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Resumen

Se introduce una solucién integral para el
problema directo de la respuesta geoeléctrica
DC para cuerpos tri-dimensionales en un semi-
espacio, mediante las funciones de Green. El
primer algoritmo que se presenta se basa en
el método integral de volumen (MIV); aqui,
Unicamente la corriente eléctrica primaria se
utiliza para calcular el potencial eléctrico. El
segundo caso emplea el método integral de
superficie (MIS), en donde se asume que la carga
inducida es debida al campo eléctrico primario.
Ambos algoritmos son una combinacién de
integrales de volumen y de condiciones de
frontera. Este articulo muestra la aplicabilidad
de estos algoritmos para generar imagenes de
perfiles de resistividad que reproducen algunos
arreglos de electrodos para ejemplos sintéticos
tradicionales, y posteriormente estas imagenes
se comparan con resultados ya publicados en
la literatura. Finalmente, la comparacion entre
estos resultados muestra que el concepto de
carga inducida utilizada en MIS produce una
mejor aproximacién, que el esquema MIV en el
cdlculo del potencial eléctrico.

Palabras Clave: Modelo eléctrico 3D, funciones
de Green, método integral, teorema de Gauss,
condiciones de frontera.
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Abstract

An integral solution of the forward DC geoelectric
response for three-dimensional target-bodies in
a half-space, based on Green’s functions, is
introduced. The first algorithm presented is
based on a volume integral method (VIM); here,
only the primary electrical current is involved
to compute the electric potential. The second
one employs the surface integral method (SIM),
and it is assumed the induced charge is due
to the primary electrical field. Both algorithms
are a combination of boundary and volume
integrals. This paper shows the applicability of
these algorithms to generate resistivity profile
images reproducing some electrode arrays for
traditional synthetic examples, and then these
images were compared with already published
results. Finally, the comparison between results
shows the concept of induced charge used in SIM
produces a better approach than VIM scheme in
computing the electrical potential.

Keywords: 3D electrical model, Green’s
functions, integral method, Gauss theorem,
Boundary conditions.
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Introduction

The last three decades have been characterized
by an increased use of computerized methods
in the interpretation of geoelectrical data, due
to the evolution of the computer systems. Most
reconstructive algorithms are iterative and need
a forward solution, i.e., to compute the electrical
response for a given resistivity distribution
and a given set array of current injection
electrodes. Thus, the electrical potential needs
to be calculated at a set of measured points.
This forward problem consists on solving an
elliptic partial differential equation (PDE): the
Poisson equation, with boundary conditions.
The formulation leads to solve a system with
two kinds of unknown quantities: the electrical
potential and a current-related quantity.

The PDE problem is usually solved with
finite-difference schemes that specially has
been helpful to compute the apparent electrical
resistivity in a two-dimensional medium (e.g.
Forsythe and Wasow, 1960; Mufti, 1976; Dey
and Morrison, 1979; Marchuk, 1989; Thomée,
1989; Spitzer, 1995; Zhang et al., 1995; Loke
and Barker, 1996). Another scheme extensively
used in solving this PDE problem has been finite-
element scheme (e.g. Coggon, 1971; Strang
and Fix, 1973; Wait, 1977; Fox et al., 1980;
Pridmore et al., 1980; Johnson, 1987; Ciarlet,
1991; Sasaki, 1994; Tsourlous and Ogilvy;
1999; Li and Spitzer, 2002, 2005; Marescot
et al., 2008; Ren and Tang, 2010). Finite
volume schemes have also produced excellent
results in computing electrical resistivity (e.g.
Snyder, 1976; Baliga and Patankar, 1980; Cai
etal., 1991; Eskola, 1992; Perez-Flores, 1995;
Perez-Flores et al., 2001; Lebdn-Sanchez, 2004;
Pidlisecky et al., 2007). The methods based on a
finite-element scheme have been widely studied
in the past 40 years and give rise to very high-

z=0

performing techniques as mixed methods (Lesur
etal., 1999), or h-p methods (Babuska and Suri,
1994). Nevertheless, the already mentioned
methods lead to very large systems of linear
equations, which are very demanding even for
the supercomputers.

One limitation in integral methods is the
heterogeneity of the medium and the geometrical
complexity of the bodies immersed in the
modeled medium. An alternative to reduce this
limitation is to propose a linearization procedure
or some hypothesis about the interaction
between bodies, as the weak scattering problem
(Eskola, 1992; Hvozdara and Kaikkonen, 1998).
Such alternatives make integral equation
method a good option to solve PDE, since this
method does not need linearization, even in the
case of bodies with complex geometry.

The boundary-element methods (BEM)
(Okabe, 1981; Nedelec, 1985, 1994; Wendland,
1987) can be thought as a particular version
among the finite-element methods. An example
of the application of this method to 3-D electrical
modeling can be found in Poirmeur and Vasseur
(1988). In this methodology, only the boundaries
between media, of constant resistivity, need
to be discretized and integrated. Therefore,
unbounded homogeneous media are easily
treated, and 3-D problems are solved using
only 2-D integrals. Moreover, the boundary-
element method can be coupled with standard
finite element methods. The modification of the
integral equations method with BEM, introduced
by Hvozdara and Kaikkonen (1998), is physically
more meaningful and not so much demanding
on computer resources, which made the method
more accessible for routine prospecting work.

This work follows the integral solution of the
forward DC geoelectrical problem introduced
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Figure 1. Conceptual model
of a heterogeneous half-space
formed by some bodies, with
different but constant resistivity
values, O) """ Pg, immersed in
a homogeneous medium with a
constant resistivity value 0.
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by Hvozdara and Kaikkonen (1998; Hvozdara,
1982), which consists of interpreting the electric
response of three-dimensional disturbing body
of non-uniform conductivity, immersed in a
planar homogeneous half-space, under the
assumption of weak scattering (Figure 1). In
this research two algorithms are proposed to
solve this forward problem, by introducing the
resistivity contrast between bodies and the
homogeneous half-space and the concepts of:
additive potential sources for immersed bodies
and density surface charges, which result in two
types of solutions: volume (VIM) and surface
integral methods (SIM). SIM and BEM use the
same theoretical background but the boundary
surfaces in SIM are not discretized and therefore
no finite element is employed. SIM and VIM are
used to solve the geoelectrical problem, with
mixed boundary conditions, by considering a
dipole-dipole electrode array to reproduce an
electric tomography profile. The results of some
synthetic examples are compared with those
obtained by alternative methods in solving
PDE already published by other authors (e.g.
Tsourlos and Ogilvy, 1999; Pridmore, 1978;
Hvozdara and Kaikkonen, 1998; Perez-Flores
et al., 2001).

Theoretical Setting

For a 3D heterogeneous half-space with a
resistivity p (7), the total electric potential for a
point source at the surface z =0, is expressed
by:

V- {VUEF)} =-I8(F) z=20
p(r)
oU(F) _ 0

Z
d(z) boundary conditions
U(r)=0whenr —eand z>0

(1)

This PDE problem with boundary conditions
can be rewritten as:

VAU(F) = ~1p(F)3(F) — p(F)V(1)p(F))-VU(F)
(2)
One solution for this equation can be

expressed for the potential U(r) using the
Green’s theorems and Green’s function method:

UGF) = jV'U(f) V'GF,F)dV - cﬁU(f)V'G(f,f‘) .dS
14 S (3)

where 7'=(x',y'.z") is related to local
coordinates system, T =(X,y,Z) related to

global coordinates system, and gi denotes the

S
integral over the boundaries s. In particular the
integral over all boundaries can be written as:

95U(f)v‘c(f,?‘) -dS = 95 UGF)VGF,F)-dS + ?U(?)V‘G(f,f'ydi

z=0 S,

r —> oo

Where 9SU(F)V‘G(?,?)-£=0 if

due to the b%undary conditions (Hvozdara and
Kaikkonen, 1998), and G is the Green'’s function.
Green'’s function, G, is is defined for a half-space
problem (eq. 3) for Neumann condition, where

[a%z o

VUGFE")=-EF') and by

E(7') = p(F)J (7"), the expression (3) can be
rewritten as

using

UF")=- fp(? N (F")V'GF,(FHdV @

The Volume Integral Method (VIM) evaluates
U(r) from equation (4), so it is necessary to
know the current density function J(7) in
half-space. The computation of J(¥) is not
an easy task, since there are several types of
currents involved, particularly those present
in the heterogeneous half-space. The “weak
scattering problem” assumes that the primary
conduction current is more significant that the
secondary, that is ‘Jz(?)‘ <<G‘Jp(;7)‘ (Eskola,

1992). Due to the interaction between bodies,
we can express Jp(?) as:

jp(;)_i (x = x)i +(y=ys)j - 2k

3
2T (= x)? + =y + 227
(5)

where sub-index s represents the location of
source electrodes.

The Neumann Green function for half space
can be defined, as was done by Kaufman (1992)
as:

G = — + 7
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where rg = (x — x)* + (y — y")>. Introducing this
definition into eq. 4, and evaluating eq. 5in 2
=0, it becomes:

(x' X\)()C*X’)Jr?(y'fx)(y—y')—z'2
[(v-x) +(=n) +27] A[(X-A")z +(y-y) +27]

U<r)———f BN p(x',yxz'z|dv

(7)

Gbémez-Trevifio (1987), Pérez-Flores et al.
(2001) and Ledn-Sanchez (2004) used a similar
relation to estimate the apparent resistivity
0,(7) in a heterogeneous half-space.

Also U(F) can be expressed as a surface
integral, leading to the Surface Integral Method

(stm).if p(7)J (F)= E,(F) = E, (¥) + E, (F)

then eq. (4) can be rewritten as:
U(F)=~[E,7)-VG(F.F WV - [E,F)V G(F.F v
) ) (®)

Here Ep (7) is the primary electrical field due to

the point source and E, (') the secondary electric
field due to the heterogeneities of the medium.

The first term of the right hand of equation
(7) is equal to the primary source’s potential
U (r) The second term implies the whole half-
space volume. This integral could be separated
in volumes for each heterogeneous body, for
instance if we define:

_JE;(?).VG(ZF)dV=i§N‘;£EZI(?)-VG(ZF)d%.

v (9)

Using the next vector property for each V,
V(EFIOGH)=EF) volr) o)y E)
(10)

and assuming that the resistivity of each body
within the half-space (Figure 1), is constant, then

\A ~E2 (F") = 0. Thus, we can use the divergence
theorem for each V, and eq. 8 becomes:

jEz V'G(rr)av, = j\ [E=(7)G(r) Jav, = jGrr (r)s,
' (11)

This equation should be applied to the whole
surface delimitating each immersed body; in our
case, we assume the body as a regular prism.
Then, the corresponding integral for the case of
two contiguous prismatic bodies (b,,b,) with a
common surface, is:
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f(E”z( ) E”’l F))G(;’P)';lbl,bzdS

S (12)

Where n, is the unit normal vector of the
surfaces (1, 2) between the two bodies.

The boundary conditions allow to define:

o, (7)

(E,,, 7= E,, 7)) 7y, =
(13)

where GS(F‘) is the density surface charges and
g, is the free-space electrical permittivity.

Taking into account the equations (10 to 13),
the electric potential (eq. 7) is rewritten as:

0(7)-0,(7)+ 330 [Pl

14)

Where number 6 denotes the total number
of surfaces of one prismatic body and M the
number of bodies within the half-space, this eq.
constitutes the SIM.

Eskola (1992) has obtained an expression
similar to equation (14) using different analytical
approach, under the same type of hypothesis.

However, a problem to solve is to know o7’

(the density surface charges) for each surface
of the each prismatic body. Kaufman (1992)

1 .
expressed O\7 | for two contiguous surfaces

as:
o(r)=2e, 2P (7))
p2 + pl
where
NG NG AN,

2
(16)

If we neglect the normal electrical secondary
field in expression (16), i.e. E"zblzr'iand,
E" 2., ( j then the equation (15) becomes:

Py =P (= _ n
o,(r)= 2gopi+piE( )—2£0R12Ep£:7))

Where, R,,, is the reflectivity coefficient
between surfaces. This expression is the
approximation of the induced surface electric
charge and it is equivalent to the so-called “weak
scattering problem”.
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Numerical Approach

Equations (6 and 14) are expressed in arbitrary
coordinate systems with a fixed origin. However,
to solve the corresponding integrals we redefine
the origin of the coordinate system at the middle
point of the prismatic body; that is the “/ocal
coordinate system”. The transformation between
both coordinate systems will be defined as
follows: Assuming P an arbitrary point in the
space, its position vector in terms of the global

coordinates system is r and r' is its position
vector in terms of the /ocal coordinate system.
Consequently, the relationship between the

origins for both systems is defined by r. (see
Figure 2), that is:

F=r'tra (18)

—

vi/here ’j'=(x"y'Z'), r“=(xa’ya’za)l and
= (x,3.2).

Assuming isolated heterogeneous bodies
immersed in a half space, let us introduce the
resistivity contrastas 0 = pP. — 0,,, where O,
is the resistivity of the half-space and Q. is the
resistivity of the immersed body.

Then, by applying equation (6) for a
quadrupole array, that is to a vertical electric
sounding (VES) (where electrodes are usually
named: A, B, N, M, A and B indicate current
electrodes and M and N reception electrodes),

the potential va associated with a point source
electrode can be expressed as eq. (19). This
equation also assumes the concept of additive
potential sources (Orellana, 1972) :

st Mgl [ (- v)(x )l )loma)-(eve) )
4’ |_[(\"—x\)+ ] [V t (y- x +(z’+z“)1] : "

[ )e=x) =342,
[(x'— o)+ (=) + (2 zu)]%z [(x— A a(y=y) + () ]’/2.

[ )= )+ (=2, )0=5) = (2 2)]

] BM

[(=)a=2) (=) =0) = () ]
[(x'—x‘)2+(y'—y\)2+(z'+z“)]r“[(x—x') +(y—y')2 +(z'+zh)1]ﬁ

] BN

(19)

This equation allows us to compute the
secondary electric potential by the volume
integral method, VIM.

In the eq. 14, SIM, the density surface
charges expressed in terms of the /ocal
coordinates system is:

1p,, ((x‘— xs)z?+(y'—yv)}+(z+z,,)§) -
s

G(r—') =2¢,R,

12

2n[(x'—xs)+(y—ys)+(z+za

(20)

By substituting equation (20) in equation
(14), the contribution of each surface of the

immersed body, to the secondary potential field
for the same quadrupole array, is expressed as:

I UA(;‘) I
( (x—x')z+(y—.V')Z+(Z+Zu)2)AM
1 b
mz (} y ) (Z+ Z“)z BM
x x') +(1+zu)z)w

Nerers))

Then the apparent resistivity O, can be
expressed as:

EL“ [o(r)o(r7)as - 2;8“ f

21y

~ 2 AUY
pu _pm + 1 1 L 1 )i

AM ~ BM AN+BN (22)

To solve the integrals involved in equations
(19 and 21) (VIM and SIM, respectively) we
use the Gauss-Legendre Quadrature, by using
the subroutines QGAUS and DQDAGI, that are
in-cluded in the IMLS Fortran numerical libraries
(Meissner, 1995; Press et al., 1992). DQDAGI
subroutine makes use of Gauss-Kronrod
approximation with 21 points, and by using
an e-algorithm (Piessens et al., 1983), these
integrals can be estimated even when the ending
interval is a singularity.

The computational program developed in
this work computes the apparent resistivity
profile for 3D inmersed bodies, by entering
the data listed in table 1. The output data are
the apparent resistivity values in an array that
corresponds to a resistivity pseudo-section
cutting the half-space in the input direction.

Synthetic examples
In order to illustrate the validity of the VIM and
SIM developed in this work, we studied some

synthetic examples and compared them to
results obtained by others authors.

January - March 2015 11
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: Figure 2. Relationship
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the external coordinates
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centered at the origin of

the immersed resistive
body 7 =7+ 7.

-
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assuming a stratified half-
space of three layers with D =
5mand T = 2.5 m. The log-
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Table 1. Required data in the computational
program to computes the apparent resistivity.

Input data

Electrode type array
Number of electrodes
Spacing between electrodes
Number of bodies

Location of bodies
Resistivity of each body
Resistivity of the half-space

Direction of the 2D output section

A stratified media, with three layers of
different resistivities, constitutes the first
example (Figure 3a). One case considers a
middle conductor layer: 100, 10, 100 ohm-m
(Figures 3b); and the other case considers
a middle resistive layer: 10, 100, 10 ohm-m
(Figure 3c). The results of the SIM model for a
dipole-dipole array are compared (Figures 3b
and 3c) to those results obtained by applying
the algorithm based on the adaptative digital
filtering proposed by Anderson (1979), which
uses Hankel transforms. This comparison
shows coincidences in the computed resistivity
values at the subsurface assignation points
corresponding to an electrodic separation of
a = 1m, and until the level n = 14; however,
after level n = 15 the results show differences
between values (each level n corresponds to
0.5 m), because the computed induced charge
by SIM is a poor approximation. It is important
to point out that SIM is one method that needs
to model closed bodies and the middle layer
was considered as a body of 400 by 400 m
and thickness of T = 2.5 m, the depth D =5 m
this assumption involves numerical errors that
could explain the enlargement of the differences
between both methods at depth (for levels n >
15 and depth > 10.5 m). But also it is important
to point out the assumption of weak scattering
concerns the use of Born approximation
(Guozhong and Torres-Verdin, 2006) and this
is also a contribution in those discrepancies, as
it was signaled by Zhdanov and Fang (1996),
the Born approximation produces curves of
the correct shape but incorrect magnitude. In
summary, we can conclude the approximation
with SIM is good enough.

The second example consists of a 3D
homogeneous half-space, with p =100 ohm-m,

and one conductor immersed prismatic body, of
p, =20 ohm-m (Figure 4). The results of VIM
method (Figure 5a) shows differences between
3 and 21 ohm-m in the lower values region
compared to those computed by Pridmore
(1978); while the SIM modeling of a dipoledipole
array over the prism are compared (Figure 5b)
to those obtained by Tsourlos and Ogilvy (1999).
As it is observed, the differences between values
are within 1 and 10 ohm-m. In contrast (Figure
5d), and only rise up to 14 ohm-m compared to
those obtained by Tsourlos and Ogilvy (1999),
Figure 5c. In spite of the differences depicted
between the results of SIM and VIM, the results
are good enough since the computed resistivity
values do not exceed 15 ohm-m (Figures 5a and
5b). Thatis about 18 % of the resistivity contrast
between body and half-space.

The third example showed in Figure. 6a, is
constituted by the synthetic example published
by Perez-Flores et al. (2001) with 4 immersed
bodies of constant resistivity, p. = 20 ohm-m.
This model is based on a volume integral scheme
(Perez-Flores et al., 2001) and it is similar to
the hypothesis of the VIM proposed here. The
comparison between SIM and model shows
similar results (Figure 6b). Also, the VIM shows
quite the same data for this particular case
(not showed in figure); however, for general
cases, we would expect bigger differences
from VIM results. A possible explanation is that
the electrode separation is smaller than the
dimensions of the bodies.

The fourth example presented consists of
two conductive bodies (Figure 7) of p = 20
ohm-m, immersed in a homogeneous half-space
of p =100 ohm-m. The bodies have the same
dimensions, 10 m thick (T, in the z direction), 10
m long (L, in the x direction) and 10 m width (W,
in the y direction) and both are located at 2.5 m
depth (D). This example is proposed just to show
the interaction between bodies by changing the
separation between them, with two possibilities:
closer and distant (far) bodies, with S equal to 6
m and 40 m respectively. We assume a dipole-
dipole array consisting of 31 electrodes, with a
5 m distance between them. Figure 8 shows the
results obtained with SIM and VIM for the case
with S = 6 m. The apparent resistivity values
with SIM are those expected for the bodies.
In contrast, VIM’s resistivity values are bigger
than those expected. It is important to point
out that we obtain two minimum resistivities
in the location corresponding to the bodies,
as we expect, those anomalies in resistivities
correspond to the bodies. However, it is also
observed a third anomaly at the center of
the resistivity image that corresponds to a
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Figure 4. The schematic model
shows a 3D body, p, =20 QOm,
immersed in a homogeneous
half-space p = 100 OQm. a/2
is the depth to the top of the
body, 2a is the longitude of
all sides of the cube, and a is
the inter-electrode separation.
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x-coordinate (meters) and
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positive depth (meters).
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Figure 6. Third synthetic example constituted by (a) 4 immersed 3D bodies p_= 20 Om in a homogeneous half
space, b) The results of the SIM model, c) the results published by Perez-Flores et al. (2001).
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Figure 7. The schematic model shows a homogeneous half-space (pm) and two immersed bodies of constant
resistivity p_. D is depth from soil to the top of the bodies (a /2), S is the horizontal distance between bodies,
(T) high of bodies, (W) wide in y direction and (L) large in x direction, and a is the inter-electrodic separation.
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[ I |
a) 25 35 45 55 65 75 85 95 105 115 125 Om

20 40 60 80 100 120 140

Figure 8. Pseudo-section
model obtained for the fourth
example (figure 7), with
p, =20 Om and p = 100
Om. Simulating a dipole-
dipole array of 31 electrodes,
with a = 5 m. The apparent
resistivities were computed
L R, for separation between
b) — immerse bodies of S = 6 m.
25 35 45 55 65 75 85 95 105115125 Om a) SIM and b) VIM.
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20

o I

Figure 9. Pseudo-section
model obtained for the same
characteristic of the bodies of
the fourth example (fig. 7), 40
with p =20 Om and p, = 100
Om, but for separation between
immerse bodies of S = 40 m,
simulating a dipole-dipole array
of 31 electrodes, with a = 5 m,

a) SIM and b) VIM. b)

numerical feature, of a lower resistivity value.
Figure 9 shows results for the case S =40 m,
they are similar to those obtained for isolate
bodies (Figure 6). As well as previous case, it
is also observed a third anomaly at the center
of the resistivity image that corresponds to a
numerical feature.

In all the studies cases, we can observe, SIM
produces better approach than VIM in computing
the electrical potential.

Conclusions

This paper introduces two algorithms for the
integral solution of the forward DC geoelectrical
problem introduced by Hvozdara and Kaikkonen
(1998) with mixed boundary conditions using
Green’s function. The two types of solutions:
volume (VIM) and surface integral methods (SIM)
make use of the resistivity contrast between
immersed bodies and the homogeneous half-
space. These methods also use the concepts of:
additive potential sources for immersed bodies,
and density surface charges. Both algorithms
are not so much demanding on computer time
and memory because they do not produce to
very large systems of linear equations. This

40

60 80 100 120 140

50 60 70 8O 90 100 110 120Qm

50 60 70 80 90 100 110 120 Qm

made the methods more accessible for personal
computers, quotidian prospecting work and also
makes it attractive for educational purposes. In
particular could be useful to easily validate the
field measurements interpretation.

The algorithms developed here can help in
the interpretation of the field data obtained from
resistivity profile methods, in two and three
dimensions. The advantage of using the integral
equation technique is that it is performed
for each immersed body in the half space, in
contrast to the usual procedure in finite-element
and finite-difference methods. In order to find
the induced charge, we do not need to define
a grid on the surface of the body, due to the
fact that we use the density surface charges on
each surface.

The conducted tests with synthetic data
indicated that both algorithms (SIM and VIM)
produced reasonably good results compared to
already published results for similar problems,
obtained by other algorithms. The synthetic
examples allow us to conclude that SIM
produces a better approximation of the apparent
resistivity values than those based on the
volume integral (VIM).
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These results are particularly attractive for
computation in parallel, because they provide
the mode to obtain the forward response for
each body in simultaneous way.
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