P.K., 2015. SWAT Model Calibration and Uncer-
tainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting. 
Environ. Process. 2, 79–95. https://doi.org/10.1007/s40710-015-0064-8

Natkhin, M., Dietrich, O., Schäfer, M.P., Lischeid, G., 2015. The effects of climate and changing land use on the 
discharge regime of a small catchment in Tanzania. Reg. Environ. Chang. 15, 1269–1280. https://doi.org/10.1007/
s10113-013-0462-2

Olmedo, M.T.C., Pontius, R.G., Paegelow, M., Mas, J.F., 2015. Comparison of simulation models in terms of quantity 
and allocation of land change. Environ. Model. Softw. 69, 214–221. https://doi.org/10.1016/j.envsoft.2015.03.003

Pinheiro, E.P., Marques, E.E., Lolis, S.F., 2019. Monitoramento de empreendimentos hidrelétricos na bacia do rio 
Tocantins, Brasil: o que aprendemos com os estudos das macrófitas aquáticas. Biotemas 32, 11–22. https://doi.
org/10.5007/2175-7925.2019v32n3p11

Piniewski, M., Bieger, K., Mehdi, B., 2019. Advancements in Soil and Water Assessment Tool (SWAT) for ecohydro-
logical modelling and application. Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.ecohyd.2019.05.001

Pontes, L.M., Viola, M.R., Silva, M.L.N., Bispo, D.F.A., Curi, N., Pontes, L.M., Viola, M.R., Silva, M.L.N., Bispo, 
D.F.A., Curi, N., 2016. Hydrological Modeling of Tributaries of Cantareira System, Southeast Brazil, with the Swat 
Model. Eng. Agrícola 36, 1037–1049. https://doi.org/10.1590/1809-4430-eng.agric.v36n6p1037-1049/2016

Saha, P.P., Zeleke, K., Hafeez, M., 2019. Impacts of land use and climate change on streamflow and water balance of 
two sub-catchments of the Murrumbidgee River in South Eastern Australia, in: Extreme Hydrology and Climate Vari-
ability: Monitoring, Modelling, Adaptation and Mitigation. Elsevier, pp. 175–190. https://doi.org/10.1016/B978-0-
12-815998-9.00015-4

Sao, D., Kato, T., Tu, L.H., et al. 2020. Evaluation of Different Objective Functions Used in the SUFI-2 Calibration 
Process of SWAT-CUP on Water Balance Analysis: A Case Study of the Pursat River Basin, Cambodia. Water 12, 2901. 
https://doi.org/10.3390/W12102901

Sangermano, F., Toledano, J., Eastman, R., 2012. Land cover change in the Bolivian Amazon and its implications for 
REDD+ and endemic biodiversity. Landsc. Ecol. 27, 571–584. https://doi.org/10.1007/s10980-012-9710-y 

Shade, C., Kremer, P. 2019. Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies 8, 
28. https://doi.org/10.3390/LAND8020028

Van Cauwenbergh, N., Ballester Ciuró, A., Ahlers, R., 2018. Participatory processes and support tools for planning 
in complex dynamic environments: A case study on web-GIS based participatory water resources planning in Almeria, 
Spain. Ecol. Soc. 23. https://doi.org/10.5751/ES-09987-230202

Wohl, E., Barros, A., Brunsell, N., Chappell, N.A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R., Hendrickx, 
J.M.H., Juvik, J., McDonnell, J., Ogden, F., 2012. The hydrology of the humid tropics. Nat. Clim. Chang. https://doi.
org/10.1038/nclimate1556



A. P. de Sousa Oliveira, et al., Projection of land use to 2030 and its impacts on water availability...

87

Wu, L., Liu, X., Ma, X., 2018. Prediction of land-use change and its driving forces in an ecological restoration watershed 
of the Loess hilly region. Environ. Earth Sci. 77. https://doi.org/10.1007/s12665-018-7413-7

Zaroni, M.J., Santos, H.G. dos, 2018. Solos Tropicais - Cambissolos [WWW Document]. URL https://www.agencia.
cnptia.embrapa.br/gestor/solos_tropicais/arvore/CONTAG01_8_2212200611538.html (accessed 12.19.19).

Zhang, H., Wang, B., Liu, D.L., Zhang, M., Leslie, L.M., Yu, Q., 2020. Using an improved SWAT model to simulate 
hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 585, 124822. 
https://doi.org/10.1016/j.jhydrol.2020.124822

Zhang, L., Nan, Z., Yu, W., Zhao, Y., Xu, Y., 2018. Comparison of baseline period choices for separating climate and 
land use/land cover change impacts on watershed hydrology using distributed hydrological models. Sci. Total Environ. 
622–623, 1016–1028. https://doi.org/10.1016/j.scitotenv.2017.12.055

Zhou, J., He, D., Xie, Y., Liu, Y., Yang, Y., Sheng, H., … Zou, R. (2015). Integrated SWAT model and statistical 
downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. Stochastic 
Environmental Research and Risk Assessment, 29(4), 1193–1210. doi:10.1007/s00477-015-1037-1


