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Unusual, equivocal Rayleigh-dispersion curves for simple models
taking into account the special propagation conditions in the valley
of Mexico City (CDMX) - Preliminary results
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Resumen

Contrario a lo que normalmente es asumido
en sismologia, la fase-velocidad de olas
Rayleigh no necesariamente es una funcién
de valor Unico de frecuencia. Se demuestra
esto para el primer modo mas alto en modelos
simples de una capa homogénea encima de
un semiespacio homogéneo (LOH), los cuales,
han sido utilizados en estudios anteriores en el
subsuelo de la zona de Texcoco en el valle de
Ciudad de México. En la estructura de una capa
homogénea con fondo fijo (LFB) el fendmeno
existe para valores del coeficiente de Poisson
entre 0.19 y 0.5 y es mas pronunciado para
velocidades de P que son tres veces la velocidad
de S (Coeficiente de Poisson de 0.4375). En este
trabajo se demuestra este tipo de dispersion y
se discuten sus posibles consecuencias fatales
para los métodos habitualmente usados en
sismologia en el analisis de dispersion y sintesis
de relaciones de dispersion.
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Abstract

Other than commonly assumed in seismology,
the phase velocity of Rayleigh waves not
necessarily is a single-valued function of
frequency. We demonstrate this for the
first higher mode in simple models of a
homogeneous layer on top of a homogeneous
halfspace (LOH), which are used for the
subsurface of the Texcoco zone in Mexico City
valley in previous studies. In the structure of a
homegenous layer with fixed bottom (LFB) the
phenomenon exists for values of Poisson’s ratio
between 0.19 and 0.5 and is most pronounced
for P-velocity being three times S-velocity
(Poisson’s ratio of 0.4375). This type of
dispersion is demonstrated and a discussion of
their possible fatal consequences for methods
customarily used in seismology for dispersion
analysis and synthesis of dispersion relations
is presented.

Key words: Rayleigh waves, dispersion,
ambiguity, Mexico City valley.



P. G. Malischewsky, T. Forbriger and C. Lomnitz

Introduction

Without doubt the great 1985 Michoacan
earthquake (M, 8.1) was the most damaging
in Mexico City history. This earthquake and its
disastrous effects have been thoroughly and
controversially analyzed and discussed during
the last three decades after the tragedy. We
refer to the review paper by Flores-Estrella et
al. (2007) with an exhaustive list of references.
Surface waves always play an important role
in the earthquake effects for well-known
physical reasons. These waves carry most of
the energy from the source because the crust
layers constitute an efficient waveguide. The
Malischewsky’s (2004) report examined the
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principle “As simple as possible, as complicated
as necessary”.

Equivocalness of dispersion curves

Usually itis silently (to avoid saying shamefully)
assumed in seismological literature that disper-
sion curves of Rayleigh waves are unique in the
sense that one phase-velocity value belongs to
a given frequency. However, we have observed
that this is not always true. To illustrate this,
let us consider the elastic model of a “Layer
with Fixed Bottom” (LFB), i.e. a layer with a
stress-free surface and a bottom with vanishing
displacements. The secular equation for LFB is
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propagation conditions for surface waves in the
valley of Mexico City (CDMX). One notorious
characteristic is an extremely high Poisson
ratio in the uppermost layers together with
a very high impedance contrast between the
layers and the subsoil. Investigating the so-
called osculations of dispersion curves (Kausel
et al., 2015) we have casually discovered
unusual higher-mode Rayleigh waves because
of the equivocal behaviour of their dispersion
curves in a certain frequency range. Following
Furumura and Kennett (1998) the dominant
seismic phases at regional distances are
usually the crustal Pg and Lg phases and the
recorded L. phase can be regarded either as
8, . .
a superposition of multiply reflected S waves
in the crust or as a sum of a number of higher
surface wave modes sampled at the free
surface of the crust. So it is appropriate to have
a closer look on the higher modes as well. It
turns out that the conditions for the occurrence
of this special behaviour, to be presented here,
coincide with the natural conditions in Mexico
City. This behaviour is reproduced by using very
simple models. This observation agrees also
with the Paul Dirac’s statement that natural
laws seem to be constructed following the
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where F and C are the dimensionless frequency
and phase velocity, respectively, defined by

F=(h/Bf,C=c/p 2)

with f=frequency, c=phase velocity, B=shear
velocity, h=layer thickness, and v=Poisson
ratio. Formula (1) implies the dispersion
equation C = C(F) and was rewritten from the
one found by Tran (2009). The phenomenon to
be described here occurs for higher modes only.
We have analysed Eq. (1) with the software
Mathematica and have obtained dispersion
curves of the first higher mode of Rayleigh
waves for different values of v, the Poisson
ratio. Figure 1 presents results for two of them.

Obviously, there is a frequency range for
each v - value, in which each frequency has
two different phase velocities. By defining the
distance d,

d = Foo - Fmin (3)
with F_ = frequency value for C = oo, and

me = minimal frequency value of the curve,
we have found a measure for the strength of
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Figure 1. Rayleigh-wave dispersion curves of the
first higher mode for the LFB model with v = 0.37
and v = 0.44, respectively

the effect under consideration. By using the
ordinary formula for the group velocity it would
become zero for F'= F . This point is known
in ultrasonic literature as Zero-Group Velocity
(ZGV) point and is subject of voluminous
considerations and discussions, which are far
beyond the scope of this article. The interested
reader may find a good entry into this field e.
g. by Negishi (1987) or Prada et al. (2009),
where dispersion curves of Lamb waves with
a very similar shape like our curves in Figure
1 are presented. While plate-structures are
known to bear rich features of dispersion,
layered structures with seismic velocity
monotonously increasing with depth are
silently expected to show normal dispersion for
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all modes, commonly. Kausel (2012) provides
a thorough analysis of these phenomena
together with an interesting discussion of the
occurrence of ZGV-points of higher modes
depending on Poisson’s ratio. It should be also
noted that Lysmer (1970) presented a group
velocity curve for a layered model with positive
and negative parts in a seismological context,
which anyhow gives tentatively evidence in the
same direction.

Because d is not accessible analytically it
was numerically calculated and depicted in
Figure 2.

Apparently, the phenomenon is present in
a range approximately 0.19 < v < 0.5 and
has its maximum at about v = 0.4375 = 7/16,
where the P-wave velocity is the threefold of
the S-wave velocity. Therefore, this special
behaviour occurs in the whole range of
practically important v- values with preference
of higher values.

The special feature continues to appear for
the “Layer Over Halfspace” (LOH) model as
well, when the impedance contrast between
layer and half-space is big enough. For lower
impedance contrasts the picture is more
complicated and some new effects occur,
which are beyond this communication. Let us
demonstrate the behaviour of the first higher
mode for 2 simplified models TEX1 and TEX2 of
the Texcoco region from Malischewsky Auning
et al. (2006) and Malischewsky et al. (2010)
with slightly modified parameters. Both models
differ in their shear-wave ratios between layer
and half-space, which is about 0.0256 for TEX1
and 0.12 for TEX2. The parameters are given
in Table 1.
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Table 1. Parameters for the models under

consideration: 3 = shear-wave velocity, v =

Poisson ratio, p = density, and & = thickness of
the layer.

Model Layer B [m/s] v plg/cm3] h[m]

TEX1 1 59.2 0.4992 1.1 40
2 2310 0.2498 2.6 (o)
TEX1la 1 59.2 0.4375 1.1 40
2 2310 0.2498 2.6 (o)
TEX2 1 56.5 0.4375 1.1 40
2 475 0.2498 2.6 (o)

Table 1 contains also the model TEX1a,
which differs from TEX1 only by a somewhat
diminished v for the layer in order to
demonstrate the greater effect in this case, in
agreement with Figure 2. It is very likely that
some regions, even within Texcoco, have not
such an extremely high Poisson ratio as the one
in TEX1. The dispersion curves for the models
were calculated again with Mathematica, but
the secular equation for LOH is by far too
voluminous to be given here. The results for all
3 models are included in Figure 3.

The described effect can be seen in a
pronounced manner around F = 0.65 for TEX1a,
butitalso occursin a not so pronounced manner
around F' = 0.725 for TEX1 and a bit weaker for
TEX2 with a lower impedance contrast. Such
effects appear for multilayered media too, when
the impedance contrast at the bottom is high
enough. The analytical results of Figure 3 were
checked by using two numerical approaches.
Namely, the one by Fuchs and Miller (1971),
and also, by Schwab and Knopoff (1972) and
a perfect coincidence was found. On the other
hand, there are computer programs widely
used for the calculation of dispersion curves
which are simply not fit to handle the special
cases described above. Thus, it is advisable
in applying numerical schemes to be aware of
the occuring peculiarities of dispersion curves
under analysis.

Discussion

It is noticed that instead of C = C(F) the
inverse function F = F(C) can be considered as
a dispersion curve. In this case, an ambiguity
will occur for fixed phase velocity with 2
different frequencies when the curve C =
C(F) has a local extremum, but this does not
happen for the LFB and LOH models. Further,
it should be noted that the occurrence of 2
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2. First higher modes for the

models TEX1, TEX1a and TEX2
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different phase velocities for a fixed frequency
generates beats in the wave field. A standard
dispersion analysis based on phase differences
will inevitably fail in such cases. This analysis
approach calculates the phase difference of
the seismograms Fourier coefficients at two
observation locations divided by the distance
between these locations. The reciprocal of this
value times the angular frequency is taken as
the phase velocity. In the case, an ambiguity
would occur the Fourier phase becomes
meaningless with respect to phase velocity in
the frequency band where three roots of the
secular equation exist at each frequency. For
the very same reason all methods must fail
with the dispersion discussed here which rely
on a unique dispersion relation k(w) for the
wavenumber k, of the [-th surface wave mode.
This applies to the deconvolution method used
by Sébe et al. (2009) for the extraction of
fundamental mode data as well as to phase-
matched filter techniques like those presented
by Herrin and Goforth (1977) or by Russel et
al. (1988) for example. Methods of wave field
transformation (Forbriger, 2003; McMechan
and Yedlin, 1981) however remain applicable
for the purpose of dispersion analysis.

Likewise, methods of calculating synthetic
dispersion curves might get into trouble.
Commonly dispersion curves are constructed
by finding the roots of the secular equation
starting at the cut-off frequency. Roots for
the same overtone are then searched with
increasing frequency near the phase velocity
value for the previous (smaller) frequency. In
the current case the extremum of F(C) causes
such algorithms to loose the dispersion curve,
which first becomes stationary with frequency
and then continue to decreasing frequency
values.

So the influence of this special dispersion
is two-fold: it produces a special wavefield,
whose manifestation and influence for Mexico
City has yet to be investigated in the future.
On the other hand it requires care in inverting
surface wave data for a correct underground
model, which for its part is essential for the
estimation of the seismic hazard.

The unusual cases described herein suggest
care in the analysis of surface waves and may
be a warning for the research community to
explore these anomalous problems. In other
context, the dispersion curves may seem usual
but produce slowly attenuating leaky modes
for a restricted set of mechanical parameters
(Garcia-Jerez and Sanchez-Sesma, 2015).

Conclusions

The special feature “unusual or equivocal
dispersion curves”, although hardly known in
seismology, seems to be rather common for
higher mode Rayleigh waves in layered models
with sharp impedance contrasts between layers
and half-space and sufficiently high Poisson
ratios in the layers. Just these conditions are
fulfilled in the valley of Mexico City and these
dispersion curves influence the surface-wave
field and have to be kept in mind in processing
the dispersion curves for model-parameter
inversion. Although this research was focused
on the characteristics of Mexico City soft layers
like those found in the ancient Texcoco lake
zone, the results are so general and should not
be disregarded as exotic, strange phenomena.
Certainly, the problem requires further scrutiny.
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