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Resumen

Este articulo presenta y discute el uso de las
redes neuronales para determinar la duracién
de los movimientos fuertes del terreno. Para
tal efecto se desarrolld6 un modelo neuronal,
utilizando datos acelerométricos registrados en
las ciudades mexicanas de Puebla y Oaxaca,
que predice dicha duracién en términos de la
magnitud, distancia epicentral, profundidad
focal, caracterizacidon del suelo y el azimut. Por
lo que, el modelo considera los efectos tanto
de la zona sismogénica como del tipo de suelo
en la duracion del movimiento. El esquema
final permite una estimacion directa de la
duracion a partir de variables de facil obtencion
y no se basa en hipdtesis restrictivas. Los
resultados presentados en este articulo indican
gue la alternativa del cdmputo aproximado,
particularmente las redes neuronales, es una
poderosa aproximaciéon que se basa en los
registros sismicos para explorar y cuantificar los
efectos de las condiciones sismicas y de sitio en
la duracién del movimiento. Un aspecto esencial
y significante de este nuevo modelo es que a
pesar de ser extremadamente simple ofrece
estimaciones de duracién con notable eficiencia.
Adicional e importante son los beneficios que
arroja esta simplicidad sobre la separacidn
natural de los efectos de la fuente, patrén o
directividad y de sitio ademas de la eficiencia
computacional.

Palabras clave: duraciéon del movimiento de
terreno, parametros de movimientos,de terreno,
duracidn significativa, intensidad de Arias, redes
neuronales, computo aproximado.
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Abstract

This paper presents and discusses the use
of neural networks to determine strong
ground motion duration. Accelerometric data
recorded in the Mexican cities of Puebla and
Oaxaca are used to develop a neural model
that predicts this duration in terms of the
magnitude, epicenter distance, focal depth,
soil characterization and azimuth. According
to the above the neural model considers
the effect of the seismogenic zone and the
contribution of soil type to the duration of
strong ground motion. The final scheme
permits a direct estimation of the duration
since it requires easy-to-obtain variables and
does not have restrictive hypothesis. The
results presented in this paper indicate that
the soft computing alternative, via the neural
model, is a reliable recording-based approach
to explore and to quantify the effect of seismic
and site conditions on duration estimation. An
essential and significant aspect of this new
model is that, while being extremely simple,
it also provides estimates of strong ground
motions duration with remarkable accuracy.
Additional but important side benefits arising
from the model’s simplicity are the natural
separation of source, path, and site effects and
the accompanying computational efficiency.

Key words: strong ground motion duration,
ground motion parameters, significant duration,
AriasIntensity, neural networks, soft computing.
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Introduction

The principal objective of engineering seis-
mology is to supply quantitative estimations
of expected ground-motions for earthquake-
resistant design, evaluation of seismic hazards,
and seismic risk assessment through the
proper characterization of complex time series
(accelerograms). Since the first strong-motion
accelerograms were recorded a large number of
parameters have been defined to characterize
movements. The usefulness of strong-motion
parameters is dependent primarily upon their
intended use. The parameters that can be
employed in earthquake-resistant design are
few and are directly related to the methods
of structural analysis used in current practice.
Once a parameter has been selected to
characterize the ground motion, it is necessary
to develop relationships between this parameter
and important seismic features as earthquake
source, travel path, and site conditions.

The essence of such predictive relationships
for the duration of strong motions depends very
heavily on the way duration is defined. In fact
many strong-motion duration definitions have
been presented; however, all of them attempt
to isolate a certain portion of the time series
where strongest motion occurs. In general
terms, it has been accepted that all of these
definitions can be grouped into one of four
generic categories (Bommer and Martinez-
Pereira, 1996): i) the bracketed duration, the
interval between the first and last excursion of
particular threshold amplitude, ii) the uniform
duration, the sum of all of the time intervals
during which the amplitude of the record is
above the threshold, iii) the significant duration,
which is determined from the Husid plot (Husid,
1969) based on the interval during which a
certain portion of the total Arias intensity is
accumulated and iv) the structural response
duration, determined by applying one of the
above three categories to the response of a
specific single-degree-of-freedom oscillator.

In this investigation, and considering the
definition of significant duration, the connection
between data and knowledge is found using a
soft computing SC tool: the neural networks
NNs. This alternative improves the theory
and understanding of the driven parameters
(of all kinds including indeterminate ones,
possibly expressed in words) of ground-
motion duration behavior. SC, NNs particularly,
utilize a discovery approach to examine
the multidimensional data relationships
simultaneously and to identify those that are
unique or frequently represented, permitting
the acquisition of structured knowledge.
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A neuronal empirical model for strong
motion duration is proposed here, derived
from seismic information registered in Puebla
and Oaxaca, México. This model predicts the
strong ground motion duration as a function
of earthquake magnitude, epicentral distance,
focal depth, azimuth (established from
epicenters to stations) and soil characterization.
The final scheme permits a direct estimation
of the duration since it requires easy-to-
obtain variables and does not have restrictive
hypothesis

Soft Computing

The term Soft Computing SC represents
the combination of emerging problem-
solving technologies such as Fuzzy Logic FL,
Probabilistic Reasoning PR, Neural Networks
NN, and Genetic Algorithms GAs. Each of
these provides complementary reasoning and
searching methods to solve complex, real-
world problems. In ideal problem formulations,
the systems to be modeled or controlled are
described by complete and precise information.
In these cases, formal reasoning systems, such
as theorem proofs, can be used to attach binary
true or false values to statements describing
the state or behavior of the physical system.

Soft Computing technologies are flexible
computing tools to perform these approximate
reasoning and search tasks handling imperfect
information. According to Zadeh (Fuzzy Logic
pioner): “..in contrast to traditional, hard
computing, soft computing is tolerant of
imprecision, uncertainty, and partial truth.”
The only obvious common point between SC
tools (Fuzzy Logic FL, Neural Networks NNs
and Genetic Algorithms GAs) is that they have
been inspired by the living: the imprecision
of human language and its efficiency in
conveying and transmitting information for FL,
the architecture of the brain for NNs, and the
reproduction of living beings for GAs.

Neural Networks

This section will briefly explain the theory
of neural networks NN. For a more in depth
explanation of these concepts consult Hassoun,
(1995); Hertz et al., (1991) and Tettamanazi
and Tomassini, (2001).

In the brain, a NN is a network consisting of
connected neurons. The nucleus is the center
of the neuron and it is connected to other
nuclei through the dendrites and the axon.
This connection is called a synaptic connection.
The neuron can fire electric pulses through
its synaptic connections, which are received
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by the dendrites of other neurons. Figure 1
shows how a simplified neuron looks like.
When a neuron receives enough electric pulses
through its dendrites, it activates and fires a
pulse through its axon, which is then received
by other neurons. In this way information
can propagate through the NN. The synaptic
connections change throughout the lifetime of
a neuron and the amount of incoming pulses
needed to activate a neuron (the threshold)
also change. This process allows the NN to
learn (Tettamanzi and Tomassini, 2001).

Mimicking the biological process the
artificial NN are not “intelligent” but they are
capable for recognizing patterns and finding
the rules behind complex data-problems. A
single artificial neuron can be implemented in
many different ways. The general mathematic
definition is given by equation 1.

¥ = g(iw,-x)

(1)

where x is a neuron with ninput dendrites (x,, ...,
x ) and one output axon y(x) and (w,...,w )
are weights determining how much the inputs
should be weighted; g is an activation function
that weights how powerful the output (if any)
should be from the neuron, based on the sum
of the input. If the artificial neuron mimics a
real neuron, the activation function g should
be a simple threshold function returning 0 or 1.
This is not the way artificial neurons are usually
implemented; it is better to have a smooth
(preferably differentiable) activation function
(Bishop, 1996). The output from the activation
function varies between 0 and 1, or between -1
and 1, depending on which activation function
is used. The inputs and the weights are not

dendrites

Figure 1. Simplified biological neuron.

——

restricted in the same way and can in principle
be between -0 and +o, but they are very often
small values centered on zero (Broomhead and
Lowe, 1988). Figure 2 provides a schematic
view of an artificial neuron.

As mentioned earlier there are many
different activation functions, some of the most
commonly used are threshold (Eq. 2), sigmoid
(Eq.3) and hyperbolic tangent (Eq.4).

g(x):{lifx+1>0

0if x+1<0 )

1
80 =

(3)
sinh(s(x +1))
cosh(s(x+1))

€2(s(x+t)) -1

g(x)=tanh(s(x+1))=

es(x+t) _ efs(ert)

es(x+t)_’_€fs(x+t) e2(s(x+t))+1

(4)

where ¢ is the value that pushes the center of
the activation function away from zero and s is
a steepness parameter. Sigmoid and hyperbolic
tangent are both smooth differentiable
functions, with very similar graphs. Note that
the output range of the hyperbolic tangent
goes from -1 to 1 and sigmoid has outputs
that range from 0 to 1. A graph of a sigmoid
function is given in Figure 3 to illustrate
how the activation function looks like. The t
parameter in an artificial neuron can be seen
as the amount of incoming pulses needed to
activate a real neuron. A NN learns because
this parameter and the weights are adjusted.

Synaptic connections
to other neurons

L

axon
nucleus

N/
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Figure 2. An artificial neuron.

NN architecture

The NN used in this investigation is a multilayer
feedforward neural network MFNN, which is the
most common NN. In a MFNN, the neurons are
ordered in layers, starting with an input layer
and ending with an output layer. There are a
number of hidden layers between these two
layers. Connections in these networks only go
forward from one layer to the next (Hassoun,
1995). They have two different phases: a trai-
ning phase (sometimes also referred to as the
learning phase) and an execution phase. In
the training phase the NN is trained to return
a specific output given particular inputs, this
is done by continuous training on a set of data
or examples. In the execution phase the NN
returns outputs on the basis of inputs. In the
NN execution an input is presented to the input
layer, the input is propagated through all the
layers (using equation 1) until it reaches the
output layer, where the output is returned.
Figure 4 shows a MFNN where all the neurons
in each layer are connected to all the neurons in
the next layer, what is called a fully connected
network.

0.5T

Two different kinds of parameters can be
adjusted during the training, the weights and
the 7 value in the activation functions. This is
impractical and it would be easier if only one of
the parameters were to be adjusted. To cope
with this problem a bias neuron is introduced.
The bias neuron lies in one layer, connected
to all the neurons in the next layer, but none
in the previous layer and it always emits 1. A
modified equation for the neuron, where the
weight for the bias neuron is represented as
w”+1, is shown in equation 5.

yx)=g (Wnﬂiwixi)

(3)

Adding the bias neuron allows the removal
of the ¢ value from the activation function,
leaving the weights to be adjusted, when the
NN is being trained. A modified version of the
sigmoid function is shown in equation 6.

1

8(¥)=——
l‘l_ e 2sx (6)
The ¢ value cannot be removed without adding
a bias neuron, since this would result in a zero
output from the sum function if all inputs where
zero, regardless of the values of the weights

Training a NN

When training a NN with a set of input and
output data, we wish to adjust the weights in
the NN to make the NN gives outputs very close
to those presented in the training data. The
training process can be seen as an optimization
problem, where the mean square error between
neural and desired outputs must be minimized.
This problem can be solved in many different
ways, ranging from standard optimization
heuristics, like simulated annealing, to more
special optimization techniques like genetic
algorithms or specialized gradient descent
algorithms like backpropagation BP.

-10 -5 0 5

224 VoLuME 53 NumBerR 3

Figure 3. A graph of a sigmoid function with
s=0.5andt=0
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Figure 4. A fully connected multilayer
feedforward network with one hidden
layer and bias neurons

The backpropagation algorithm

The BP algorithm works in much the same
way as the name suggests: after propagating
an input through the network, the error is
calculated and the error is propagated back
through the network while the weights are
adjusted in order to make the error smaller.
Although we want to minimize the mean square
error for all the training data, the most efficient
way of doing this with the BP algorithm, is to
train on data sequentially one input at a time,
instead of training the combined data.

BP application steps. First the input is
propagated through the NN to the output.
Then the error e, ona single output neuron k
can be calculated as:

e, =d-y, (7)

where y, is the calculated output and d, is the
desired output of neuron k. This error value
is used to calculate a J, value, which is again
used for adjusting the weights. The ¢, value is
calculated by:

5,=e, 2’0, (8)

where g’ is the derived activation function.
When the J, value is calculated, the 5 values
can be calculated for preceding Iayers The
5 values of the previous layer are calculated
from the J, values of this layer by the following
equation:

Input Layer

Hidden Layer

Output Layer

K
6]' = 778'()’,- )z 6kwjk
k=0 (9)

where K is the number of neurons in this layer
and 7 is the learning rate parameter, which
determines how much the weight should be
adjusted. The more advanced gradient descent
algorithms does not use a learning rate, but a
set of more advanced parameters that makes
a more qualified guess to how much the weight
should be adjusted. Using these o values, the
Aw values that the weights should be adjusted
by, can be calculated:

Aij: S/yk (10)

The Aw value is used to adjust the weight w, , by

w,= wk+Awk and the BP algorithm moves on to
the next mput and adjusts the weights according
to the output. This process goes on until a
certain stop criteria is reached. The stop criterion
is typically determined by measuring the mean
square error of the training data while training
with the data, when this mean square error
reaches a certain limit, the training is stopped.

In this section the mathematics of the BP
algorithm have been briefly discussed, but
since this report is mainly concerned with the
implementation of NN, the details necessary
for implementing the algorithm has been left
out (for details see Hassoun, 1995 and Hertz
et al., 1991).
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Duration: predictive relationships

Predictive relationships usually express ground
motion parameters as functions of earthquake
magnitude, distance, source characteristics,
site characteristics, etc. A typical predictive
relationship may have the form:

InY = C,+C,M+C,M “+C . In[ R+C, exp
(C,M)] +C,R+ f (source) + f (site)

GlnY: C9 (12)

where Y is the ground motion parameter of
interest, M the magnitude of the earthquake,
R a measure of the distance from the source to
the site being considered. C -C, are constants
to be determined. The g,  term describes
the uncertainty in the vaIue of the ground
motion parameter given by the predicative
relationship.

Regarding duration parameters many types
of predictive relationships have been proposed
(Bommer and Martinez-Pereira, 1999), but
bracketed duration and significant duration
relationships are the most commonly used.
The former is defined as the time elapsed
between the first and last excursions beyond a
specified threshold acceleration. That definition
has shown to be sensitive to the threshold
acceleration considered and to small events
that occur at the final part of a recording.
Significant duration is based on the dissipation
of energy, within a time interval, and this
energy is represented by the integral of the

m/s?

square of the ground motions. In the case of
acceleration is related to the Arias intensity IA
(Arias, 1970):

T rr,
I, =— | a@t)dt
' 25’]; (13)

here a (f) is the acceleration time history, g is
the acceleration of gravity, and T represents the
complete duration of recording a (¢). Figure 5
present the procedure followed to determine
the significant parameters (Husid, 1969). The
most common measure of significant duration
is a time interval between 5-95% of IA and is
denoted by D_, .

Predictive relationships have also been
developed for frequency-dependent duration

parameters evaluated from bandpassed
accelerograms (e.g., Bolt, 1973, Trifunac
and Westermo, 1982; Mohraz and Peng,

1989; and Novikova and Trifunac, 1994).
These relationships have several limitations
that are basically associated with a deficient
representation of magnitude or site effects.
Additionally, none of these have been
derived from the energy integral. Some other
restrictions are related to measured distan-
ce (normally the epicentral distance, not the
closest site-source distance) and finally there
are still others having to do with the regression
method used to derive the relationships
(Kempton and Stewart, 2006).

In what follows we develop a predictive
neuronal model for significant duration that:
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1) considers the seismic effects associated to
magnitude, focal distance, near-fault rupture
directivity and soil conditions and 2) is based
on a soft computing procedure that accounts
for inter- and intra-event ground-motion
variability. Significant duration, from the Arias
integral, was selected because of the stability
of the method with respect to the definitions
of initial and final threshold (Bommer and
Martinez-Pereira 1999).

Neural estimation of duration

The ground motion duration model developed
here captures the effects of the amount of
energy radiated at the source using a neural
representation of phenomena implicit in the
data, the attenuation of seismic waves along
the path due to geometric spreading and
energy absorption; it also considers a local
modification of the seismic waves as they
traverse near-surface materials. The strong-
motion duration D is the dependent variable
of the NN formulation. The primary predictor
variables (independent variables in a typical
regression analysis) are M moment magnitude;
R epicentral distance; focal depth FD, soail
characterization expressed by Ts natural
period; and Az azimuth.

NN based on information compiled from
Puebla

Database

The city of Puebla has currently an accelerograph
network composed of 11 seismic stations,
three of which are located on rock, seven on
compressible soil, and one in the basement
of a structure. The general characteristics are
provided in Table 1 and their locations indicated
in Figure 6. Although, the first station (SXPU) was
installed in 1972, the number of accelerogram
records is relatively low mainly due to the low
rate of seismicity in the region and the long
process taken to install seismic stations.

In the first stage for the integration of our
database, records with low signal-to-noise
ratios were not taken into account. Hence, only
42 three-component accelerograms associated
to three seismic stations (PBPP, SXPU and
SRPU) are included in the database. These
records were obtained from records of both
subduction and normal-faulting earthquakes,
originated, respectively, at the contact of the
North America and Cocos plates, and by the
fracture of the subducted Cocos plate.

Table 1. Puebla City Accelerograph network (Alcantara, 1999)

Geo-Coordinates

Stgotdi:n Station name Lat N Long W
BHPP Barranca Honda Basaltic rock 19.109 -98.227
CAPP Central de Abasto Compressible 19.089 -98.188
LMPP Lomas del Marmol Marble stone 19.001 -98.182
PBPP Paseo Nicolds Bravo Travertine de- 19.046 -98.208
PHPU Parque Habana Compressible 19.040 -98.167
PZPU La Paz, Puebla Volcanic cone 19.055 -98.227
RFPP Rio San Francisco Structure 19.050 -98.190

basement
SAPP San Lacustrine de- 19.060 -98.210
Alejandro
SRPU San Ram(’)ln Castillo- Compressible 18.965 -98.260
tla
SXPU Sismex Puebla Compressible 19.040 -98.215
UAPP Facultad de Ingenie- Compressible 19.002 -98.202

ria Civil
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The earthquakes in the database have
magnitudes ranging from 4.1 to 8.1. Most of
the events originated along coast of the Pacific
Ocean in the states of Michoacan, Guerrero
and Oaxaca. The epicenters of the remaining
three events, those of October 24, 1980, April
3, 1997 and Junel5, 1999 were located in the
Puebla-Oaxaca border. Epicentral distances to
stations in the city of Puebla range from 300
to 500 km and in only one case it reached 800
km. That is why accelerations produced by the
earthquakes considered in this research did
not exceed 10 gal in Puebla.

In a second stage the database was
expanded with accelerograms from the
Instituto de Ingenieria UNAM Accelerographic
Network (Alcantara et al., 2000). The added
acceleration histories were recorded in stations
on rock located the coastal region of the
states of Michoacan, Guerrero and Oaxaca,
and forcefully had to be generated by one of
the earthquakes we had already catalogued in
Table 1. The seismic stations we considered are
shown in Figure 7 (filled squares), as well as the
locations of the epicenters (inverted triangles).
They were 88 three-component accelerograms
in the final database.
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A set of 26 events was used (Table 2) to
design the topology of the NNs. These events
were selected on the basis of the quality and
resolution of the records. Accelerograms with
low signal to noise ratios were deleted from
the database. Both horizontal components and
vertical direction of each seismic event were
considered.

It is clear that the inputs and output spaces
are not completely defined; the phenomena
knowledge and monitoring process contain
fuzzy stages and noisy sources. Many authors
have highlighted the danger of inferring a
process law using a model constructed from
noisy data (Jones et al., 2007). It is imperative
we draw a distinction between the subject of
this investigation and that of discovering a
process from records. The main characteristic
of NN model is unrevealed functional forms.
The NN data-driven system is a black-box
representation that has been found exceedingly
useful in seismic issues but the natural principle
that explains the underlying processes remains
cryptic. Many efforts have been developed to
examine the input/output relationships in a
numerical data-set in order to improve the NN
modeling capabilities, for example Gamma test
(Kemp et al., 2005; Jones et al., 2007; Evans
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Figure 7. Location of epicenters and seismic stations
Table 2. RACP Selected records
# Event M Recording # Event M Recording
date station date station
1 7811291 7.8 SXPU 14 9602255 5 PBPP
2 7811292 5.3 SXPU 15 9603271 5 SRPU
3 7811293 4.5 SXPU 16 9607151 6.5 PBPP, SRPU, SXPU
4 7903141 7 SXPU 17 9701111 6.9 PBPP, SRPU, SXPU
5 8010241 7 SXPU 18 9701211 5 PBPP, SRPU, SXPU
6 8110251 7.3 SXPU 19 9704031 4.8 PBPP
7 8407021 6 SXPU 20 9712161 5.9 PBPP
8 8502111 5.2 SXPU 21 9801101 6.3 PBPP
9 8509191 8.1 SXPU 22 9802031 6.2 PBPP, SRPU, SXPU
10 8509211 7.5 SXPU 23 9804201 5.5 PBPP, SRPU, SXPU
11 8904251 6.9 PBPP 24 9906151 6.5 PBPP, SRPU
12 9509141 7.2 PBPP, SRPU, 25 9906211 5.8 PBPP,
SXPU RPU
13 9602251 6.7 PBPP, SXPU 26 9909301 7.5 PBPP, SXPU
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and Jones, 2002), but as far as the authors’
experience, none of these attempts are
applicable to the high dimension of the seismic
phenomena or the extremely complex neural
models for predicting seismic attributes.

Neural approximation

The first step in developing a NN is the
representation of the set of input and output
cells. There are no clear-cut procedures
to define this construction step. While the
optimum architecture --hidden nodes and
associated weights-- is obtained when the
error function is minimized (i.e., the sum of the
patterns of the squared differences between
the actual and desired outputs is minimum)
the numerical or categorical representation
of inputs and outputs also depends on the
modeler's experience and knowledge and a
trial-and-error procedure must be followed in
order to achieve a suitable design.

The RACP database has been modeled
using the BP learning algorithm and Feed
Forward Multilayer architecture. Time duration
in horizontal (mutually orthogonal D,,, N-S,
and D,,, E-W) and vertical components (D,))
are included as outputs for neural mapping
and this attempt was conducted using five
inputs (M, R, F,, T_and A,). After trying many
topologies, we found out that the best model
during the training and testing stages has two
hidden layers with 200 nodes each. As seen
in Figure 8a, the training correlation for D,
D,, and D, was quite good, but when the same
model is tested (unseen cases are presented
to predict the output) considerable differences
between measured and estimated duration
times are found (Figure 8b). It is important
to point out that the results shown in that
figure are the best we were able to obtain after

trying 25 different topologies. Thus, this can
be considered as the model having the best
generalization capabilities using the selected
learning algorithm, architecture, and nodal
hidden structure. In Figure 9 the estimated
values obtained for a second set of unseen
patterns (validation set) are compared with
the numerical predictions obtained using the
relationship proposed by Reinoso and Ordaz
(2001). The neuronal relationship follows
more narrowly the overall trend but fails in
some cases, (coefficients of correlation around
R?=0.75). It should be stressed that the NN
has better interpolation and extrapolation
capabilities than the traditional functional
approaches. Furthermore, the influence of
directivity and fault mechanism on duration
can be identified with the NN, based on a
multidimensional environment (Figure 10)

NN based on information compiled from
Oaxaca

Database

The information used in the study is taken
from the Oaxaca accelerographic array (RACO,
Red Acelerografica de la Ciudad de Oaxaca,
in Spanish). The first recording station was
installed in 1970 and nowadays the network
comprises seven stations deployed around the
urban area.

The instruments in these stations are
located on ground surface. Each station has
a digital strong-motion seismograph (i.e.,
accelerograph) with a wide frequency-band
and wide dynamic range. Soil conditions at the
stations vary from soft compressible clays to
very stiff deposits (see Table 3). Locations of
these observation sites are shown in Figure
11. From 1973 to 2004, the network recorded

Table 3. Oaxaca City Accelerograph network (Alcantara et al., 2000)

Station Code Station name Soil Geo-Coordinates

Lat N Log W
OXFM Facultad de Medicina Alluvium 17.084 -96.716
OXLC Las Canteras Rock 17.065 -96.703
OXPM Primaria Mugica Clay 17.061 -96.717
OXBJ Primaria Benito Juarez Clay 17.067 -96.744
OXAL Alameda de Ledn Clay 17.061 -96.725
OXCU Ciudad Universitaria Clay 17.049 -96.713
OXTO Instituto Tecnoldgico Alluvium 17.078 -96.744
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Figure 8. NN results for RACP, training and testing stages
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Figure 10. Input sensitivity i
analysis for RACP NN
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171 time series from 67 earthquakes with
magnitudes varying from 4.1 to 7.8 (Table 4).
Events with poorly defined magnitude or focal
mechanism, as well as records for which site-
source distances are inadequately constrained,
or records for which problems were detected
with one or more components were removed
from the data sets. The final training/testing set
contains 147 three-component accelerograms
that were recorded in five accelerograph
stations OXLC, OXFM, OXAL, OXPM and OXTO.
This catalogue represents wide-ranging values
of directivity, epicentral distances and soil-type
conditions (see Figure 12).

Neural modeling

The NN for Oaxaca City was developed using a
similar set of independent parameters as those
used for Puebla exercise. As the input/output
behavior of the previous system is physical

] I N-S
M R T, Az

12 ] I E-W
M R T, Az

1.4 ] V
M R T Az

Fo

8

Fo

s

Fo

s

meaning the same five descriptors are included
as inputs. This action permits to explore both
systems’ behaviors and to get wide-ranging
conclusions about these variables.

Epicentral distance R was selected as a
measure of distance because simple source-
site relationships can be derived with it. Focal
depth FD, was introduced for identifying data
from interface events (FD < 50 km) and
intraslab events (FD > 50 km). Together with
the Azimuth Az, it associates the epicenter with
a particular seismogenic zone and directivity
pattern (fault mechanism).

To start the neuro training process using the
Oaxaca database Ts is disabled and a new soil
classification is introduced. Three soil classes
were selected: rock, alluvium and clay. The
final topology for RACO data contains BP as the
learning algorithm and Feed Forward Multilayer
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Table 4. RACO selected records

# Event date M Recording sta- # Event date M Recording sta-
tion tion
1 197308281 6.8 OXFM 34 200110031 4.4 N/A
2 197811291 7.8 OXFM 35 200111101 6 OXPM, OXTO
3 198010241 OXFM 36 200111281 6 OXTO
4 198206072 OXFM 37 200201161 6.3  OXLC, OXPM,
5 198301241 5.3 OXFM OXTO
6 199407041 5.9 OXFM 38 200201301 5.1  OXFM, OXLC,
7 199408271 5 OXFM OXPM, OXTO
39 200202261 5 OXTO
8 199408281 5.2 OXFM
40 200205111 4.5  OXPM, OXTO
9 199509141 7.2 OXFM
10 199604011 . OXEM 41 200206071 4.7  OXFM, OXTO
42 200206072 5.6 OXFM, OXAL,
11 199802031 6.2 OXFM OXLC, OXPM,
12 199805021 4.4 OXFM OXTO
13 199906151 6.5  OXFM, OXLC 43 200206111 4.9 OXTO
14 199906152 4.5  OXFM, OXLC 44 200206181 4.5 OXFM
15 199909301 7.5 OXFM, OXLC 45 200208051 5.3 OXFM, OXLC,
16 199910071 4.4  OXAL, OXTO OXPM, OXTO
46 200208271 4.9  OXFM, OXAL,
17 199910251 4.6 OXTO OXLC, OXPM.
18 199911061 4.5  OXFM, OXAL, OXTO
OXLC, 47 200211081 5.2 OXTO
AREAONIS 48 200212021 4.7 OXTO
19 199911101 4.3 OXA&%(PM' 49 200212291 4.6  OXFM, OXPM,
OXTO
20 199911291 4.4 OXTO e T e
21 199912171 4.4  OXPM, OXTO 51 200302011 5.3 OXTO
22 200001191 4.5 OXLSS(%(PM, B =
23 200003011 4.7 OXFM, OXLC, 53 200307081 4.6 OXTO
OXPM, 54 200309251 4.6 OXTO
OXTO 55 200312011 4.3  OXAL, OXPM,
24 200003121 6.4  OXLC, OXTO OXTO
25 200005101 4.7  OXFM, OXPM, 56 200401131 5.1  OXFM, OXAL,
BT OXLC, OXPM,
OXTO
26 200007211 5.9 OXT0 57 200401132 5.5  OXFM, OXAL,
27 200008171 4.4 OXTO OXLC, OXPM,
28 200009291 4.7  OXLC, OXPM, OXTO
OXTO 58 200401141 4.6 OXTO
29 200010171 5.4 OXTO 59 200401171 4.7  OXFM, OXAL,
30 200101261 5 OXTO OXLC, OXPM,
OXTO
31 200102191 4.8 oXTO 60 200402101 4.4  OXFM, OXAL
32 200102201 4.7 OXTO ' oxTo
33 200109081 4.8  OXAL, OXLC
, / 61 200402181 4.3  OXFM, OXAL,
OXTO

234

VoLuME 53 NumBerR 3



GEOFisICA INTERNACIONAL

Table 4. Continue.

# Event date M Recording sta-

# Event date M Recording sta-

tion tion
62 200404201 5.4  OXFM, OXAL, 66 200408071 5.3  OXFM, OXAL,
OXPM, OXTO OXLC, OXPM,
63 200405061 4.3 OXTO AU
64 200406141 5.8 OXFM, OXAL,
OXPM. OXTO 67 200408181 5.7  OXFM, OXAL,
' OXLC, OXPM,
65 200408011 4.6  OXFM, OXAL, OXTO
OXTO
as the architecture. Again D,,, D,,, and D, are as a system with particular stiffness and

included as outputs for neural mapping and
between the five inputs, four are numerical (M,
R, F,, and A,) and one is a class node (soil
type S;). The best model during the training
and testing stages has two hidden layers of
150 nodes each and was found through an
exhaustive trial and error process.

The results of the RACO NN are summarized
in Figure 13. These graphs show the predicting
capabilities of the neural system comparing the
task-D values with those obtained during the
NN training phase. It can be observed that
the durations estimated with the NN match
quite well calculated values throughout the
full distance and magnitude ranges for the
seismogenic zones considered in this study.
Duration times from events separated to be
used as testing patterns are presented and
compared with the neuronal blind evaluations
in Figure 14. The results are very consistent
and remarkably better than those obtained
when analyzing RACP database. The linguistic
expression of soil type is obviously a superior
representation of the soil effect on D prediction.

A sensitivity study for the input variables
was conducted for the three neuronal modules.
The results are given in Figure 15 and are valid
only for the data base utilized. Nevertheless,
after conducting several sensitivity analyses
changing the database composition, it was
found that the RACO trend prevails: S, (soil
type) is the most relevant parameter (has
the larger relevance), followed by azimuth
Az, whereas M, F, and R turned out to be less
influential. NNs for the horizontal and vertical
components are complex topologies that
assign nearly the same weights to the three
input variables that describe the event, but an
important conclusion is that the material type
in the deposit and the seismogenic zone are
very relevant to define D. This finding can be
explained if we conceptualize the soil deposit

damping characteristics that determine how
will the soil column vibrate and for how long,
as seismic waves traverse it and after their
passage through the deposit.

Through the {M, R, F,, A, S.} — {D,,
D,., D,} mapping, the neuronal approach we
presented offers the flexibility to fit arbitrarily
complex trends in magnitude and distance
dependence and to recognize and select
among the tradeoffs that are present in fitting
the observed parameters within the range of
variables present in data.

Conclusions

Artificial neural networks were wused to
estimate strong ground motion duration.
These networks were developed using a back
propagation algorithm and multi-layer feed-
forward architecture in the training stage.
In developing the networks it was assumed
that the parameters that have the greatest
influence on strong motion duration are
magnitude, epicentral distance, focal depth,
soil characterization and azimuth. These
parameters include the effects of seismic
source, distance, materials and directivity.
The many topologies tested and the input
sensitivity developed drive to the conclusion
that a broad soil-type classification (in these
investigation three soil types) provides a better
correlation with seismic phenomena than the
more commonly used natural period T..

Overall, the results presented here show
that artificial neural networks provide good and
reasonable estimates of strong ground motion
duration in each one of the three orthogonal
components of the accelerograms recorded in
the cities of Puebla and Oaxaca using easy-to-
obtain input parameters: S M, R, F and A,.
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Figure 11. Strong mo-
Oaxaca City tion ne_twork in Oaxaca
i City (RACO).
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Figure 13. NN results for RACO, training stage.
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Figure 15. Input sensitivity 1.6 -
analysis for RACO NN.
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Finally, it is important to highlight that
the capabilities of a NN ultimately depend on
various factors that require the knowledge
of the wuser about the problem under
consideration. This knowledge is essential for
establishing the pattern parameters that best
represent it. Experience to set and to select the
network architecture (including learning rules,
transfer functions and hidden nodal structure)
and the proper integration of training, test and
validation data sets are also very important.
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