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Resumen

Contrario a lo que normalmente es asumido 
en sismologia, la fase-velocidad de olas 
Rayleigh no necesariamente es una función 
de valor único de frecuencia. Se demuestra 
esto para el primer modo más alto en modelos 
simples de una capa homogénea encima de 
un semiespacio homogéneo (LOH), los cuales, 
han sido utilizados en estudios anteriores en el 
subsuelo de la zona de Texcoco en el valle de 
Ciudad de México. En la estructura de una capa 
homogénea con fondo fijo (LFB) el fenómeno 
existe para valores del coeficiente de Poisson 
entre 0.19 y 0.5 y es más pronunciado para 
velocidades de P que son tres veces la velocidad 
de S (Coeficiente de Poisson de 0.4375). En este 
trabajo se demuestra este tipo de dispersión y 
se discuten sus posibles consecuencias fatales 
para los métodos habitualmente usados en 
sismología en el análisis de dispersión y síntesis 
de relaciones de dispersión.

Palabras clave: Ondas de Rayleigh, dispersión, 
ambigüedad, valle de CDMX.
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Abstract

Other than commonly assumed in seismology, 
the phase velocity of Rayleigh waves not 
necessarily is a single-valued function of 
frequency. We demonstrate this for the 
first higher mode in simple models of a 
homogeneous layer on top of a homogeneous 
halfspace (LOH), which are used for the 
subsurface of the Texcoco zone in Mexico City 
valley in previous studies. In the structure of a 
homegenous layer with fixed bottom (LFB) the 
phenomenon exists for values of Poisson’s ratio 
between 0.19 and 0.5 and is most pronounced 
for P-velocity being three times S-velocity 
(Poisson’s ratio of 0.4375). This type of 
dispersion is demonstrated and a discussion of 
their possible fatal consequences for methods 
customarily used in seismology for dispersion 
analysis and synthesis of dispersion relations 
is presented.
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Introduction

Without doubt the great 1985 Michoacán 
earthquake (Mw 8.1) was the most damaging 
in Mexico City history. This earthquake and its 
disastrous effects have been thoroughly and 
controversially analyzed and discussed during 
the last three decades after the tragedy. We 
refer to the review paper by Flores-Estrella et 
al. (2007) with an exhaustive list of references. 
Surface waves always play an important role 
in the earthquake effects for well-known 
physical reasons. These waves carry most of 
the energy from the source because the crust 
layers constitute an efficient waveguide. The 
Malischewsky’s (2004) report examined the 

principle “As simple as possible, as complicated 
as necessary”.

Equivocalness of dispersion curves

Usually it is silently (to avoid saying shamefully) 
assumed in seismological literature that disper-
sion curves of Rayleigh waves are unique in the 
sense that one phase-velocity value belongs to 
a given frequency. However, we have observed 
that this is not always true. To illustrate this, 
let us consider the elastic model of a “Layer 
with Fixed Bottom” (LFB), i.e. a layer with a 
stress-free surface and a bottom with vanishing 
displacements. The secular equation for LFB is
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propagation conditions for surface waves in the 
valley of Mexico City (CDMX). One notorious 
characteristic is an extremely high Poisson 
ratio in the uppermost layers together with 
a very high impedance contrast between the 
layers and the subsoil. Investigating the so-
called osculations of dispersion curves (Kausel 
et al., 2015) we have casually discovered 
unusual higher-mode Rayleigh waves because 
of the equivocal behaviour of their dispersion 
curves in a certain frequency range. Following 
Furumura and Kennett (1998) the dominant 
seismic phases at regional distances are 
usually the crustal Pg and Lg phases and the 
recorded Lg phase can be regarded either as 
a superposition of multiply reflected S waves 
in the crust or as a sum of a number of higher 
surface wave modes sampled at the free 
surface of the crust. So it is appropriate to have 
a closer look on the higher modes as well. It 
turns out that the conditions for the occurrence 
of this special behaviour, to be presented here, 
coincide with the natural conditions in Mexico 
City. This behaviour is reproduced by using very 
simple models. This observation agrees also 
with the Paul Dirac’s statement that natural 
laws seem to be constructed following the 

where F and C are the dimensionless frequency 
and phase velocity, respectively, defined by

	 F = (h / b)f, C = c / b	 (2)

with f=frequency, c=phase velocity, b=shear 
velocity, h=layer thickness, and n=Poisson 
ratio. Formula (1) implies the dispersion 
equation C = C(F) and was rewritten from the 
one found by Tran (2009). The phenomenon to 
be described here occurs for higher modes only. 
We have analysed Eq. (1) with the software 
Mathematica and have obtained dispersion 
curves of the first higher mode of Rayleigh 
waves for different values of n, the Poisson 
ratio. Figure 1 presents results for two of them.

Obviously, there is a frequency range for 
each n - value, in which each frequency has 
two different phase velocities. By defining the 
distance d,

	 d = F∞ − Fmin	 (3)

with F∞ = frequency value for C = ∞, and 
Fmin = minimal frequency value of the curve, 
we have found a measure for the strength of 
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the effect under consideration. By using the 
ordinary formula for the group velocity it would 
become zero for F = Fmin. This point is known 
in ultrasonic literature as Zero-Group Velocity 
(ZGV) point and is subject of voluminous 
considerations and discussions, which are far 
beyond the scope of this article. The interested 
reader may find a good entry into this field e. 
g. by Negishi (1987) or Prada et al. (2009), 
where dispersion curves of Lamb waves with 
a very similar shape like our curves in Figure 
1 are presented. While plate-structures are 
known to bear rich features of dispersion, 
layered structures with seismic velocity 
monotonously increasing with depth are 
silently expected to show normal dispersion for 

all modes, commonly. Kausel (2012) provides 
a thorough analysis of these phenomena 
together with an interesting discussion of the 
occurrence of ZGV-points of higher modes 
depending on Poisson’s ratio. It should be also 
noted that Lysmer (1970) presented a group 
velocity curve for a layered model with positive 
and negative parts in a seismological context, 
which anyhow gives tentatively evidence in the 
same direction.

Because d is not accessible analytically it 
was numerically calculated and depicted in 
Figure 2.

Apparently, the phenomenon is present in 
a range approximately 0.19 < n < 0.5 and 
has its maximum at about n ≈ 0.4375 = 7/16, 
where the P-wave velocity is the threefold of 
the S-wave velocity. Therefore, this special 
behaviour occurs in the whole range of 
practically important n- values with preference 
of higher values.

The special feature continues to appear for 
the “Layer Over Halfspace” (LOH) model as 
well, when the impedance contrast between 
layer and half-space is big enough. For lower 
impedance contrasts the picture is more 
complicated and some new effects occur, 
which are beyond this communication. Let us 
demonstrate the behaviour of the first higher 
mode for 2 simplified models TEX1 and TEX2 of 
the Texcoco region from Malischewsky Auning 
et al. (2006) and Malischewsky et al. (2010) 
with slightly modified parameters. Both models 
differ in their shear-wave ratios between layer 
and half-space, which is about 0.0256 for TEX1 
and 0.12 for TEX2. The parameters are given 
in Table 1.

Figure 1. Rayleigh-wave dispersion curves of the 
first higher mode for the LFB model with n = 0.37 

and n = 0.44, respectively

Figure 2. Dependence of d on 
Poisson’s ratio n.
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Table 1 contains also the model TEX1a, 
which differs from TEX1 only by a somewhat 
diminished n for the layer in order to 
demonstrate the greater effect in this case, in 
agreement with Figure 2. It is very likely that 
some regions, even within Texcoco, have not 
such an extremely high Poisson ratio as the one 
in TEX1. The dispersion curves for the models 
were calculated again with Mathematica, but 
the secular equation for LOH is by far too 
voluminous to be given here. The results for all 
3 models are included in Figure 3.

The described effect can be seen in a 
pronounced manner around F = 0.65 for TEX1a, 
but it also occurs in a not so pronounced manner 
around F = 0.725 for TEX1 and a bit weaker for 
TEX2 with a lower impedance contrast. Such 
effects appear for multilayered media too, when 
the impedance contrast at the bottom is high 
enough. The analytical results of Figure 3 were 
checked by using two numerical approaches. 
Namely, the one by Fuchs and Müller (1971), 
and also, by Schwab and Knopoff (1972) and 
a perfect coincidence was found. On the other 
hand, there are computer programs widely 
used for the calculation of dispersion curves 
which are simply not fit to handle the special 
cases described above. Thus, it is advisable 
in applying numerical schemes to be aware of 
the occuring peculiarities of dispersion curves 
under analysis.

Discussion

It is noticed that instead of C = C(F) the 
inverse function F = F(C) can be considered as 
a dispersion curve. In this case, an ambiguity 
will occur for fixed phase velocity with 2 
different frequencies when the curve C = 
C(F) has a local extremum, but this does not 
happen for the LFB and LOH models. Further, 
it should be noted that the occurrence of 2 

Table 1. Parameters for the models under 
consideration: b = shear-wave velocity, n = 
Poisson ratio, r = density, and h = thickness of 

the layer.

Model	 Layer	 b [m/s]	 n	 r [g/cm3]	 h[m]

TEX1	 1	 59.2	 0.4992	 1.1	 40
	 2	 2310	 0.2498	 2.6	 ∞

TEX1a	 1	 59.2	 0.4375	 1.1	 40
	 2	 2310	 0.2498	 2.6	 ∞

TEX2	 1	 56.5	 0.4375	 1.1	 40
	 2	 475	 0.2498	 2.6	 ∞

Figure 3. Dispersion curves 
of the 1. Fundamental, and 
2. First higher modes for the 
models TEX1, TEX1a and TEX2 
depicted with solid, dotted, and 

dashed lines, respectively.
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different phase velocities for a fixed frequency 
generates beats in the wave field. A standard 
dispersion analysis based on phase differences 
will inevitably fail in such cases. This analysis 
approach calculates the phase difference of 
the seismograms Fourier coefficients at two 
observation locations divided by the distance 
between these locations. The reciprocal of this 
value times the angular frequency is taken as 
the phase velocity. In the case, an ambiguity 
would occur the Fourier phase becomes 
meaningless with respect to phase velocity in 
the frequency band where three roots of the 
secular equation exist at each frequency. For 
the very same reason all methods must fail 
with the dispersion discussed here which rely 
on a unique dispersion relation kl(w) for the 
wavenumber kl of the l-th surface wave mode. 
This applies to the deconvolution method used 
by Sèbe et al. (2009) for the extraction of 
fundamental mode data as well as to phase-
matched filter techniques like those presented 
by Herrin and Goforth (1977) or by Russel et 
al. (1988) for example. Methods of wave field 
transformation (Forbriger, 2003; McMechan 
and Yedlin, 1981) however remain applicable 
for the purpose of dispersion analysis.

Likewise, methods of calculating synthetic 
dispersion curves might get into trouble. 
Commonly dispersion curves are constructed 
by finding the roots of the secular equation 
starting at the cut-off frequency. Roots for 
the same overtone are then searched with 
increasing frequency near the phase velocity 
value for the previous (smaller) frequency. In 
the current case the extremum of F(C) causes 
such algorithms to loose the dispersion curve, 
which first becomes stationary with frequency 
and then continue to decreasing frequency 
values.

So the influence of this special dispersion 
is two-fold: it produces a special wavefield, 
whose manifestation and influence for Mexico 
City has yet to be investigated in the future. 
On the other hand it requires care in inverting 
surface wave data for a correct underground 
model, which for its part is essential for the 
estimation of the seismic hazard.

The unusual cases described herein suggest 
care in the analysis of surface waves and may 
be a warning for the research community to 
explore these anomalous problems. In other 
context, the dispersion curves may seem usual 
but produce slowly attenuating leaky modes 
for a restricted set of mechanical parameters 
(García-Jerez and Sánchez-Sesma, 2015).

Conclusions

The special feature “unusual or equivocal 
dispersion curves”, although hardly known in 
seismology, seems to be rather common for 
higher mode Rayleigh waves in layered models 
with sharp impedance contrasts between layers 
and half-space and sufficiently high Poisson 
ratios in the layers. Just these conditions are 
fulfilled in the valley of Mexico City and these 
dispersion curves influence the surface-wave 
field and have to be kept in mind in processing 
the dispersion curves for model-parameter 
inversion. Although this research was focused 
on the characteristics of Mexico City soft layers 
like those found in the ancient Texcoco lake 
zone, the results are so general and should not 
be disregarded as exotic, strange phenomena. 
Certainly, the problem requires further scrutiny.     
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