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Resumen

Se utilizé el andlisis de componentes principales
de dos dimensiones (2DPCA) para determinar
el contenido total de electrones de la ionosfera
(TEC), una anomalia de dos dimensiones
después del terremoto Egeo-Sea en 09:25:03
(UT) el 24 de mayo del 2014 (Mw = 6.4).
Posterior al terremoto la anomalia TEC fue la
mas intensa y se localiz6 en 9:30-09:35 (UT).
Esta es una razon potencial para la formacion
de la anomalia TEC, lo que podria ser una
fluctuacion fuera de lo normal. Por ejemplo, la
variacion de la densidad de los electrones se
elevd a alta velocidad de la onda de choque
acustico con la velocidad de al menos 1.818,18
km/h.m/s, dada por el movimiento principal del
terremoto. El tiempo de duracién de la anomalia
TEC era de al menos cinco minutos. El tsunami
fue causado por un terremoto con epicentro
en el mar, la fluctuacion anémala podria ser
un signo precoz para las regiones lejanas del
epicentro cuando comenz6 a propagarse, ya
que el tsunami llegdé a ellas mas lentamente
que las fluctuaciones anémalas.
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contenido total de electrones bidimensional
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Abstract

Two-dimensional principal component ana-
lysis (2DPCA) has been used to determine
ionospheric two-dimensional total electron
content (TEC) anomaly after Aegean-Sea
earthquake at 09:25:03(UT) on 24 May,
2014 (M, = 6.4). The TEC anomaly was
more intense localized at 09:30 to 9:35 (UT)
post the earthquake. Potential reason of the
TEC anomaly, which might be a anomalous
fluctuation e.g., electron density variation, is
rising high speed acoustic shock wave with
the speed of at least 1818.18 Km/h. m/s
resulted by the mainshock of the earthquake.
The duration time of the TEC anomaly was at
least 5 minutes. The anomalous fluctuation
could be an early warning for the regions far
from the epicenter when it began to propagate
because the tsunami arrived at the far regions
very slower than anomalous fluctuation if
the tsunami was caused by earthquake with
epicenter in the sea.

Key  words: Two-dimensional principal
component analysis (2DPCA), two-dimensional
total electron content (TEC), Aegean-Sea
earthquake, acoustic shock waves.
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Introduction

Ionospheric total electron content (TEC)
anomalies associated with large earthquakes
have been widely researched both as precursors
and aftereffects (Artru & Lognonné, 2001;
Garcia et al., 2005; Hegai et al., 2006; Liu et
al., 2009; Liu et al., 2006; Lognonné et al.,
2006; Marchand et al., 2008; Pulinets et al.,
2000; Pulinets & Boyarchuk, 2004; Pulinets,
2007; Singh, et al., 2010; Zhao et al., 2008).
The exact causes of earthquake associated
precursor TEC anomalies are not known;
however, there are many possibilities including
gravity waves generated by the solid-earth
and sea, as well as lower atmospheric electric
fields resulting from earthquake preparation
processes that can be transferred into the
ionosphere along geomagnetic lines (Pulinets,
2004). Regardless of the specific causes of
earthquake-precursor TEC anomalies, their
earthquake association has been established
statistically using deviations from running TEC
median values after eliminating other possible
causes of TEC disturbance such as solar flare
and geomagnetic storm activity (Lin, 2010).
The TEC anomalies were most likely caused
by acoustic gravity waves traveling from the
earth’s surface into the ionosphere (Artru et
al., 2001; Garcia et al., 2005; Lognonné et
al., 2006; Marchand et al., 2008; Pulinets et
al., 2000). The mechanism for this is thought
to be earth’s atmosphere acting as a natural
amplifier. During an earthquake tiny amounts
of kinetic energy are transferred from the
solid earth to the lower atmosphere. If this
kinetic energy is conserved, then given the
exponential decline in atmospheric density
with height, waves of great amplitude can
result in the ionosphere. It has been estimated
that millimeter disturbances at the earth’s
surface can be amplified to waves of amplitude
100 m at 100 km altitude (Artru, et al., 2001;
Lognonné et al., 2006). A study by Lognonné
et al. (2006) wusing ground based GPS
receivers to detect post-seismic ionospheric
disturbance found that the measurable impact
of the gravity waves resulting from the Nov.
3. Denali, Alaska M=7.9 earthquake produced
small but detectable changes in the TECu
count of 0.1% peak to peak. This disturbance
was detected by 6 other satellites. Lognonné
et al. (2006) also measured the effects of near
field seismic waves for the Hokkaido Tokacho
- Oki earthquake of Sept. 25, 2003. In that
experiment, they found that acoustic waves
could be detected as high as 800 km, they also
measured the gravity wave impact for the same
earthquake and got similar results to those for
the Alaskan Denlai earthquake in terms of TECu
disturbance. One issue, however, with all TEC
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measurement is the nature of the ionosphere.
The electron content of the ionosphere is
highly dynamic plasma so that establishing
anomalies and event association is not easy.
For example, determining a running median of
TEC content before large earthquakes to search
for precursor TEC anomalies is difficult and
may not always be reliable because TEC can
be affected by many factors. Pulinets (2004)
makes an extensive list of possible causes,
including radon gas release, causing lower
atmospheric electric fields which travel up
into the ionosphere along geomagnetic lines.
Freund (2003) suggests P-type semiconductor
effect as the cause of lower atmosphere
electric fields. Recent studies have shown
that earthquake-related TEC anomalies are
detectable using principal component analysis
(PCA) (Lin, 2010, 2011). PCA is an alternative
pure mathematical method for the measuring
TEC anomalies. The method relies on exploiting
signal delay between global positioning system
(GPS) satellites and ground receiver stations
without direct observation of ionospheric TEC.
The long term period variance of ionospheric
TEC (Lin, 2010) does not affect the outcome
of the results using PCA and the potential
influence of other factors such as solar flares
and geomagnetic disturbance are eliminated
using relevant Kp indexes statistically. While
these PCA experiments were able to detect and
even describe the spatial pattern or physical
shape of earthquake-related TEC anomaly
(Lin 2011), PCA might not be as useful as
two-dimensional principal component analysis
(2DPCA) in the detection of TEC anomalies
when applying to two-dimensional TEC data.
Therefore, the goal of this study is to examine
the ionospheric TEC anomaly related to
Aegean-Sea earthquake (40.313°N, 25.453°E)
at 09:25:03UT on 24 May, 2014 (M = 6.4) with
the depth of 10.0km (U.S. Geological Survey)
using 2DPCA. Possible causes of discovered
anomaly will be discussed. It is expected that
at the time 09:25 to 09:35 UT, ionospheric
TEC behavior should be complicated showing
large earthquake-related anomaly shortly
after or during the mainshock like the results
of Liu et al's work (2011) while tsunami did
not occur to affect the ionosphere. The TEC
data (two dimensional TEC data, F-layer) are
derived NASA Global Differential GPS system
(GDGPS) and global TEC maps (GIMs) in this
study are derived using TEC data from ~100
real-time GDGPS tracking sites, augmented
with additional sites that are available on 5
minutes basis. The integrated electron density
data along each receiver-GPS satellite link is
processed through a Kalman filter. Processing
to estimate TEC value needs to consider some
biases (influences) during restore of TEC
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values from measurements of dual-frequency
delays of GPS signals, which related with cycle
slips, resolving of carrier phase ambiguity,
determination hardware delays for phase, code
measurements, tropospheric and multipath
problems. The Kalman filter has been used to
estimate the TEC with less bias (Kechine et
al., 2004; Ouyang et al., 2008) (http://www.
gdgps.net/system-desc/index.html).

Method
2DPCA

For 2DPCA, let signals are represented by
a matrix A (the dimension of n x m). Linear
projection of the form is considered as followed
(Sanguansat 2012),

y=Ax (1)

Here x is an n dimensional project axis and
s is the projected feature of signals on called
principal component vector.

S =E(y-Ey) (y-Ey)" (2)

Here Sx is the covariance matrix of the
project feature vector.

The trace of Sx is defined;
J(x) =1r(S), (3)

tr(S) = tr{x'Gx},
where G = E[(A-EA)" (A—EA)] (4)

The matrix G is called signal covariance
matrix. The vector x maximizing Eq. 4
correspondstothelargest (principal) eigenvalue
of G, and let the largest eigenvalue be the most
dominant component of the data, therefore
largest eigenvalue is represented the principal
characteristics of the data (Sanguansat 2012,
Jeong et al., 2009). 2DPCA can be removed
small sample signal size (SSS) problem
for two dimensional TEC data (Fukunnaga,
1991). The PCA converts the measurements
into one-dimensional data before covariance
matrix calculation (Yang et al., 2004). The
covariance matrix of PCA is based on an input
matrix with the dimension of m x n, which is
reshaped from one-dimensional data (length
of m multiplying n). Reshaping data will
cause computing error because PCA is a tool
to deal with one-dimensional data. It means
that the spatial structure and information can
not be well preserved due to some original
information loss when inverting to original
dimension (Kramer, 1991) under the condition

of the matrix being small sample size (SSS).
Such information loss is called SSS problem.
However, the covariance matrix in 2DPCA is full
rank for a matrix of low dimension. Therefore
the curse of dimensionality and SSS problem
(low dimensional data problem) can be
avoided (Kong et al., 2005; Sanguansat 2012).
TEC data are examined to detect earthquake-
related TEC anomaly and GIMs are only used
to observe TEC situation in this study.

TEC Data Processing 2DPCA

Figure 1(a) shows the GIMs during the time from
09:25 to 09:35. The earthquake-related TEC
anomalies are not easy to observe using e.g.
determining a running median of TEC content
to detect a TEC anomaly (Liu et al., 2006).
The TEC data of the global region (not dividing
the GIM for image processing) in Figure 1(a)
are divided into 600 smaller areas 5 and 2.5
degrees in longitude and latitude, respectively.
The size of each small area is 12° in longitude
and 9° in latitude. The spatial resolution of
the TEC data for GDGPS system is 5 and 2.5
degrees in longitude and latitude, respectively
(Hernandez-Pajares et al., 2009; Chen and
Gao 2005; Gao and Chen 2006) (http://www.
gdgps.net/system-desc/references.html) and
therefore 4 TEC data (two-dimensional data)
are take in each area. The TEC were anomalies
usually spread widely from the epicenters of
large earthquakes from the results of Artru,
et al. (2001) and Lognonné et al. (2006) and
Hobara Parrot (2005). Therefore earthquake-
related TEC anomaly is detectable for such
selected size of an area. The 4 TEC data form
a matrix A of Eq. 1 with the dimensions of 2
x 2 as small sample signal size (SSS) in each
are of Figure 1 (a). This allows for principal
eigenvalues to be computed for each of the
600 smaller areas.

Results

The respective results are given in Figure
1(b). The representative of large principal
eigenvalues in the Figs 1(b) shows the
existence of earthquake-related TEC anomaly
represented by a large principal eigenvalue at
the time 09:30-09:35. Non-earthquake TEC
anomalies (e.g. EIA) are therefore suppressed
by large principal eigenvalues defining as
earthquake-related TEC anomaly. It means
that if the largest principal eigenvalue related
to the earthquake was taken out, then non-
earthquake TEC anomalies would reveal
clearly. Therefore the TEC anomaly related to
this earthquake should be very large due to its
large magnitude (M, = 6.1) and shallow depth
(10.0km). The possibility of other factors such
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Figure 1(a). These figures show the GIMs during the time from 09:25 to 09:35 (UT) on 24 May 2014.
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Figure 2. shows the Kp indices from 22 May to 24 May 2014.

as solar flare and geomagnetic effects affecting
the results are considered by examining Kp
indices (Elsner and Kavlakov, 2001; Hamilton
et al., 1986; Mukherjee, 1999). July, 2 was
geomagnetic quiet day shown in Figure 3
(Kp<4).

Discussion

2DPCA was able to detect a TEC anomaly
related tot this Earthquake at the time 09:30
to 09:35 UT. Identifying precise cause of
earthquake related TEC anomalies is not easy.
One reason for this is the number of potential
causes of earthquake related TEC anomalies
that arise during earthquake preparation, the
mainshock, and aftershocks. For example
during the earthquake preparation phase,
Pulinets and Boyarchuk (2004) suggested
that radon emanating from active faults and
cracks before earthquakes ionize the near
ground atmosphere to produce large vertical
electric fields. Freund (2000) proposed that
mobile positive holes in the earth’s crust could
be activated by low-energy impact, sound
waves, and micofractures, creating charge
clouds that could explain electromagnetic
activity. Gravity waves arising from fine
vibrations in the earth’s surface leading to
gas release are another possibility. This
results in lower atmospheric turbulence and
eventual ionospheric perturbations (Molchanov
and Hayakawa, 1998). However, once an

earthquake occurred, then the most evident
physical mechanism was ground motion and
fine surface vibrations. Accordingly, studies
of electromagnetic disturbance suggested two
possible explanations for earthquake-related
anomalies at this altitude. One was acoustic
gravity waves caused by Joule heating (Hegai
et al., 1997) and the other was the presence of
an electric field creating large scale ionospheric
density irregularities (Liu et al., 2004; Pulinets
and Legen’ka, 2003) coupled with potential drift
of the anomaly toward the equator. However,
this anomaly resembled what one would expect
from rising acoustic gravity waves because of
strong motion. As discussed in the introduction
earth’s atmosphere could act as a natural
amplifier due to declining atmospheric density
with height. A large earthquake, such as this
earthquake, was characterized by many fine
vibrations at the earth’s surface which could
produce a vertical stark acoustic pressure wave
of great amplitude by the time it reached the
ionosphere. Such a description could possibly
represent the stark and concentrated energy
of an acoustic shockwave being formed in
the lower atmosphere after the earthquake
traveling up into the ionosphere (Jin et al.,
2010). This was the possibility described in
the introduction to this study whereby high
speed acoustic shock wave with the speed
of at least 1818.18 Km/h. m/s caused by
stark strong motion at the earth’s surface
are amplified through the atmosphere to
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affect an anomalous fluctuation e.g., electron
density variation in the ionosphere from the
earthquake zone. The computing process of
the shock wave speed was as follows; the time
difference from original time of the earthquake
to beginning time of TEC anomaly is 297 sec,
and the F-lay is above 150 km, then 150 km +
297 sec is about 1818.18 Km/h. The duration
time of earthquake-related TEC anomaly was
estimated at least 5 minutes. The duration
time of TEC anomaly might correlate with the
damping of ionospheric plasma. The anomalous
fluctuation could be an early warning for far
regions when this anomalous fluctuation
beginning to propagate. The tsunami arrived
at the far regions very slower than such
anomalous fluctuation when the tsunami
was caused by earthquake with epicenter
in the sea (Liu et al., 2011). Afraimovich et
al. (2001) researched shock acoustic wave
due to occurring of the earthquakes to affect
ionosphere. They studied the earthquake effects
in Turkey on 17 August and 12 November 1999
and in Southern Sumatra on 04 June 2000 and
found the ionospheric response related to the
earthquakes due to shock acoustic wave is 180-
390 s. Compared with the result of this study,
2DPCA has shown its advantage and credibility
to estimate the duration time of earthquake-
related TEC anomaly.

Conclusion

2DPCA had the advantage to detect the TEC
anomaly related to the 24, May 2014 Aegean-
Sea Earthquake. Results have shown that a
local ranging TEC anomaly was detectable at
the time 09:30 to 09:35 UT. The earthquake-
related TEC anomaly could be indicative of a
rising high speed acoustic shock wave with
the speed of at least 1818.18 Km/h. m/s and
might cause a TEC anomalous fluctuation
e.g. density variance. The duration time
of the TEC anomaly was at least 5 minutes.
The anomalous fluctuation could be an early
warning for far regions when this anomalous
fluctuation propagating.
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