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Resumen

El analisis multiresolucion basado en la
transformada ondicular discreta se incorpora al
procesamiento de sefiales sismicas. Esta técnica
de analisis permite descomponer una sefal
sismica en diferentes bandas de frecuencia,
y asi analizar la informacion contenida en
dichas bandas. El analisis de multiresolucion
permite visualizar en el dominio del tiempo
la informacion contenida en las bandas de
frecuencia. Las ondiculas usadas cominmente
en la transformada ondicular discreta presentan
un traslape entre escalas, lo que da origen a un
efecto aliasing e introduce informacién espuria.
La ondicula Vaidyanathan minimiza el traslape
entre escalas. Aplicamos esta ondicula a datos
sintéticos y a un cubo sismico 3D. De acuerdo
a este estudio, los efectos espurios generados
por el traslape entre escalas es minimizado con
la ondicula Vaidyanathan.

Palabras clave: analisis multiresolucion, des-
composicion espectral, transformada ondicular
discreta.
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Abstract

Multiresolution analysis, based on the discrete
wavelet transform, is here incorporated
in seismic signal processing. This analysis
technique enables decomposing a seismic
signal, in different frequency bands, and thus
to analyze the information contained in these
frequency bands. Multiresolution analysis
allows visualizing in the time domain the
information contained in the frequency bands.
Wavelets commonly used in the discrete
wavelet transform present an overlay between
scales, this constitutes an aliasing effect that
gives rise to spurious effects. Vaidyanathan
wavelet minimizes the overlay between
scales. We applied this wavelet to synthetic
data and to a 3D seismic cube. Accordingly,
spurious effects from aliasing generated by
overlay between scales are minimized with the
Vaidyanathan wavelet.
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decomposition, discrete wavelet transform.
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Introduction

Seismic signal analysis plays a key role in
petroleum exploration by helping to enhance
information difficult to visualize naked eye.
Today several techniques and algorithms are
used to interpret seismic 3-D data. Spectral
analysis comprises several methods that
enhance specific seismic information enabling
to solve stratigraphic and structural details (i.e.,
Rivera-Recillas et al., 2005 and Coconi-Morales
et al., 2010), to estimate reservoir dimensions,
etc. Fourier transform is commonly used to
analyze frequency content of a seismic signal.
However, when frequency content varies with
time, this tool cannot show time position of
the frequency content. Spectral content of
seismograms varies significantly with time,
i.e., they are non stationary and require non-
standard decomposition methods. The discrete
wavelet transform enables decomposing a non-
stationary time series in its different frequency
components and transforms the time domain
information into a time-scale domain where
scale is inversely proportional to frequency.

Discrete wavelet transform (DWT) is based
in filter bank theory. Convolution of a filter
bank with a signal provides frequency rank
windows. The filter banks for a particular
wavelet must satisfy two conditions; must be
of compact support and of zero average. This
tool enables separating high frequencies from
low frequencies and locating its position in
time. A growing number of geophysical studies
using DWT have provided satisfactory results;
however sometime, separation between
scales is not fully achieved due to an intra-
scale coupling effect. So that, an appropriate
wavelet is needed to conduct a successful data
processing based in this technique. There are
many wavelets but many present the aliasing
problem, here we present a performance
analysis of several wavelets with respect to
the aliasing effect in multiresolution analysis of
seismic signals. We tested the performance of
Vaidyanathan wavelet with a real 3-D seismic
cube data.

We first briefly introduce the wavelet theory.
Then we describe the Vaidyanathan wavelet.
We reconstructed seismic sections based in
the respective multiresolution analysis of the
Boonsville field seismic cube, located in north-
central Texas (Bureau of Economic Geology,
1996). The seismic cube is open access and
well documented.
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Theory

A signal can be expressed in terms of a
set of functions with different resolution.
Multiresolution based on the discrete wavelet
transform generates this function base, to each
resolution a certain information content of the
signal is associated. The theory of discrete
wavelet transform has been exposed in many
books (i.e., Hubbard, 1998; Chui, 1992; Dwight
and Olejniczak, 2003). This technique can be
developed on Daubechies’s (1992) pyramidal
algorithm where the discrete wavelet transform
is obtained by convolving the signal with a
quadrature mirror filter (QMF) bank, built from
a compact support and zero mean wavelet. The
wavelet is dilated to different scales by a factor
of two. Translation is done in binary form.

The dilatation and shifting of a wavelet
y(x), can be expressed as:

yx),, =2y x-k) (1)

where j denote scale and k translation. At small
scales, when the wavelet is contracted, high
frequencies are displayed; at great scales,
when the wavelet is expanded, low frequency
contents are obtained. From expression (1) two
functions are generated which are employed
in the decomposition: a wavelet function as
expression (1) and a scalar function as:

0(x),, =272 x—k) (2)

The functions w(x)/. , and (p(x)/. , generates
a sub-set of a vector space that spans signals
orthonormal to the analyzed signal.

The respective filter bank is constituted by
one high and one low pass filter. The low pass
filter is obtained from the wavelet function (),
while the high pass filter is obtained from the
corresponding scalar function (¢).

So, when the high pass filter is applied to
a non-stationary signal detailed coefficients
are obtained, and when the low pass filter is
applied to the same signal, we obtain smooth or
approximate coefficients. The detail coefficients
capture the top half frequency content of the
data while the smooth coefficients contain
the bottom half frequency content. This first
step corresponds to the first decomposition
level and is named first scale. To generate
the next scale the smooth coefficients are
used as input signal, and the above described
process is repeated (Figure 1). To decompose
the signal, a sub-sampling is done, because
the translation of a wavelet along the signal is
made in a binary form.
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Figure 1. Schema of DWT decomposition. The signal f is non-stationary, ¢ is the low pass filter, y is the high
pass filter, S, are smooth coefficients and D, are detail coefficients. The subscript indicates scale and 2| represents
a sub-sampling.

The wavelet coefficients can be inverse
transformed to exactly reproduce the original
time series. This is achieved by using the filter
bank in its synthesis form and reversing the
sequence of the forward transform algorithm
(Figure 2). Because the sub-sampling intro-
duced in the forward decomposition, in
reconstructing the signal it is needed an up-
sampling by 2, and this can be achieved by
adding one zero between two coefficients.

Vaidyanathan wavelet

As mentioned, discrete wavelet transform
uses a wavelet to build an analysis based in
frequency content, and such a wavelet can be
derived from a pair of filters which satisfies the
following frequency domain conditions for a
perfect reconstruction (Foster et al., 1997):

L(@)L(w)+ H@)H(w)=2 (3)
L@)L(w+7)+ H@)H@+7m)=0 (4)

where L(w) and Z(a)+7r) are an analysis low
pass filter and a synthesis low pass filter, derived
from a wavelet function (y), while H(w) and

ﬁ(a)+7r) are an analysis high pass filter and
a synthesis high pass filter, correspondingly,

obtained from a scalar function (¢). These

f*E_IPQZ_TLDl

conditions are known as normalization
(Equation 3) and aliasing conditions (Equation
4). If aliasing condition is not satisfied, aliased
energy will be present in the output signal. So
that, orthonormal filter banks that satisficed
this conditions are constructed by setting
(Foster et al., 1997):

HO)=e¢ ™ L(w+7) (5)

H(w)=e“L(w+7) (6)

these are known in the literature as a
Quadrature Mirror Filter (QMF). In wavelet
applications Finite Impulse Response (FIR)
filters satisfying conditions (3) and (4), are
compact support in the time domain, which is
important for space-time operations.

There exists a group of wavelets that satisfies
these conditions. The choice of a wavelet is very
important for any wavelet domain processing
application. In seismic processing it is desirable
a wavelet that produces an optimal separation
of information between scales and gives rise to
a minimum overlap. Thus we need a wavelet
which enables a perfect reconstruction and will
minimize any artifact that may be introduced
in the processing of a signal and appearing in
its reconstruction.
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Figure 2. Schema of DWT reconstruction. The signal fis reconstructed, ¢ is the low pass synthesis filter, v is the
high pass synthesis filter, S, are smooth coefficients and D, are detail coefficients. The subscript indicates scale
and 21 is an up-sampling. Sign of plus indicate one sum between up-sampled detail and smooth coefficients.
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There exists a two-channel QMF bank
which satisfies the condition for a perfect
reconstruction, and ensures a good stop-band
of frequencies. Vaidyanathan and Hoang.
(1988) introduced this filter. This wavelet is
known as Vaidyanathan wavelet (Figure 3).
We implemented the multiresolution analysis
and conducted a performance test of several
wavelets including the Vaidyanathan wavelet.

Programming

The programmed multiresolution analysis was
based on the pyramidal algorithm, and on the
1D discrete wavelet transform. The programmed
structure comprises five sub-programs to allow
an optimal execution (Figure 4).
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Figure 3. Vaidyanathan wavelet (Vaidyanathan and
Hoang, 1988).

The objective of the first program is to
communicate with the user (i.e., a friendly
interface). Several windows enable the user to
input the data file, to select a wavelet, as well
as the scale or resolution level to be displayed.

The second sub-program distributes this
information to other three sub-programs. The
third sub program allocates enough space
for all of the needed variables. The fourth
subprogram contains all information defining
each of the wavelets contained in the catalog
shown in the first subprogram. Finally, the fifth
subprogram performs the wavelet transform
by means of the pyramidal algorithm.

This last subprogram analyses the seismic
information trace by trace. It handles in this
way a 3D data volume. When the user wants
to elaborate a time-slice, this program shows
the values at the user selected time. The case
of one horizon is managed similarly.

Performance assessment

To assess how well isolated is the frequency
content associated with a given scale was the
goal of this study (i.e., which wavelet does
preserve the power spectrum in an optimum
way). Figure 5 shows a signal created by
summing a series of sines with frequencies
between 30 and 211 Hz. This signal encompass
a wide frequency range: it has a 511 msec
length and a sampling rate of 1 msec. It can
be considered a non-stationary signal. This
is not a seismic signal but is useful to assess
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allows to select the available
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Figure 4. Structure of the developed program based in object oriented programming.
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Figure 5. Signal created to assess the performance of several wavelets in multiresolution analysis. This signal is
a sum of sine functions in the frequency range from 30-211 Hz.

the performance, in multiresolution analysis, Figure 6 shows the power spectrums of the
of the following wavelets: Haar, Symplet, original signal and those corresponding to the
Coiflet, Daubechies (wavelets employed in second level (or scale) of the multiresolution
Matlab, Misiti et al., 1996) and Vaidyanathan analysis based on the above mentioned
(Vaidyanathan and Hoang, 1988). wavelets.

Amplitude Spectrum of original signal and second decomposition scale

E -
signal original
—— Haar
1 — Sympletd
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Figure 6. Power spectrums obtained from the multiresolution analysis using several wavelets. In blue line

is presented the power spectrum of the original signal (Figure 5). Also, are presented power spectrums of

multiresolution analysis based on the Haar, Symplet, Coiflet, Daubechies, and Vaidyanathan wavelets. The signal
reconstructed corresponds to the second scale.
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To the second decomposition scale
approximately corresponds the frequency
content between 125 and 250 Hz of the
original signal. The original signal (blue line)
power spectrum has a stronger gradient
towards approximately 170 Hz. In this
portion, the reconstructed spectrums from
the multiresolution analysis based on Haar,
Symplet, Coiflet, Daubechies wavelets show
spurious effects. The exception corresponds
to the Vaidyanathan wavelet. At 350 Hz
approximately, Haar, Symplet, Coiflet,
Daubechies wavelets produce a spurious pike,
possible an armonic from the information
contained in the frequency range of the second
scale. We can see that for the Vaidyanathan
wavelet this effect is minimum.

This performance analysis indicates that
the Vaidyanathan wavelet best preserves the
original signal power spectrum (i.e., it distortsin
a minimum degree the spectrum of the original
signal), so that, in particular, this wavelet is
very well suited to conduct the multiresolution
analysis (trace by trace in this study) of 3D
seismic data, where it is very important to
preserve the original seismic amplitude and no
to introduce artifacts.
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Example of multiresolution of 3D seismic
data

Boonsville 3D seismic data

Boonsville 3D seismic dataset were obtained in
the Jack and Wise counties, Fort Worth Basin,
north—central Texas (Figure 7). The study area
comprises approximately 67 km?. The data are
well documented and can be acquired from the
Bureau of Economic Geology. Vaidyanathan and
Hoang, (1988) wavelet based multiresolution
analysis of the Boonsville 3-D seismic cube is
now presented.

The data length is two seconds, sampling
of the seismic data were done at 1 ms (Bureau
of Economic Geology, 1996), with a 500 Hz
corresponding Nyquist frequency. The dominat
frequency is 57 Hz, with mean velocity of 3,600
m/s. According to Rayleigh criterium, the
corresponding vertical resolution only allows to
study layers with a thickness > 15 m.

Figure 8 shows the Boonsville seismic 3-D
cube layout and the location of the oblique
section used to illustrate the performance of
the multiresolution analysis. This section was

Figure 7. Boonsville study area is located between Jack and Wise counties , in North-Central Texas.
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created to pass through two wells (BY11 and
BY13 wells), because we wanted a zoom along
of the well length to see information at detail.
Figure 9 shows the seismic events along this
oblique section, in the right lower part it is
showed the respective power spectrum. We
can shown that approximatly the dominant
frequencies range from 30 to 115 Hz. We use
one scale within this dominant frequency range
to conduct an multiresolution analysis using
Vaidyanathan wavelet and the Daubechies
wavelet of order 10 (see Figure 6).

Figure 10 shows the reconstructed section
using only the fourth scale (frequency
content between 31.25 and 62.5 Hz). The
respective multiresolution analysis was based
on Vaidyanathan wavelet. Figure 11 presents
the corresponding fourth scale obtained from
the Daubechies wavelet of order 10 based
multiresolution analysis.

The power spectra of the reconstructed
sections based respectively on the Vaidyadanath
and Daubechies wavelets (Figures 10 and
11) indicate that the aliasing effect due to

the Vaidyanathan wavelet is not visible (i.e.,
negligible). However, the Daubechies wavelet
of order 10 introduces high frequencies
armonics enclosed by black elipsoids (i.e., a
noticeable effect).

We can note that the seismic horizons in
Figure 10 correlate quite well with the original
seismic information. The seismic horizons in
Figure 11 correlate fair well with then original
seismic horizons. However, seismic horizonts
in Figure 10 change its position along the
seismic section in a smooth manner, but the
seismic horizons in Figure 11 presents jumps.
We believe that it is due to high frequency
associated with the high frequency armonics
introduced by the Daubechies wavelet of order
10 (see the power spectrum of Figure 11).

Finally, Figure 12 shows the FFT based
bandpass filtered section of the original data.
The band pass filter encompasses the fourth
scale frequency range (31.25 - 62.5 Hz).
Figures 10 and 12 correlate very well, which
illustrates how the Vaidyadanath wavelet
minimizes the aliasing effect.
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Figure 8. Locations of BY11 and BY13 wells in the Boonsville 3-D seismic cube. An oblique section through these
wells was generated to test with a zoom along well lenghts.
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Figure 9. Oblique seismic section with original seismic (location in Figure 8) through wells BY11 (right) and BY13
(left). In the right lower part it is shown the respective power spectrum.
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Figure 10. Seismic section reconstructed only from the fourth scale (31.25 to 62.5 Hz) using Vaidyanathan
wavelet. In the right lower part it is shown the respective power spectrum.
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Figure 11. Seismic section reconstructed only from the fourth scale (31.25 to 62.5 Hz) using Daubechies wavelet
of order 10. In the right lower part it is shown the respective power spectrum. Black ellipses indicate aliasing effect.
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Figure 12.- Seismic section reconstructed from bandpass (using Fourier Transform) in frequency range of 31.25
to 62.5 Hz. In the right lower part it is shown the respective power spectrum.
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Conclusions

This study reports a performance analysis of
the Vaidyanathan wavelet that minimizes the
aliasing effect (Figures 5 and 6) (Vaidyanathan
and Hoang, 1988). Several wavelets have been
tested with a synthetic signal and with a real
3-D seismic dataset. The best results were
obtained with Vaidyanathan wavelet.

This study has illustrated how a discrete
wavelet transform based multiresolution
analysis makes possible separation of the
information content of a non-stationary signal in
different frequency ranges. This descomposition
provides the seismic interpreter frequency
information of interest that might not be visible
in band-pass filters. This numerical study
shows that several wavelets can be used with
this technique, but it is important to select the
appropriate wavelet, because a bad selection
can give rise to spurious effects (i.e., artifacts)
due to the overlay between scales, causing that
the amplitude of the frequency content of some
frequencies be enhanced, and the seismic
interpreter can be mislead with these artifacts,
and consider them subsoil information.
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