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Resumen

El realce de bordes es un elemento de
analisis para entender la estructura espacial
de imagenes de satélite. Se presentan dos
métodos para extraer los bordes de imagenes
multiespectrales de satélite. Una imagen
multiespectral se modela como un campo
vectorial de un nimero de dimensiones igual
al nimero de bandas en la imagen. En este
modelo, un pixel se define como un vector
formado por un nimero d elementos igual al
numero de bandas. Se aplican dos operadores
vectoriales a tal campo vectorial. En nuestro
primer método, extendemos la definicidn
de gradiente. En esta extension, se obtiene
el vector diferencia del pixel central de una
ventana con los pixels vecinos. Se genera
entonces una imagen multiespectral donde
cada pixel representa el maximo cambio en la
respuesta espectral en la imagen en cualquier
direccion. A esta imagen se le denomina
el gradiente multiespectral. El otro método
considera la generalizacion del Laplaciano
por medio de la transformada de Fourier
h-dimensional. A esta imagen se le denomina
el Laplaciano multiespectral. Los operadores
vectoriales realizan una extraccién simultdnea
del contenido de bordes en las bandas
espectrales de la imagen multiespectral.
Nuestros métodos son libres de parametros.
Nuestros métodos trabajan para una imagen
multiespectral de cualquier nimero de bandas.
Se discuten dos ejemplos que involucran
imagenes multiespectrales de satélite a dos
escalas. Comparamos nuestros resultados
con procedimientos de realces de bordes
ampliamente empleados. La evaluacion de los
resultados muestra un mejor comportamiento
de los métodos propuestos comparados con los
operadores de bordes ampliamente usados..

Palabras clave: deteccion de bordes, imagen
multiespectral, realce de borde, operador
vectorial.
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Abstract

Edge enhancement is an element of analysis
to derive the spatial structure of satellite
images. Two methods to extract edges from
multispectral satellite images are presented.
A multispectral image is modeled as a vector
field with a number of dimensions equal to the
number of bands in the image. In this model, a
pixel is defined as a vector formed by a number
of elements equal to the number of bands. Two
vector operators are applied to such vector
field. In our first method, we extend the
definition of the gradient. In this extension,
the vector difference of the window central
pixel with neighboring pixels is obtained. A
multispectral image is then generated where
each pixel represents the maximum change in
spectral response in the image in any direction.
This image is named a multispectral gradient.
The other method, considers the generalization
of the Laplacian by means of an n-dimensional
Fourier transform. This image is named a
multispectral Laplacian. The vector operators
perform a simultaneous extraction of edge-
content in the spectral bands of a multispectral
image. Our methods are parameter-free. Our
methods work for a multispectral image of any
number of bands. Two examples are discussed
that involve multispectral satellite images at
two scales. We compare our results with widely
used edge enhancement procedures. The
evaluation of results shows better performance
of proposed methods when compared to widely
used edge operators.

Key words: edge detection, multispectral
image, edge enhancement, vector operator.
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Introduction

Edge detection has been undertaken for
gray-level and color images using a number
of methods and procedures. Most of the
techniques published in the scientific literature
in the last years deal with color images.

Well-established methods such as Kirsch,
Sobel, Gradient and Laplacian operators have
been widely used to extract edges in gray-level
images (Pratt, 2001). Bowyer and co-workers
(2001) provided a detailed account of a number
of edge operators in gray images. The reviewed
operators carry a set of parameters that needs
to be defined in terms of heuristic criteria.
Ground-truth images were used to derive a
classification of edge operator performance
(Bowyer et al., 2001). A deformable contour,
defined by a wavelet snake, is designed to
identify the boundary of pulmonary nodules in
digital chest radiographs (Yoshida, 2003). In
this work (Yoshida 2003), a multi-scale edge
representation is obtained by means of the
wavelet transform; this produces, however,
fragmented edge segments. Therefore, a
wavelet snake was used to produce a smooth
and closed contour of a pulmonary nodule.

Other methods to detect edges in gray-level
images use fuzzy logic. Segmentation of a fuzzy
image into regions of similar image properties
was achieved by means of a fuzzy procedure
(Bigand et al., 2001). This method works with
fuzzy-like and noisy images. Zero crossings
that correspond to gradient maxima were
obtained by means of the cosine transform
in noisy images (Sundaram, 2003). This
scheme favors the detection of weak edges in
background noise and suppresses false edges.

The modeling of natural RGB images as
vector fields has been exploited to detect edges
in color images (Koschan and Abidi, 2005;
Evans and Liu, 2006). In their studies, the
authors (Koschan and Abidi, 2005) provide an
overview of color edge detection techniques,
and, in particular, generalizations of Canny
and Cumani operators to color spaces were
discussed with examples. Evans and Liu (2006)
provide a review of color edge detectors.

A parameter-free approach could be
obtained when an automatic determination
threshold was calculated using a model-based
design (Fan et al., 2001). With this approach, a
color-image edge operator is derived. Cellular
neural networks applied to color images
resulted in a model to detect edges (Li et al.,
2008). This model was successfully applied
to RGB images with color test patterns. In

290 VoLuME 53 NumBerR 3

addition to these results, the authors provided
a detailed revision of color edge detection
techniques.

Recent advances in edge enhancement
for color images show clear advantages over
methods for mono-spectral images (Xu et al.,
2010; Chen and Chen, 2010; Nezhadarya and
Kreidieh, 2011; Gao et al., 2011; Chu et al.,
2013). Color images are increasingly used
in many applications such as surveillance,
computer vision and robotics. Multispectral
satellite images are available at several
scales. For these two groups of images, edge
enhancement is an element of structural
analysis.

A general method is needed that works for
any number of bands, with no parameters and a
reasonable computing time. To fulfill such goal,
we model a multispectral satellite image by
means of a vector field. The dimension of this
field equals the number of bands of the image.
Upon this field, we may apply vector operators.
We compare our results with those obtained
from conventional edge operators (Pratt, 2001;
Bowyer et al., 2001). We carry out a detailed
evaluation of our results. Such evaluation
includes qualitative and quantitative analysis.
Our evaluation shows a clear improvement
with respect to conventional edge operators.

Study area and data

Two multispectral satellite images were used
to test the goodness of our method at different
scales. Both images cover a portion of Mexico
City where the runaways of an airport are
clearly visible. One of the images is formed by
the visible and near infrared (VNIR) bands of
the Advanced Spaceborne Thermal Emission
and Reflection Radiometer sensor (ASTER) on
board Terra satellite (Figure 1). The four bands
of the IKONOS sensor (Figure 2) form the other
image. Table 1 provides basic parameters of
these images.

Table 1. Basic parameters of multispectral

images.

ASTER IKONOS
Acquisition date July 7, 2003 June 14, 2006
Pixel size (m?) 15.15 4.4
Dimension (pixels) 500 x 500 1200 x 1200
Bands (um) 1) 0.52-0.60 1) 0.45-0.52

2) 0.63-0.69  2) 0.52-0.60

3N) 0.76-0.86 3) 0.63-0.69
3B) 0.76-0.86 4) 0.76-0.90
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The high density of streets, avenues and
buildings of the city results in a large number of
edges per unit area. Such edges are of varying
shape and size. Therefore, the multiple edges
formed by streets, avenues, causeways and
building blocks are a good test for our method.

These images are not precisely ortho-
rectified since no implications on our method
arise. However, rectification with first-order
polynomial equation was applied in order
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99°06°16.55” W

Figure 1. First principal component of
ASTER image.

99°05°38.11” W

Figure 2. First principal component of
IKONOS image.
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to relate pixel coordinates with geographic
coordinates.

Methods

In a multispectral image, the information-
content of edges varies through the bands.
In order to extract the information of edges
from the multispectral image, we require a
transformation applicable to the image as a
whole.
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In addition to the original bands, principal
components analysis was performed on the
two images. The first principal component
of both images is used to apply widely used
edge operators (Pratt, 2001; Bowyer et al.,
2001). These operators are used for the sake
of comparison with the methods developed
in our work. The first principal component
accumulates most of the variance of the
images: 78.50% for the ASTER image, and
83.09% for the IKONOS image. Therefore, we
applied widely used edge operators to the first
principal component.

Vector field of a multispectral image

The modeling of an n-dimensional multispectral
image as a vector field will be addressed in
section 3.1 (Lira and Rodriguez, 2006). This
field holds the same dimension as the original
multispectral image. The field is composed by
the set of pixels considered as n-dimensional
vectors.

In Section 3.2, we determined maximum
difference vectors in a moving window that
systematically scan the entire image. This
maximum difference produces ann-dimensional
image where edges are enhanced.

In Section 3.3, we derived an n-dimensional
Laplacian using Fourier transform. To do so, we
first consider the Fourier transform of second
partial derivates of an image (Bracewell, 2003).
With this result, we produced the Laplacian of

Read a multispectral image of n-bands

v

Construct the n-dimensional vector
field associated to the multispectral
image

v v

Multispectral Laplacian

Multispectral gradient

v v

Calculate maximum
vector difference in a
moving window

Apply equation (10) and

obtain the inverse Fourier
transform

v

Generate multispectral
Laplacian

Apply Fourier transform
on vector field

Generate multispectral
gradiente
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an image. Finally, we generalized the Laplacian
for multispectral images composed of n-bands.
A flow chart resumes our methods, from the
modeling of a multispectral image as a vector
field, to the enhancement of edges through the
bands of the image (Figure 3)

let L=4{1, .. .M} - {1, ... N} bea
rectangular discrete lattice. This lattice is
virtually overlaid on the scene. On each node
of L, a resolution cell named the instantaneous
field of view (IFOV) is located. For each IFQV,
an n-dimensional vector {b,,b,, . . . bn} is
derived by means of a multispectral sensor
set. The vector {b,,b,, . .. bn} represents the
average spectral properties of an IFOV of the
scene. This vector is named a picture element
(pixel) of a multi-spectral image. In other
words, the IFOV is a physical area in the scene,
while the pixel is the digital number (DN) in the
image. Let the multi-spectral image g = {g,}
be formed by the group of pixels according to
the following set g, = {bj(k,l)}i, YV i. Where i
€ N is the set {1,2, . . . n} representing the
collection of bands of the multispectral image.

On the other hand, let X, be the set

X ={X|XeN,0<x <2m"—1}, Vi
(1)

Where m =8 in most cases. The cartesian
product X" = X, x X, x . . . Xn defines the set of
the ordered n-tuple (x,,X,, . . . xn). We equate
X, = b, therefore (b,,b,, . . . bn) is an n-tuple
in this cartesian coordinate system. To every
n-tuple (b,,b,, . . . b ), a vector u is associated:
u(x, %, - .. %)< (b,b, ...b).

The set of vectors {u(x,Xx,, . . . xn)} is
the result of the mapping of the multispectral
image onto a vector field. We note that not
every m-tuple (x,,X,, . xn), has a vector
associated to the vector field, and an n-tuple
(X Xy v s xn) may have more than one vector
associated to the vector field. Hence, the vector
field associated with the multispectral image is
the set of vectors U = {u(x,,x,, . .. xn)}.

Multispectral gradient

Once the multispectral image is modeled as
a vector field, we may proceed to define a
multispectral edge. Let v_be a moving window
that systematically scans, pixel by pixel, the
whole image. The window v_ is of size 3x3
pixels. Let D(g) be the domain of the image,

Figure 3. Schematic diagram for calculation of
multispectral gradient and multispectral Laplacian.
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thus the condition that v. < D(g) determines
that the border pixels of the image cannot be
processed.

Let the vector p_be the central pixel of such
window and letp,, p,, . . . p, be the neighboring
pixels of p_. The set of pixels {p}, i=1, 2, ..
. 8 is the 8-connected neighbor set of p_. We
obtain the vector difference of the central pixel
with all neighboring pixels of the window

Ap,=p.-p,Viey, (2)

The vector of the window that makes
the largest difference is written in an output
multispectral image named f

p, €f: max|p, - p| 3)
v,

¢

Equation (3) means that central pixel p,_,
in moving window, is replaced by neighboring
pixel p, with the largest Euclidiean distance to
the central pixel.

The vector difference is calculated employing
the Euclidian distance

172
n

—pl= Y-y
|p. - P 2( ) @

The image f contains the edge information
across the bands of the original image g.
Image f is dubbed the multispectral gradient
(Figure 3).

Average of bands of output edge image
f is calculated in order to concentrate the
information on a single image. Principal
components analysis may be applied as
well to output image f to concentrate in the
first component the edge content of the
multispectral-edge image. We use the average
of the output image bands.

Derivation of n-dimensional Laplacian

A Laplacian is widely used as an edge operator
(Pratt, 2001). Nevertheless, actual Laplacian is
applied to each separate band of a multispectral
image. A multispectral Laplacian is needed to
extract edge content from the ensemble of the
bands as a whole.

We begin with the consideration of the
Laplacian in continuous space, and then we
write the result in discrete space. Let g(x,y) €

IR? be a function that describes a single band
image where (x,y) are the coordinates of a
pixel in this image. We initiate this step with
the use of the equations

— 2 T
F w =—(2n)’ ,G(0,,0,)
X
I | (5)
— 2 T
o ag(—X2,y) :—(21‘5)20);G(03x’0)y)
ay
_ | (6)

A detailed explanation on the derivation of
equations (5) and (6) is provided in Lira (2010).
In equations (5) and (6), F stands for Fourier
transform, G(o,,0 ) is the Fourier transform of
the image g(x,y) and j is the complex nhumber
J=1. In equations (5) and (6), (x,y) are spatial
coordinates in image domain, whereas (w,, w )
are spatial frequencies in Fourier domain.

From equations (5) and (6) we have the
Fourier transform of the Laplacian

FIV g(x.y)]=-2n)* (0; +0,)G(, ,0,)
(7)

Equation (7) is dubbed the scalar Laplacian.

On the grounds of results given by equation
(7), we may generalize the Fourier transform
of the Laplacian to n-dimensions. Let f(r) € R,
be a vector valued function that describes a
multispectral image formed by n-bands. The
vector f(r) = {f,(x,y), f,(x,y), . . . f(x¥)}
represents the values of a pixel through the
bands, i.e., the image value at a pixel location
r = (x,y) € R The function f(r) is a vector
field that describes the multispectral image
according to lineaments described in section
3.1 (Lira and Rodriguez, 2006). The Fourier
transform of f(r) is then (Bracewell, 2003;
Ebling and Scheuermann, 2005)

+oo +oo

F(@)=FIf(n)]= | .| f(rexp(-27jr- w}dr
T (8)

The Fourier transform of the vector field f(r)
produces a vector valued function in Fourier
space, namely, F(o) = [f(r)]. The vector
F(0) = {F,(0,, ®,), F,(0,, 0,), . . . F (0, ®,)},
represents the spatial frequency content of the
image at the location ® = (w,,0,). In R", the
coordinates in Fourier domain (w,, ®,), and
spatial domain (x, y), cover the same range,
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1<(x,w,)<Mand1l < (y, ®,) <N, but their
meaning is different: (x, y) represents spatial
coordinates, while (o, ®,) represents spatial
frequencies.

In discrete space Z", the coordinates in
Fourier domain k = (k,, k,), and spatial domain
q = (m, n), cover the same range, 1 < (m, k,)
<Mand 1< (n k) < N.If f(q) € Z", where
(m, n; k,, k,) € Z, then the discrete version of
equation (8) is

n N
Fi =71f(@]=, .. > f(@exp{-27/q -k}
oo (9)

Where f(q) = {f,(m, n), f,(m, n), ... f (m,
n)} and F(k) = {F,(k,, k,), F,(k,, k,), . . . F (k,,
k,)}. The Laplacian in Z" of the vector field f(q)
is therefore

Vz 2|t |?
FI f@l=-n)’ k| F(k) (10)
f

Where F(k) = [f(q)]. This equation can
be applied to a multispectral image to derive
edge content through the bands. Note that
equation (7) is a particular case of equation
(10). Equation (10) is dubbed the multispectral

Laplacian.

To calculate this multispectral Laplacian,
we first obtain the Fourier transform of the
vector field associated to the image to produce
F(k). In Fourier space, we multiply the result
by - (2n)?| k|2 and apply the inverse Fourier
transform to obtain the multispectral Laplacian
(Figure 3).

Evaluation of edges

The criteria to evaluate the edge enhancement
resulting from our methods and from widely
known edge operators are divided in qualitative
and quantitative. The edges produced by the
urban network of streets, avenues, buildings,
idle lots and parks occur at random directions
in the images. Due to this randomness, a
profile of pixel values along any direction is
representative of the edge content of the
images. We considered pixel values profiles
along several directions. We analyzed such
profiles for widely known edge operators and
for outputs of our methods. We present the
plots of two profiles for each sensor, and we
include two graphs that condense the behavior
of ten profiles for each sensor: ASTER and
IKONOS. In total, we analyzed twenty profiles.
From these plots, we derive a qualitative and
quantitative evaluation as described below.
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Black dots in figures 5, 6, 7, and 8 indicate the
lines where the plots were extracted. Figures
11, 12, 13, and 14 indicate the line, column
and angle of the location of profiles.

Qualitative evaluation

We display in a high-resolution monitor the
edge enhanced images. We display as well
the first principal component of both images.
A detailed visual inspection is carried out.
On the grounds of previously published work
on qualitative image evaluation (Escalante-
Ramirez and Lira, 1996), each edge-enhanced
image was rated according to the following
qualitative criteria: general quality, sharpness,
contrast, and noisiness. In addition, we
evaluated the number of gray levels and
definition of edges. Since the first principal
component of the images accumulates
most of the variance, we compare the edge
enhancement with this component. The aim
of this comparison is to evaluate, according
to the above criteria, the degree of edge
enhancement with respect to the original edge
information content of the images.

Quantitative evaluation

We use several indicators to perform a
quantitative evaluation (Figure 4): Slope - the
more steepness the better the definition of the
slope of an edge. Widening — a width as close as
possible to the original edge the better. Spatial
location — the closest of the enhanced edge to
the original location the better. Contrast - the
highest the contrast the better.

A computer code was developed for
quantitative evaluation. An image is displayed
in a high resolution monitor. With the help of
a cursor, a line of the image is selected. The
profile of pixel values is shown in a plot. A
profile is selected that contains one of the edge
models given in figure 4. A spline is obtained for
the selected edge-model. From such spline, the
parameters indicated in the models of figure 4
are calculated. There are many types of edges
in the images. To obtain a coherent quantitative
evaluation of edges, we considered three types
that occur frequently in the images. Figure
4 shows a schematic diagram of such types
where the above indicators are depicted. We
performed such measurement for an ensemble
of edges. Figure 4(c) shows a profile that
occurs only in Laplacian and Kirsch operators.
The computation of indicators is as follows.

Slope - we measure the slope as the angle
of the borders of an edge with respect to the
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vertical direction. Widening - we measure the
maximum width of an edge in pixels. Spatial
location - we identify the spatial coordinate of
the center of an edge. Contrast - we measure
the contrast as the difference between the
maximum value and the minimum value of an
edge.

In order to complement our evaluation of
edge enhancement we developed a computer
code for the Canny and Cumani operators
(Koschan and Abidi, 2005; Evans and Liu,
2006). The computer code was designed
following the method explained in the article
by Koschan and Abidi (2005). Two RGB false
color composites were produced using the first
three bands of ASTER and IKONOS images.
Upon these images, the Canny and Cumani
operators were applied. Such operators consist
of a two-step procedure. The first step is
the enhancement of the edges; the second
step is the detection of the edges by means

a)

01 © 02

Average Width
: : : Contrast

Spatial location

c)

Maximum

of a threshold operation. We present results
only for the enhancement of the edges. Both
operators, Canny and Cumani, carry a number
of parameters that require a determination by
heuristic procedures. There are no analytical
methods to estimate such parameters in an
optimal design. Instead, our methods are
parameter-free.

Results and discussion
Results

The necessary algorithms to apply the methods
described in previous section were developed
using Delphi language running under Windows
7 in a PC. Several edge products are presented
in our work. They are organized in two groups:
(a) edges from widely used edge operators, (b)
edges derived from the methods developed in
our work. These groups are analyzed. In order
to facilitate the comparison of these results,

b)

Contrast

Average Width

Spatial location

Contrast

>
Spatial location

Minimum

Figure 4. Schematic diagram of an edge and parameters of evaluation.
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four mosaics of selected regions of the images
were prepared. These mosaics include the
multispectral edges derived from our method
and results from the above mentioned edge
operators. Boxes on figures 1 and 2 show
the areas from which these mosaics were
extracted. The mosaic prepared from boxes on
the left of figures 1 and 2 are dubbed mosaic
A, and those on the right are dubbed mosaic B.

A set of profiles are produced to evaluate
the performance of edge enhancement of the
methods compared in this research. Profiles
are compared. A profile from the first principal
component of the original image is compared
against the profiles of all edge enhancement
methods considered in our work.

The mosaics are used to perform the
qualitative evaluation as discussed in previous

section. The profiles are used to develop
the quantitative evaluation as discussed in
previous section. The above-mentioned groups
show the following results.

1) Edges from vector differences in a moving
window (multispectral gradient).

As explained in Section 3.1, a multispectral
edge image is obtained. This multispectral
image carries the same number of bands as
the input image. The average of the bands
of such multispectral edge image was used
for quantitative evaluation. Figures 5 and 6
shows the enhancement of edges of the ASTER
image resulting from such procedure. Figures
7 and 8 depict the enhancement of edges of
the IKONOS image. For visual purposes, a
linear saturation enhancement was applied to
figures 5 - 8. The quantitative evaluation was
performed upon original results.

Figure 5. Mosaic ASTER A. (a) PC,, (b) average of multispectral gradient, (c) multispectral Laplacian, (d) Sobel
on PC,, (e) Frei-Chen on PC,, (f) Kirsch on PC,, (g) scalar Laplacian on PC,, (h) Prewitt on PC,, (i) Roberts on PC,.
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Figure 6. Mosaic ASTER B (a) PC,, (b) average of multispectral gradient, (c) multispectral Laplacian, (d) Sobel
on PC,, (e) Frei-Chen on PC,, (f) Kirsch on PC,, (g) scalar Laplacian on PC,, (h) Prewitt on PC,, (i) Roberts on PC,.

2) Edges from the multispectral Laplacian
(Section 3.2).

The multispectral Laplacian derived from
equation (10) was applied to both images,
ASTER (figures 5 and 6) and IKONOS (figures
7 and 8).

3) Edges from the first principal component
of images.

The following edge operators were applied
to the first principal component of ASTER and
IKONOS images: Sobel, Frei-Chen, Kirsch,
scalar Laplacian, Prewitt and Roberts. Results
are shown in figures 5 and 6 for ASTER image,
and figures 7 and 8 for IKONOS image.

4) Edges from color operators

Two mosaics were prepared to show
the results of Canny and Cumani operators
(Figure 9). We applied a histogram saturation
transformation to the images of the mosaics
for visual appreciation purposes. An inspection
of results shows an enhancement similar
to the Sobel operator (Figure 6). There are
two limitations to the Canny and Cumani
operators. The first one is that they carry a
number of parameters that need to be defined
by experimental procedure. The second one is
that they work for RGB color images only; no
generalization exists for an arbitrary number of
bands of a multispectral image.
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Figure 7. Mosaic IKONOS A. (a) PC,, (b) average of multispectral gradient, (c) multispectral Laplacian, (d) Sobel
on PC,, (e) Frei-Chen on PC,, (f) Kirsch on PC,, (g) scalar Laplacian on PC,, (h) Prewitt on PC,, (i) Roberts on PC,.

The profiles for all edge enhancement
methods are shown in figures 11 and 12 for
ASTER mosaics and figures 13 and 14 for
IKONOS mosaics.

In order to complement the procedure of
profile extraction (Figures 11 - 14), a mosaic
of strip-images was prepared (Figure 10). The
strip consist of a sub-image of 21 pixels long
by 11 pixels wide. The dots indicate the line
of pixels related to the profile. The mosaic
is formed by 6 strips, one for each image of
figure 6. We present one mosaic of strips.

5) The indicators (Figure 4) described in

quantitative evaluation were measured for
twenty profiles: ten for ASTER image and ten for

298 Vourume 53 Numger 3

IKONOS image. The measurement was carried
out for the whole ensemble of edge operators
considered in our research. Such measurement
includes the first principal component of
ASTER and IKONOS images. The value of the
indicators was compared with the value of the
original profile extracted from the first principal
component. This comparison was calculated in
relative error percentage and condenses in a
single graph. The relative error percentage is
the difference of an indicator from an edge
enhanced image (Ie) minus the indicator from
the first principal component (Icp) normalized
by (Icp). Figure 15 shows the graph that
summarizes the quantitative evaluation of the
profiles. For ASTER image, figure 15(a) depicts
the relative error percentage with respect to
the original profile in first principal component.
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Figure 8. Mosaic IKONOS B. (a) PC,, (b) average of multispectral gradient, (c) multispectral Laplacian, (d) Sobel
on PC,, (e) Frei-Chen on PC,, (f) Kirsch on PC,, (g) scalar Laplacian on PC,, (h) Prewitt on PC,, (i) Roberts on PC,.

Figure 15(b) show results for IKONOS image.
Angles g, and g, are not included in figure
15 for multispectral Laplacian and for Kirsch
operators since, as explained above, the profile
of figure 4(c) does not occur in the original
image. Such operators introduce an inversion
of contrast described in figure 4(c). None
the less, the profile-type of figure 4(c) was
compared among multispectral Laplacian and
Kirsh operators. The contrast for all operators
is presented in figure 16 for both sensors.

Discussion

Our discussion is divided in qualitative and
quantitative evaluation as described in Section
3.4. The next two sections provide detailed
description of such evaluation.

Qualitative discussion

A visual inspection of results, using the
qualitative criteria described in Section 3.3,
produces higher rating for our methods in
comparison with any other edge-enhancement
method considered in our research. For such
inspection, we employed figures 5 to 8. In
particular, and on the grounds of such rating,
we may list the following evaluation

(a) Edges from Sobel, Frei-Chen, Prewitt
and Roberts operators are widened for both
images. The images from these operators
appear unsharpened. The contrast is high and
has a noisy appearance. Thin lines, points and
linear objects are blurred or obliterated.
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a b
Figure 9. (a) - First row, RGB color composite of the first three bands of ASTER image. Second row, edge
enhancement from Canny operator with ¢ = 0.5, window size = 3 x 3. Third row, edge enhacement from Cumani
operator with ¢ = 0.5, threshold = 20.0. (b) - First row, RGB color composite of the first three bands of IKONOS

image. Second row, edge enhancement from Canny operator with ¢ = 0.5, window size = 3 x 3. Third row, edge
enhacement from Cumani operator with ¢ = 0.5, threshold = 20.0.

Figure 10. Mosaic of strips from line 91, column 118 and angle 135° from ASTER image (see Figure 11). (a)
PC,, (b) average of multispectral gradient, (c) multispectral Laplacian, (d) Sobel on PC,, (e) Frei-Chen on PC,, (f)
Kirsch on PC,, (g) scalar Laplacian on PC, (h) Prewitt on PC,, (i) Roberts on PC,.
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TERRA/ASTER (line 91, col 118, angle 135.00°)
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Figure 11. Profiles ASTER. Comparison of profiles of an edge located on line 91, column 118 and angle 135° of
mosaic A. Dots on mosaic A of figure 5 indicate the direction of this line.
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TERRA/ASTER (line 84, col 62, angle 135.00°)
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Figure 12. Profiles ASTER. Comparison of profiles of an edge located on line 84, column 62 and angle135° of
mosaic B. Dots on mosaic B of figure 6 indicate the direction of this line.
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IKONOS (line 79, col 87, angle 135.00°)
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IKONOS (line 79, col 87, angle 135.00°)
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Figure 13. Profiles IKONOS. Comparison of profiles of an edge located on line 79, column 87 and angle 135° of

mosaic A. Dots on mosaic A of figure 7 indicate the direction of this line.
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IKONOS (line 117, col 75, angle 0.00°)
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IKONOS (line 117, col 75, angle 0.00°)
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Figure 14. Profiles IKONOS. Comparison of profiles of an edge located on line 117, column 75 and angle 0° of
mosaic A. Dots on mosaic B of figure 8 indicate the direction of this line.
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Figure 15. Relative error of ASTER profiles (a) and IKONOS profiles (b).
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Digital value

Digital value

Figure 16. Contrast for ASTER profiles (a) and IKONOS profiles (b).

(b) Edges from the Kirsch operator show
a relief-like appearance of urban buildings
structure. The relief-like appearance is
derived from the second derivative involved
in the definition of this operator. Results
look somewhat unsharpened and contrast is
relatively small. There is no noisy appearance.
Thin edges, points and linear objects are
blurred.

(c) Edges from the scalar Laplacian operator
are less widened than other operators. Results
are sharp, thin edges, points and linear objects
are preserved. However the contrast is low.
No-noisy appearance is observed.
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(d) The average of the bands of the image
resulting from the multispectral gradient show
sharp edges with good contrast. The contrast
is higher than the scalar gradient, details such
as thin lines and points are preserved. No noisy
appearance is observed.

(e) The edge image resulting from the
multispectral Laplacian show a relief-like
appearance with better definition and similar
than the Kirsch operator. The relief appearance
of the multispectral Laplacian is sharpening
with better preservation of fine details than
the scalar Laplacian. The contrast is high and
edges are sharp. No noise is observed.
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(f) The sharpness of edges, the contrast,
the noisiness appearance, and general quality
of multispectral gradient and multispectral
Laplacian are better than the edge operators
compared in our work (Figure 15).

Quantitative discussion

As shown in figures 5 - 8, the dots on the
border of the mosaics indicate the lines were
pixel values profiles are extracted. These
lines were selected to include sharp edges
such as the lines of the landing fields of the
airport and abrupt change of pixel values due
to constructions or particular features with
high contrast. The profiles extracted from the
first principal component are compared to the
profiles extracted form edge enhancement
images. Many profiles were inspected at
random. A selection of profiles was performed
when they contained at least one of the edge-
models of figure 4. We measured the above-
described indicators (Figure 4) for twenty
selected edge profiles: those with the best
definition. From such measurements, we
derived a list of conclusions.

Profiles of selected lines of the ASTER and
IKONOS image-mosaics show the following:

(1) Sobel, Frei-Chen and Roberts operators
wide and smooth the profiles of the original
edges of the images.

(2) Kirsch and Prewitt operators wide and
smooth the profiles but in a less degree than
Sobel, Frei-Chen and Roberts operators.

(3) The relief-like appearance of the Kirsch
images is due to the contrast inversion of some
edges of the original profile.

(4) The scalar Laplacian operator does not
wide nor smoothes the edges but reduces the
contrast of the edges.

(5) The multispectral gradient and the
multispectral Laplacian do not wide nor smooth
the edges, and in addition to this, increase the
contrast of the edges.

(6) The multispectral gradient and the
multispectral Laplacian show good contrast of
the enhanced edges.

(7) The spatial location error is highest for
Roberts operator. The least error is for the
scalar Laplacian.

(8) The steepness of the enhanced edges is
less than the original edges for those operators
that smooth and wide the edges.

(9) Overall, the multispectral gradient
and the multispectral Laplacian show good
conditions of contrast, steepness, spatial
location and definition of edges with respect to
the other operators.

Possible applications for multispectral edge
enhancement are: identification of linear
feature for geologic environments, identification
of ancient highways in archeological studies,
delineation of coastlines, studies of urban
structures, delineation of water bodies and
studies of coastal current patterns.

Conclusions

Two methods to extract edges from multispectral
images are designed and discussed in this
research. Such methods require the modeling
of the original multispectral image as a vector
field. Upon this vector field, we applied two
vector operators to extract the edge content
originally distributed through the bands of
the images. These methods are parameter-
free. A qualitative and quantitative evaluation
show that our methods perform better than
widely used edge enhancement procedures.
The basic reason for this is that our methods
extract the edge-content distributed through
the original bands of a multispectral image.
Our methods are not computing demanding,
we use a fast Fourier transform to calculate the
multispectral Laplacian. The calculation of the
multispectral gradient is fast since it involves
vector differences in a moving window. On a
PC under Windows 7, the computing time for
a 2000 “ 2000 pixels multispectral image with
6 bands does not exceed three minutes. Our
methods work for multispectral images with
any number of bands, the limit is set by the
available memory. A test on hyperspectral
images is not yet performed.
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