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Resumen

En este trabajo se presenta una estrategia de
paralelizacién de un simulador completamente
implicito para la solucién numérica del modelo
de flujo bifasico incompresible en medios
porosos usando unidades de procesamiento
grafico (GPU, por sus siglas en inglés). El modelo
matematico estd basado en las ecuaciones
de conservacion de masa para las fases agua
y aceite. Se utiliza la formulaciéon Presidn-
Saturacion para simplificar el modelo numérico.
La técnica de Volumen Finito y el método de
Newton-Raphson se usan para discretizar y
linealizar las ecuaciones diferenciales parciales,
respectivamente. Se propone la construccién
del Jacobiano directamente en la GPU, lo que
reduce la informacién que debe intercambiarse
entre la CPU (Unidad Central de Procesamiento
CPU, por sus siglas en inglés) y la GPU. El
simulador utiliza bibliotecas que ya incluyen
los métodos del subespacio de Krylov para
resolver sistemas de ecuaciones lineales. Se
comparan los resultados de tres problemas de
referencia utilizando diferentes tamafios de
malla. También se evalla el rendimiento del
cédigo numérico desarrollado. Los resultados
de la GPU versus CPU indican que el simulador
numeérico alcanzé hasta 22x de aceleracién para
construir el Jacobiano y 3x de aceleracién para
ejecutar el codigo numérico completo usando la
paralelizacién GPU.

Palabras clave: Modelo bifasico, Newton-
Raphson, Unidades de Procesamiento Grafico
(GPU), construccion del Jacobiano, aceleracion.
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Abstract

In this paper a parallelization strategy of a fully
implicit simulator for the numerical solution of
the incompressible two-phase flow model in
porous media is presented using GPUs (Graphics
Processing Units). The mathematical model
is based on the mass conservation equations
for the water and oil phases. Mathematical
formulation of Pressure-Saturation is used
to simplify the numerical model. The Finite
Volume technique and the Newton-Raphson
method are used to discretize and linearize the
partial differential equations, respectively. The
construction of the Jacobian directly on the GPU
is proposed, which reduces the information
that needs to be exchanged between the CPU
(Central Processing Unit) and the GPU. The
simulator uses libraries that already include
methods that belong to the Krylov subspace to
solve linear equations systems. The results of
three benchmark problems by using different
grid sizes are compared. The performance
of the numerical code developed is also
evaluated. Results of the GPU against the CPU
indicate that the numerical simulator reached
22x of speed up to build the Jacobian, and 3x
of speed up for executing the whole numerical
code by using the GPU parallelization.

Key words: Two-phase flow model, Newton-
Raphson, Graphics Processing Units (GPU),
Jacobian construction, speed up.
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Introduction

Nowadays new techniques called Enhanced
Oil Recovery Methods (EOR) are applied to
improve the oil recovery in a hydrocarbon
reservoir. Lake (1989) gives a definition for
the EOR methods: EOR is oil recovery by the
injection of materials not normally present in
the reservoir. This definition covers all modes
of oil recovery and most oil recovery agents.
Considering this definition the EOR methods
might consider both secondary and tertiary
recovery. Before EOR methods are applied there
is a technique that almost always has to be
considered, that is, the waterflooding technique.
Waterflooding technique is the oldest assisted
recovery method and it remains as the most
common method used to sweep the oil that was
not produced by natural pressure, and to keep
the oil pressure when this has declined due to
reservoir conditions (Latil, 1980).0n the other
hand, due to the growing need in the oil industry
to make faster and more efficient calculations to
simulate the recovery conditions before, during
and after the production life of a reservoir, it is
necessary to test new computational techniques
that reduce the run time of the numerical
simulators. Several investigations have been
carried out to improve the run time of the
reservoir simulators (Killough et al., 1991;
Shiralkar et al., 1998; Ma and Chen, 2004;
Dogru et al., 2009). Most of these papers have
been developed using distributed computing.
Recently, Wang et al. (2015) developed a
scalable black oil simulator using ten millions
of grid blocks approximately, their simulator
reached a scalability factor of 1.03 using 2048
processors. Also Liu et al. (2015) developed
a three phase parallel simulator applying MPI
(Message Passing Interface) for communications
between computational nodes and OpenMP for
shared memory. They obtained an efficiency
of 95.7% by using 3072 processors. However,
there is a limitation to use this technique, since a
computational cluster with tens until thousands
of processors is needed to achieve the desired
speed up.

As an alternative NVIDIA has developed a
programing language called CUDA (Compute
Unified Device Architecture) which can be used
to take advantage of the power computing
graphics cards for general purpose simulations.
Yu et al. (2012), used GPUs to parallelize a
reservoir simulator which can run large scale
problems. They used over one million grid blocks
obtaining a good speed up compared to the
numerical code of the CPU. Li and Saad (2013),
developed a numerical code of preconditioned
linear solvers based on GPU, their numerical
experiments indicate that Incomplete LU (ILU)
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factorization preconditioned GMRES method
achieved a speed up nearing to 4 compared
versus CPU numerical code. Liu et al. (2013),
reported improved preconditioners and algebraic
multigrid linear solvers applied to reservoir
simulations using GPUs. De la Cruz and Monsivais
(2014) developed a two phase porous media
flow simulator to compare the performance
of a single GPU with a single node of a cluster
using distributed memory. These authors found
that a single GPU is better than a computational
node with twelve processors. Trapeznikova
et al. (2014) developed a software library for
numerical simulation of multiphase porous
media flows that is applied to GPU-CPU hybrid
supercomputers. The model is implemented
by an original algorithm of the explicit type.
An explicit three-level approximation of the
modified continuity equation is used. After that
the Newton method is used locally at each point
of the computational grid. Authors used SPE-
10 project as benchmark, they achieved a 97x
of speed up when they compare the run time
obtained by a single GPU versus one CPU, and
18x of speed up when a computational node
of six processors is used. Mukundakrishnan et
al. (2015), presented the implementation in
GPUs of a black oil simulator, which uses a fully
implicit scheme for the discretization in the time
and the constrained pressure residual -algebraic
multigrid (CPR-AMG) to solve the linear system
equations. They reported an average of 20
minutes for the run time to solve a problem
with 16 million of active blocks by using 4
GPUs. Anciaux-Sedrakian et al. (2015) made a
numerical study of different preconditioners such
as: Polynomial, ILU and CPR-AMG which were
implemented in a heterogeneous architecture
(CPU-GPU). They emphasize two key points
to obtain high performance in heterogeneous
architectures; the first is to maximize the
utilization and occupancy of the GPU and the
second refers to minimize the high cost of
transferring GPU data to the node with the
CPUs and vice versa. Their results show that
a combination of 1 processor plus 1 GPU is
approximately 2 times faster compared versus
an 8-processor node by applying CPR-AMG
preconditioner.

In this work a simulator for oil recovery
was developed based in the water injection
process and the simultaneous solution technique
described by Chen et al. (2006). A parallelization
scheme is proposed by using GPUs for both the
construction of the Jacobian matrix and the
solution of the linear system of equations.

The paper is organized in this way: In
Section 2, the mathematical equations of
the water injection and pressure-saturation
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formulation model are introduced. In Section
3, the numerical discretization is presented by
using the Finite Volume Method (FVM) and the
linearization of the equations by applying the
Newton-Rapshon method (NR). In Section 4,
the computational implementation of the CPU
and GPU are shown and main algorithms are
explained. In Section 5, numerical results of
three benchmark problems are presented. Also
in this section, the performance of the parallel
numerical code is evaluated by comparing the
run time obtained in both GPU and CPU.

Mathematical model of the incompressible
two-phase flow in porous media

The mathematical model of the incompressible
two-phase flow can be used to simulate the
water injection into a hydrocarbon reservoir.
The mass balances are obtained by taking into
account two phases: oil and water. Governing
equations can be obtained by applying an
axiomatic formulation (see Herrera and Pinder,
2012 for a complete description on this
formulation). A general local balance mass
equation can be written as follows:

3(¢p.5,)
— a) =q, W

Here ¢ is the porosity of the media P Sa, u,
and g_represent the density, saturation, velocity
and source of phase a. The Darcy’s velocity is
used expressed as follows:

+v-(up

. kk
u = —¢V(I)a (2)

where k is the diagonal tensor of absolute
permeability and k is the relative permeability
of phase «; the Greek letters @ and u_are the
potential and the dynamic V|sc05|ty for phase a,
respectively. Now, substituting (2) into (1) and
replacing o by o and w, the next two coupled
mass balance equations were obtained (Chen
et al., 2006):

d kk
¢prw =V' 'wpw V(I) +qw(3)
ot u,
a9p,S, kk
¢p0 o _ V . ropo Vq) + qo (4)
ot u,

The mass balance equations are interrelated
by the following mathematical expressions:

S, +S,=1 (5)
D, +p, - P.PZ (6)
b, =D, P, (7)
Py = 1., (8.) (®)

where p_is the pressure of the phase a, § is
the magnitude of gravity, z is the depthand p_
is the oil-water capillary pressure as a function
of S .

Equations (3) and (4) are non-linear and
strongly coupled. In order to simplify the
numerical solution of these equations, the
pressure-saturation formulation was used which
consists in selecting oil pressure and water
saturation as primary variables and in using the
fractional flow theory to derive one equation
for pressure and one equation for saturation
(Peaceman, 1977; Chen et al., 2006). The mass
balance equation for water phase is:

(ons.) | B

(9)

Considering non-compressible flow, equation
(9) becomes:

aS = dp q
v _VelkAr -|Vp - —2Vg _ Vz || =2
ot P as, " poYz

¢
(10)

where the following substitutions were carried
out:

V dp COW V S
pC()W’ - dSW w (11)
krw
A, == (12)
MM}

Taking into account the fractional flow of the
phase a (f) that is defined as the quotient of
the phase a mobility (7L ) over the total mobility

(A), f = A_ a general pressure equation was
derived:
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g = . 1 p, q,
o V-k)L[Z_/“Vp“ - Zf"p“szL- ZE[¢S(A7+unv4p(A]_ 2E= 0
(13)

For more details about fractional flow
formulation readers can consult Chen et al.,
2006. Considering no change in the porosity,
and non-compressible flows, equation (13) can
be reduced to:

_ _ 4
-V kaVp, - ka, Laevs (ap,+2p,)oVz |- Loy e
A R GRS 0
(14)

Equations (10) and (14) are coupled and
non-linear. The Newton-Raphson approach was
used to linearize the equations and solve them
using a fully-implicit strategy. In this work three
different cases of study are described.

Numerical model
In this section a brief description is given of

the use of the Finite Volume Method (FVM) to
discretize equations (10) and (14), and the

Newton-Raphson method to linearize those
equations.

Calculation of residuals by using the Finite
Volume Method

As a way to show how FVM is applied
to compute the residuals for the governing
equations, the saturation equation for the three-
dimensional case is discretized. Integrating
equation (10) with respect to time and the
control volume shown in Figure 1, equation (15)
is obtained:

el as, = dp,,. q,
[l P [kAH (Vpo &5 Vs, P“@VZ)] , ]dv}(di 5())
In order to evaluate the terms of equation
(15) the following considerations were taken into
account: 1) a backward Euler approximation is
used, 2) the permeability tensor is diagonal and
3) the space derivatives are approximated using
central differences. Therefore, the discretized
form of equation (15) in terms of a residual is
written as follows:

Rw (pa ’Sw) = %[(Sw) - (SW)VI]P - [Tw,e(po,E - po,P) - Tw,w(pu,P Py ] + [Tw,e % B (Sw,E - SW,P)
- w,wa;;tv w(Sw,P _Sw,w ]+[]—:¢v,ep P, e(Zw,E _Zw,P)_Tw,wJo p,1,r|w(zw P 2w )]
_[Tw,n (pa,N -p, P) w s (po P~ Pos )] [T CZSL,W n (SW,N _Sw,P
_Tw.s d;;(:m s (Sm,P_Squ ]+[T:MJO pw n(Zw,N _Zw,P)_Tm,:‘p pw S(Zw,P _Zw,S )]
_[Tmr(po.r ~P.r)— u b(po PP, B)] [Tu ' pww ( _Sw,P
- ”b dAS('“M S‘ B)] [ wr w |r ( Zw,P) - Tw,byw |b (ZW.P ~Z.p )] - T AV
(16)
T
4
w
8z, Xt z
S NAZ S /e N
. I = S )“y
5Xe X
Ax E/:zb%
Figure 1. Three-
dimensional stencil to apply @ @
the FVM. AV= AxAyAz is e B B
defined.
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kA
where the transmissibility is computed as T, = 6— for i=1, 2, 3; the specific weight is defined
X

as y, =p,@ , A is the face area of volume perpendlcular to the axis i, for example, A = AyAz, and
5x represents the distance between neighboring volumes centers. Slmllarly the re5|dual R for the

pressure equation (14), is expressed as follows:
Ru(pv’SW) = [Tzi(poE - po,]’ u(pol’ poW)] [ w,e dSC'W (S wl’) - u w dSl'm | (SwP Sw W)]

_[ k. (Ay 5 : Ay)4 | (Zb . )_ k (Ay :5 ; Ay )4 | (ZW - )]

+ [T:«w (pu,N ~Por _T:v,s (pu,P —P.s )]_[7:1,,, CZTS::M N

o1 (5.-5.,)]

ap,.,
(S»V,AV_SW,P - w\

Y. k (Ay.,+A
2t . . (eon-z.,)- w( WV:;; Vo)A, S(Zw,p—zw,s)]
Tw,;(pn,T_pa,P _Tw,b(po,f’_po,ﬁ)]_[Tmdl;(,m (S S ub gow lw(Sw,P_Sw,B ]
_[k_yz(?»wrﬁm,,)fls (e -z)- k. (Ay, +Ay,)4, -z )] [ LA

Oz § : oz o, P (17)

Here T implies the calculation of the transmissibility considering the total mobility A and T refers
to the transm|SS|b|I|ty considering the mobility of the water phase /l In equations (16) and (17) the
superscript n + 1 is omitted for simplicity.

Newton-Rapshon Method

Because there are nonlinearities in the discretized equations, the Newton-Raphson method was
selected to linearize and to solve these equations. The main advantage of the method is its numerical
stability compared with methods which use explicit discretization (Abou-Kassem et al., 2006; Chen,
2007). For applying the Newton-Raphson method p:*l and S;“ were selected as primary variables.
Thus, the system of equations to solve has the following form

k k k
oR oR dpt! -R
ap, A

k k k+1 = k
R | oR oS, -R
ap, oS

(18)

Matrix on the left of equation (18) is the Jacobian and superscript & is used to indicate the Newtonian
iteration. The system written in extended form gives:

R(pS)| i R(pS) o R(pS) o R(pS)
aPo,B 6p"T ' aR),S 6p"’5 ’ apo,W 6p”’w ’ apo,P o.F "
k k k
R (p .S R (p ,S oR (p,,S
0(p0 W) 6pk+l+ 0(p0 W) 6pk+1+ 0(p0 W) 6pk+l+
apo,E o aljo,N N a170,7" o
R,(p,58,) (25.)] (p5.)] (25.)]
o(po Sw 55k+! o\ Po S 5Sk+1 4 Ro p, Sw 6Sk+1+aRo p, Sw) 5Sk+1 4
aSW,B " aSW,S " aSW,W " a‘va,P "
aRn(pa’Sw) k6Sk+1 N aRo(po’Sw) k5Sk+1 N aRa(pa’Sw) ' 55k = _RF
aSwE w.E aSW,N w.N aSw,T w.l - ¢ (19)
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k k k k
aRw(po’Sw) k+1 aRw(pu’Sw) k+1 aRw(po’Sw) k+1 aRw(pu’Sw) k+1
—— 6p  +————| dp + ——= y—" +

aPo,B o.T aRy,s 0.8 o o apa,P o.F
k k k
8Rw(po,SW) 8Rw(po,Sw) aRw(po,Sw)
WA\ v w7 6pk+1+— 6pk+1+— 6pk+1+
apo,E ot apo,N o apo,T o
k k k k
oR (p,.S,) aR (p,.S,) R,(p,.S,) aR (p,.S,)
W\ Tw]l sokel  — wATo?Tw)| e kel w\T0? Tw ]l o g+l w02 Tw ]l ookl
aSw,B w,T aSW,S w,S e wW 0 P w,P

k k k

R (p..S, aR (p..S. R (p..S,
w(po ) 55k 4 (p ) 555t 4 (p ) 55k = _Rk
GSW’E w,E BSW,N w,N GSW,T w,T w

(20)

Equations (19), (20) along with the residuals (16) and (17) are used to build the linear system as
shown in Figure 2, where the subscript m refers to the total number of discrete volumes.

Splgj" _Rl;,l
ﬁp/:;f 'R];,z
3]9,;;1 'ng,s
SSZ;:-Z -Rﬁ,’ m-2
o8 it;;z -Rﬁ;,m—l
S -RS,

Figure 2. Linear system equations for the primary variables p and SW.

One of the main issues in this kind of problems
is how to calculate the Jacobian elements and
how to solve the resulting linear system. Both
tasks are time consuming, therefore new
techniques are needed to reduce the time used
in doing these computational processes. In
the next section details of the computational
implementation that makes use of graphical
processing units (GPUs) are presented in order
to parallelize the construction of the Jacobian
and the solution of the resulting linear system

Computational implementation
In this section, the computational methodology
used is briefly described to implement the

algorithms provided by the numerical methods
outlined in previous sections.
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CPU Implementation

First of all, the algorithms to be executed
in an ordinary CPU were implemented for
comparison purposes. The codes were written
using the C++ language and the EIGEN library
(Jacob and Guennebaud, 2016), the last one
was used to simplify the array and matrices
management and the solution of the linear
systems of equations. The pseudocode of the
main algorithm is shown in Figure 3.

In the first three lines of the pseudocode
shown in Figure 3, all required variables and
arrays are declared and initialized with adequate
values, this includes the initial and boundary
conditions, petrophysical values, size of the
mesh, time step, etc. In line 4 the simulation
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15 END WHILE

01 /* Initialization of all variables and initial data,

02 construction of all arrays to store field variables

03 and matrices and vectors of linear system */

04 WHILE (Time step <= Total time) DO

05 WHILE ( Delta Sw < epsilon & Iteration < Max iter) DO
06 Calculate o0il components of Jacobian and Ro

07 Calculate water components of Jacobian and Rw
08 Build Jacobian matrix using the CRS format

09 Solve the linear system of equations using BICGSTAB
10 END WHILE

11 Update old wvariables

12 IF (!(Timeistep % Frequency)) THEN

13 Save or print primary variables (po and Sw)

14 END IF

16 /* Free memory and finalize simulation */

Figure 3. Pseudocode of the main algorithm.

initiates and is carried out until the total number
of time steps is reached. Inside this first cycle,
another one implements the Newton-Raphson
(NR) algorithm. This internal cycle starts in line
5 and is carried out until the norm of the change
of the water saturation (|65 |) is less than a
prescribed value (&) or the prescribed maximum
number of iterations of the NR algorithm is
reached. Lines 6 to 9 represent the main steps
to solve the problem and use the highest
percentage of CPU time. In lines 6 and 7 every
entry of the Jacobian matrix is calculated, this
means to calculate the discretized components
of the residuals, equations (18) and (19), and
their corresponding derivatives. It is worth
mentioning that all derivatives are done
numerically and first order forward finite
differences are used to do so. Then in step 9 the
Jacobian matrix is build using the Compressed
Row Storage (CRS) format in order to take
advantage of the sparseness of the matrix and
to save memory. In the calculations, these
three steps take around 8% of the total time.
In line 9 the linear system is solved using the
Biconjugate Gradient Stabilized (BICGSTAB)
method algorithm which is contained in the
EIGEN library. This step takes around 75%
of the total CPU time. Once the NR algorithm
has converged, all the required variables were
updated to be used in the next time step, line
11. Finally, the solution (primary variables)
were saved or printed every time the Iteration
variable is divisible by a prescribed Frequency.
This frequency will become important in the GPU
implementation.

GPU Implementation
The implementation in CPU presented in the

previous section is standard and do not have any
complications. For the GPU implementation the

Compute Unified Device Architecture (NVIDIA,
2012) and the CUSP Library were used, which
provides a high-level interface for manipulating
sparse matrices and solving sparse linear
systems (Maia and Dalton, 2016). The present
implementation is almost done totally in GPU,
which means that the amount of information
exchange between CPU and GPU is relatively
low. In this sense, the pseudocode of the main
algorithm for GPU implementation is similar
to the one shown in Figure 3. The following
differences have to be mentioned: a) the cycle
starting in line 4 require all the variables and
arrays defined in lines 1-3, therefore a first
exchange of information is done from CPU to
GPU, however this is minimal due to the fact
that the biggest arrays are constructed directly
in the GPU; b) the operations in lines 6, 7, 8,
9 and 11 are all coded in CUDA, therefore,
several kernel functions occur that are executed
in the GPU device; c) the operation in line 13
requires a movement of information from GPU
to CPU, however this is done only every time
the Iteration is divisible by the Frequency and
this can be just one time, for example when the
simulation is finished, or when the user requires
the information of the final solution.

The kernel functions are executed in parallel
by threads. These threads are defined by global
indexes that belong to a grid of blocks. The grid
and block sizes are defined by the user. The grid
can be defined for 1, 2 or 3 dimensions. Each
block has a finite number of threads, usually up
to 1024 thread count. The maximum grid size
is given by the manufacturing specifications of
each graphics card. All this features of modern
GPUs can be consulted elsewhere in NVIDIA
CUDA web site. Taking all this into account, it is
only possible to efficiently parallelize numerical
codes that do not exceed the number of threads
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that can be executed in the grid of blocks. On the
other hand, it is easy to parallelize functions that
execute the same operations over the entries of
arrays, since only the threads indexes have to
be defined and this definition replaces each loop.
As an example of this method, Figures 4 and 5
show an extract of the codes for calculating the
Jacobian block corresponding to the residual R
and its derivatives (0R /0p ), in CPU and GPU
respectively.

In the function jacobianCoeff_RoPo3D()
all the coefficients of Jacobian block OR, /0p,
were calculated. The code is standard and is
based in tridimensional arrays which contain
some variables related to the Cartesian mesh
for the numerical simulation. Therefore, three
nested cycles occur, one cycle for each axis.
In the most internal cycle, several functions
are executed to carry out several numerical
methods, among them: interpolations for initial
relative permeability and saturations from
centers of volumes to its faces (lines 5 and 6),
calculation of relative permeability using data
from tables (line 7), calculations of coefficients
of the residual and its derivatives (lines 9 and
10), and the assembling of the corresponding
block (line 11).

In the same way as in the Figure 4, in Figure
5 an extract of code of the kernel function is
shown that implements the calculation of the
Jacobian block OR /0p,. The kernel function
jacobianCoeff_RoPo3D() is executed in the
GPU. The first thing to do is to determine the
thread index, see lines 2-4. Using this index it
is possible that each thread of the block in the
grid, execute the operations defined in lines
5-12 concurrently. Line 5 is required to assure
that the index is inside the limits of the arrays.
Lines 6 to 12 consist of kernel functions, similar
to the functions defined in CPU, see Figure 4,
but using the index to perform each one of the
numerical methods needed to calculate the
corresponding block of the Jacobian matrix.
These kernels are device functions that can only
be executed by another kernel and are able to
use the GPU memory (Sanders, 2010; NVIDIA,
2012). Two kind of memories were used: global
memory to store the primary variables (Sw and
p,), the properties of the porous media (k, ¢,
etc) and some other important arrays of the
simulation; constant memory is used to store
constant values, i.e, the viscosities, conversion
factors and some tables of properties (relative
permeability). Figure 6 shows schematically how
the variables are stored within the GPU memory.

01 void jacobianCoeff RoPo3D (*physical parameters as arguments) ({

02 for (i=1; i<nx-1; i++){

03 for (j=1; j<ny-1; j++){

04 for (k=1; k<nz-1; k++){

05 interpolatePermeability(k, ke, kw, kn, ks, kt, k b);

06 interpolateSaturation(Sw, Sw e, Sw w, Sw n, Sw s, Sw t, Sw b);

07 calculate_kro(Sw, kro(Sw),kro_e, kro_w, kro_n, kro_s, kro_t, kro_b);
08 /* ... Some other calculations ... */

09 F(Po)=Tr e*(Pc):

10 F (Pot+deltaPo)=Tr_e* (Pot+deltaPo) ;

150 Block RoPo3D[3D(i,],k)]=firstOrderDerivative (F(Po), F(Pot+deltaPo), deltaPo);
12 }

13 }

14 }

153

Figure 4. Function to calculate the Jacobian block.

03 int j

01 global void jacobianCoeff RoPo3D (*physical parameters as arguments) {
02 int i = threadldx.x + blockIdx.x*blockDim.x;

threadIdx.y + blockIdx.y*blockDim.y;

04 int k = threadldx.z + blockIdx.z*blockDim.z;

05 if(i>0 && 1 < nx-1 && j > 0 && j < ny-1 && k > 0 && k < nz-1){

06 interpolatePermeability(k, k e, k w, k n, k s, k t, k b);

07 interpolateSaturation(Sw, Sw e, Sw w, Sw n, Sw_s, Sw_t, Sw b);

08 calculate kro(Sw, kro(Sw),kro e, kro w, kro n, kro s, kro t, kro b);

09 /* ... Some other calculations ... */ N N N N

10 F(Po)=Tr _e* (Po);

i F (Po+deltaPo)=Tr e* (Po+deltaPo);

12 Block_RDPDSD[SD(I,j,k)]ZfirstOrderDerivative(F(Po), F(PotdeltaPo), deltaPo);
13 }

14 }

Figure 5. Kernel function to calculate the Jacobian block.
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Grid of blocks

Block (0,0)

Block (1,0)

Shared memory

Shared memory

Thread (0,0)| [Thread (0,1) Thread (0,0)| [Thread (0,1)
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Figure 6. GPU memory used to store variables to build the Jacobian.

Finally, once the Jacobian components has
been built, the linear system of equations is
constructed in CRS format. This extra step is
needed in order to use the algorithms of the
EIGEN and CUSP libraries. Both libraries require
a matrix in the CRS format and a right hand
side (rhs) vector. The result is stored in another
vector that contains the solution of the linear
system.

Numerical results

As a way to validate the numerical code, in this
section numerical results obtained for three
different cases are presented. Also numerical
performance experiments were carried out to
test computationally the parallel numerical code
that is compared versus serial code.

Buckley Leverett

The Buckley-Leverett model describes the
displacement of oil by water in an horizontal
domain. This mathematical model is widely
used in the validation of two phase fluid flow
simulators, because it has an analytic solution
for the water saturation profile. The hypothesis
of the Buckley-Leverett model are:

a) The displacement occurs at a one-dimensional
medium.

b) The porous media is isotropic.

c) No effects of capillary pressure nor gravity
forces are considered.

d) There are no sources nor sinks.

e) Water gets injected to a constant flow
through the left boundary of the domain.
Oil is produced on the right boundary at a
constant pressure.

The parameters to carry out the simulation
are shown in Table 1. Relative permeabilities
k. (S,) can be obtained from Chen et al. (2006).

In this paper a comparison of the analytical
solution versus the solution obtained numerically
is presented. The numerical parameters were
selected as follows: to evaluate the derivatives
within the Jacobian blocks increments of
AS =1x107 for water saturation and Ap_=0.1
for the oil pressure were used. Stop criterion for
leaving the Newton-Rapshon loop was selected
to: [3S,| <1x10% and a fixed time step of 1 day

Table 1. Parameters to solve the Buckley-
Leverett problem.

Property Value

Length of domain (L)) 1,000 (ft)
Absolute permeability (k) 100.0 (mD)
Porosity (¢) 0.20

Water viscosity (1, ) 0.42 (cP)

Oil viscosity (1) 15.5 (cP)
Residual water saturation (S ) 0.40

Residual oil saturation (S, ) 0.18
Injection velocity (v, ) 2.0E-06 (ft/s)
Production pressure (p ) 1,000 (psi)

out
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was chosen. The number of discrete volumes
selected to study its effect in the solution were:
100, 500, 1,000, 5,000 and 10,000. The total
time simulation was of 120 days and results
are saved every 30 days. Table 2 shows a
comparison between analytical and numerical
solutions at some selected positions. As shown
in this table as the number of volumes increases
the relative error and the root mean square
deviation (RMSD) respect to the analytical
solution decreases.

Figure 7 shows the water saturation and
pressure profiles obtained for 120 days of total
simulation by using 10,000 discrete volumes.
Results of the water saturation profile are
congruent with the analytical solution (dashed
line). This result indicates that the problem has
been solved correctly.

Table 2. Numerical results obtained for the Buckley-Leverett problem.

Number of Position Simulation Sw Sw Error RMSD
discrete x (ft) time (days) Numerical Analytical % At the whole
volumes domain

100 145 30 0.4721 0.4 18.033 0.01510
275 60 0.4792 0.4 19.809 0.01590
405 90 0.4801 0.4 20.037 0.01598
535 120 0.4786 0.4 19.666 0.01875
500 145 30 0.42238 0.4 5.5942 0.01127
275 60 0.42049 0.4 5.1216 0.01095
405 90 0.40972 0.4 2.4295 0.01104
535 120 0.40849 0.4 2.1213 0.01093
1,000 145 30 0.40784 0.4 1.9593 0.00987
275 60 0.40399 0.4 0.99737 0.01027
405 90 0.40080 0.4 0.19905 0.00981
535 120 0.40056 0.4 0.13941 0.00962
5,000 145 30 0.40028 0.4 0.07096 0.00944
275 60 0.39998 0.4 0.00525 0.00942
405 90 0.39999 0.4 0.00170 0.00897
535 120 0.40001 0.4 0.00150 0.00839
10,000 145 30 0.400130 0.4 0.03159 0.00916
275 60 0.400020 0.4 0.00568 0.00917
405 90 0.400001 0.4 0.00093 0.00881
535 120 0.400001 0.4 0.00091 0.00827
a) Water saturation (S,) b) ~000 Oil pressure (p,)
— 30 days — 30 days
— 60days 4500 — 60days
— 90 days — 90 days
— 120 days 4000 — 120 days
3500
:@ 3000
<,
2500
2000
1500
800 1000 10005 200 00 600 800 1000

z(f1)

a(ft)

Figure 7. Results for 10,000 discrete volumes: a) Water saturation profile Sw, analytical solution (dashed line)
versus numerical solution (continuous line); b) Oil pressure profile p .
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Five Spot

The model known as “Five Spot” describes the
displacement of oil by water in an isotropic
domain, in which a producer well and an
injector well are placed in the opposite corners
of the domain (See Figure 8). In the Five Spot
conceptual model the follow assumptions are
considered:

a) The displacement occurs at a bidimensional
domain.

b) The porous media is isotropic.

c) The effects of capillary pressure are
considered.

d) There are one source (injector well) and one
sink (producer well).

e) Gravity forces are neglected.

The parameters to carry out the simulation
are shown in Table 3. Relative permeabilities km
(SW) and capillary pressure p_can be obtained
from Chen et al. (2006).

Table 3. Parameters to solve the Five Spot
problem (Chen et al., 2006).

Property Value

Size of domain (L _x Ly) 1,000 x1,000 (ft)
Absolute permeability (k) 100.0 (mD)

Porosity (¢) 0.20
Water viscosity (4, ) 0.096 (cP)
Oil viscosity (1, ) 1.14 (cP)
Residual water saturation 0.22

(s,)

Residual oil saturation 0.20

(S,)

or

Injection pressure (p,) 3,700 (psi)
Production pressure (p®}) 3,500 (psi)

OSw_
dy f
O | Production well
BSw_ BSy_
Ly, ox 4 ox 0
O Injection well _
Lz = width of layer
884
dy 0
y
L., L

Figure 8. Five Spot physical model.
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For this problem the total time simulation
was selected to 8,000 days and the results are
reported every 500 days. Numerical parameters
are the same to those in the Buckley-Leverett
problem. Because there is no analytical solution
for this problem, it is validated with the results
reported by Chen et al. (2006). Figure 9 a) shows
the production of water and oil in reservoir barrels
per day (RB/day) throughout the simulation
time. In this figure it can be seen that the
results reported by Chen et al. (2006) and those
obtained in this work have a similar qualitatively
behavior. The difference between curves may
be due to the numerical techniques used, since
Chen et al. (2006) used an adaptive time step
with an IMPES scheme. The RMSD obtained for
the production curves are 43.88 and 137.94 for
oil and water production, respectively. In Figure
9 b) fractional flow (F ) curves are compared. It
can be appreciated that the water cut happens
after 1,000 days of simulation, which is almost
the same result reported by Chen et al. (2006).

To verify the solution shape two more
simulations were carried out, one considering
30x30 mesh size of and another using 90x90
volumes. Values obtained for RMSD using 30x30
volumes were 41.97 and 135.44; while by using
90x90 volumes were 41.02 and 134.82, for oil
and water production respectively.

Figure 10 shows the water saturation profiles
at different simulation times in the whole
numerical domain. This figure is presented in
order to clarify how the waterfront sweeps the
oil from the porous medium.

The seventh SPE project

The seventh SPE project is a benchmark that
describes the water injection and oil production

a)

Fluids production

-. Q,Chenetal.
— @, This study
- @, Chenetal.
— Q. This study

2000

1500

000

Qo- Qw (RB/day)

NG
' S
' Teal
'
, h“*"‘“——-—-—..__.__________.
0 7000 2000 3000 1000 5000 5000 7000 000

time (days)

using horizontal wells, this problem was adapted
by Nghiem et al. (1991) and Chen et al. (2006)
for two-phase fluid flow. In the 'resent case
capillary pressure and gravity forces were
considered. Therefore equations (10) and (14)
are used without any modification.

To solve this problem the SPE proposes a
mesh of 10x10x7 (Figure 11). This mesh is
refined to the y axis center, in order to place
the injection and production wells. The length of
the blocks in the x axis are uniform and equal to
300 ft (ox =300 ft). For the length of the blocks
in the y axis, the distribution is as follows: oy =
0y, = 620 ft, 8y,= oy, = 400 ft, 5y, = oy, =200 ft
0y,= 0y, = 100ft and oy, = 60 ft. For the 7 axis
51 —20ftfork1 2347 oz;= 30 ft and 6z,= 50 ft
were used. Injection weII is placed in the layer
516 at the center of the axis y and it crosses
all the blocks in the x axis. Production well is
placed in the layer 51 at the center of the axis
y and it crosses only the blocks éx, . . in the x
axis. Parameters to execute the 5|mulat|on are
shown in Table 4. Relative permeab|I|t|esk (S.),
capillary pressure p (S, ), and initial conditions
can be obtained from Ngh|em et al. (1991).

For this problem the total simulation time
was selected to be 1,500 days and results are
reported every 100 days. Results are validated
by comparing production curves reported by
Chen et al. (2006). Figure 12 a) shows the oil
production in stock tank barrels per day (STB/
day) during the entire simulation time. It can be
noted that the results are qualitatively similar to
those reported by Chen et al. (2006), although
the curve reported by them declines slightly
faster. The accumulated oil production curves
are also compared, these results are shown in
Figure 12 b).

b) Fractional flow
100

--+ Chenetal.
— This study

80

60

Fw %

40}

20}

0 2000 1000 6000 8000
time (days)

Figure 9. Results obtained using 10x10 discrete volumes: a) water and oil productions Qw-Qo in reservoir barrels
per day (RB/day); b) fractional flow Fw (%).
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Figure 10. Water saturation profiles for different simulation times using a 90x90 volume.
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Figure 11. Seventh SPE project physical model.
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Table 4. Parameters to solve the Seventh SPE project (Nghiem et al., 1991).

Property

Value

Size of domain (L_x Ly X LZ)

Absolute permeability (k, k\-' kz)

Porosity (¢)

Water viscosity (¢ )

Oil viscosity (1)

Residual water saturation (S, )
Residual oil saturation (S, )
Injection pressure (pifh)
Production pressure (p”)

2,700 x 2,700 x160 (ft)
(300.0, 300.0, 30.0) (mD)
0.20

0.96 (cP)

0.954 (cP)

0.22

0.0

3,651.4 (psi)

3,513.6 (psi)

a) 2000 0il production
- Chen et al.
— This study
~ 1500
7
3
/m
&
2
2 1000
k=]
154
El
3
g
A 500
0
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time (days)

b)

1200 i Cumulative oil production

- Chen et al.
—— This study :

1000

[oe]
o
f=}

Produced oil (MSTB)
= =
S s

200}

200 400 600 800 1000 1200 1400 1600
time(days)

Figure 12. Results obtained using 10X10X7 discrete volumes: a) Oil production (STB/day); b) Cumulative oil production
(MSTB).

The small difference observed in Figures 12,
may be due to implementations of the numerical
method and conversion factor used for the STB;
in the present work the STB conversion factor
from Nghiem et al. (1991) was used. It should
be noted that this problem was solved only with
the grid size proposed by Nghiem et al. (1991),
as it is indicated by this benchmark. The RMSD
obtained in this problem is 55.77 for the oil
production values and 68.08 for cumulative oil
production. In order to know the behavior of the
fluids flow in the layer where the production well
is placed. Figure 13 shows the saturation profiles
SW in this layer for six selected simulation times
by using the grid size proposed by Nghiem et
al. (1991). For the saturation profiles belonging
to 100 and 300 simulation days, it is noted that
the water has begun to sweep the oil present
in the layer forming a “water feather”. For the
1,200 and 1,500 profiles the water feather has
spread out to more than a half the domain. This
means that about 40% of the oil present in the
layer has already been produced.
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Numerical performance experiments

In order to analyze the performance of the
numerical code, the five spot water injection
problem was selected. Numerical parameters
selected were: AS, =1x10° for water saturation
and Ap_ =1x10 for oil pressure. Stop criterion
for leaving the Newton-Rapshon loop was
selected to: [8S,| <1x10° and a fixed time
step of 0.01 day was chosen; results are saved
every 1.0 day. 10 days were selected for the
total simulation time.

Numerical results presented in this section
were obtained by executing our numerical code
in a workstation with a single processor Intel
(R) i7 (R) CPU 3820 3.60 GHz, 16 Gigabytes of
RAM and an NVIDIA Tesla C2075 (R) GPU with
448 cuda-cores and 6 Gigabytes of dedicated
memory.

Table 5 shows the average run-time for
each Newton-Raphson step. The Jacobian run-
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Figure 13. Water saturation profiles in the production layer for different simulation times.
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time increases considerably when the number
of volumes is bigger. As an example, 0.796 s
were spended when volumes were 550x550
in CPU, while only 0.0379 s were used on the
GPU that means 21x of speed up. This result
is a considerable save of computation time
taking into account that this procedure has to
be repeated every Newton iteration.

Most authors indicate about 75% computation
time is consumed in the solution of the system
of linear equations. For solving the linear
equations system, BICGSTAB solver without a
preconditioner was used. This solver is already
included in EIGEN and CUSP libraries (Jacob
and Guennebaud, 2016; Maia and Dalton,
2016). Run times are shown in Table 6. Results
indicate that CPU is faster than GPU when linear
system is small (45,000 unknowns). When the
linear system increases from 45,000 to 125,000
unknowns the computing time using the GPU
is less than CPU. For a system with 605,000
unknowns, the maximum speed up is achieved
(2.207x).

In a numerical code developed with GPU
without graphics in real time, numerical results
always have to be transfered from GPU to CPU for
later processing. This process is computationally
expensive because it has to be carried out
each time step or when the user requires it.

The time measured for this operation was from
1.69x107°%to 0.101 seconds, for the 30x30 and
550x550 number of volumes, respectively. For
this reason real speed up must be quantified
when the whole numerical code has finished.
Figure 14 shows run time and speed up for
executing the whole code. In this figure can be
noted GPU is slower than CPU when the problem
is executed with few volumes. In the other
hand, GPU speed up increases if the number
of nodes for executing the problem increases.
For executing the numerical code with 302,500
blocks (550x550 number of volumes) 3.0x of
speed up is achieved, that is, the total run time
for the CPU was 6.8 days whereas for the GPU
it was only 2.26 days. It is worth mentioning
that in this case the information transfer GPU-
CPU does not have a considerable effect, since
it was executed only 10 times. It should be
kept in mind that this is a benchmark problem,
therefore it is not necessary to use a bigger grid
size to solve it adequately.

Conclusions

Sequential and parallel implementations of a fully
implicit simulator for waterflooding process have
been presented. Both implementations were
validated with three different benchmarks and
similar results were obtained in comparison with
other authors and in comparison with analytical

Table 5. Average run-time obtained to compute the Jacobian.

Number of volumes CPU run-time GPU run-time Speed up
(s) (s) (x)
30x30 0.00284 0.00084 3.38x
90x90 0.02340 0.00164 14.26x
150x150 0.07141 0.00311 22.96x
250x250 0.15049 0.00754 19.95x%
550x550 0.79686 0.037937 21.00x

Table 6. Average run-time obtained to solve the linear equations system.

Number of volumes Unknowns number CPU run-time GPU run-time  Speed up
(s) (s) (x)
30x30 1,800 0.007599 0.21234 0.035x
90x90 16,200 0.19308 0.85252 0.226x
150x150 45,000 0.98792 1.0727 0.9209x
250x250 125,000 4.3418 2.7515 1.570x
550x550 605,000 29.408 13.32 2.207x
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Figure 14. Numerical performance: a) CPU & GPU total run-time and b) GPU speed up.

solutions. The strategy of parallelization allows
to reduce the calculation time of the Jacobian
matrix, resulting from the Newton-Raphson
method, using the architecture of the GPUs.
Numerical results indicate that the GPU
implementation reach until 22.9 times faster
than the CPU counterpart for the finest mesh.
On the other hand, the solution of the final
linear system was also carried out in the GPU.
A speed up of this step of 2.2 for the finest
mesh was ontained. In total, taking into account
the construction of the Jacobian matrix, the
solution of the linear system and the exchange
of information between CPU and GPU, gave a
total speed up to 3. As expected, this speed up
can be improved as the number of unknowns
is incremented, however, the limited number of
threads and memory of GPUs is a first obstacle
to go forward. Even though the libraries used for
solving the linear systems are optimized, they
need to be improved with special preconditioners
in order to obtain better results in terms of CPU
and GPU time, and pair the 22x of speed up that
was achieved in the present best calculation of
Jacobian matrix. On the other hand, the GPU
used in this work is not the newest one in the
market, in such a way that a limitation occurs
by the number of CUDA cores (448) and the
memory (6GB) of the hardware; however, as can
be seen, as the size of the problem increase, the
speed up improves, therefore if, for example a
GPU Tesla K40m (2880 CUDA cores and 12 GB in
memory) is used better results can be expected.
Finally, the present strategy can be used for
several number of GPUs along with domain
decomposition methods; this allows to increase
even more the size of the problem (to several
millions of unknowns) and as a consequence
the speed up will be improved. Of course, this

requires better solvers for the linear systems,
for example geometric or algebraic multigrid
methods.
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