La funcion de las proteinas
de choque térmico en las
infecciones virales
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Las protefnas de choque térmico se describieron como una
respuesta intracelular al estrés caldrico; sin embargo, al paso
del tiempo, se observd que estas proteinas tienen multiples
funciones y que participan de manera relevante tanto en
los procesos fisioldgicos como patoldgicos. Las actividades
que realizan las proteinas de choque térmico se relacionan
con su localizacion, que puede ser intra o extracelular, al
momento fisiolégico vy a las diferentes asociaciones estruc-
turales, que pueden ser desde péptidos derivados de estas,
hasta dimeros o multimeros. Con base en estas caracteristicas
funcionales, se les ha denominado proteinas multiempleo o
‘moonlighting proteins”. En este articulo se describen algunas
de las actividades de estas protefnas con relacion al sistema
inmunoldgicoy las infecciones virales, en particular con los
procesos inflamatorios.
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Heat shock proteins (HSP) were first described as a cell re-
sponse to heat stress. However, over time, it has become
clear they have multiple functions inside and outside cells,
and that they actively participate in different physiological
and pathological processes. They perform functions related
to their cellular location or physiological moment, which is
why they have been called multi-use proteins or “moonlight-
ing proteins”. Furthermore, HSP activity is associated with
different structural conformations, from peptides derived
from them or as dimers or multimers, to mention a few. This
article describes these functions and their relationship with
the immune system, and their relationship with viral infection,
particularly with inflammatory processes.

HSP; viral infection; COVID-19; immune system; in-
flammation processes.

Durante la evolucidn, las células han desarrolla-
do sistemas de proteccién para evitar que cambios
bruscos en el ambiente provoquen alteraciones en
la estructura y funcién de proteinas que pongan en
riesgo su viabilidad. Uno de los mecanismos que se



activa en respuesta a los diferentes tipos de estrés in-
ducidos por factores externos como la temperatura,
es la sintesis de proteinas de choque térmico (hear
shock proteins, HSP) o chaperonas moleculares, con
el fin de favorecer el plegamiento correcto de otras
proteinas para el mantenimiento de la proteostasis
y la homeostasis celular'.

En la mayoria de las células, las HSP se expresan
de manera constitutiva; sin embargo, su sintesis
puede ser inducible en respuesta a diversos estimulos
y condiciones fisiolégicas. De esta manera, las HSP
se encuentran practicamente en todos los organis-
mos, desarrollando multiples funciones como la di-
sociacién o plegamiento de proteinas, modificacién
de la actividad de ciertas enzimas, mantenimiento
del citoesqueleto y efectos apoptéticos, entre otros.
Se ha descrito que la actividad de las HSP depende
de: a) su conformacién estructural funcional, que
va desde un estado monomérico hasta asociaciones

Localizacién, funcion y estructura de las HSP
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multiméricas; b) la formacién de complejos con
otras proteinas chaperonas o cochaperonas; ¢) mo-
duladores como el ATP, y d) su localizacién intra-
celular o extracelular®* (tabla 1).

Debido a la versatilidad de funciones que pre-
sentan las HSP se les ha denominado proteinas
multiempleo o “moonlighting proteins™?, ya que
estdn involucradas en multiples procesos metabd-
licos, fisiolégicos o patolégicos. Se ha demostrado
que tienen una participacién relevante durante el
embarazo®! y la esteroidogénesis™!°, asi como
en la preeclamsia'”'®, el cdncer”, la diabetes?>*,
la resistencia a la insulina??, en enfermedades car-
diovasculares?***
inmune®®?, entre otras.

En este sentido, una misma HSP puede tener
diferentes funciones, las cuales dependerdn de su
estructura y localizacién en los diferentes compar-
timentos intracelulares, o de si son traslocadas a la

, la aterosclerosis® y la respuesta
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Clasificacion de las HSP con base en su peso molecular y al simbolo genético asignado por la HUGO-GNC (de sus siglas en inglés: Human Genome
Organisation Gene Nomenclature Committee).
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superficie o al medio extracelular cuando la célula
se encuentra en condiciones de estrés. Bajo estas
condiciones, las HSP acttian principalmente como
una sefial de alerta del sistema inmunitario?$-3°,

LAS HSP EN EL SISTEMA INMUNE
Dentro de las funciones que realizan las HSP estd
la que se asocia al sistema inmunolégico, donde
actian como un indicador para evitar la propa-
gacién del dano. Se ha identificado a las proteinas
HSP27, Grp78, HSP60, HSP70, Grp94 o HSP90
en la superficie celular y en el fluido extracelular
de pacientes en condiciones patoldgicas. Se sugiere
que el mecanismo de translocacién o la via secre-
tora de las HSP a las membranas o a la circulacién
puede ser a través de vesiculas; sin embargo, no se
conoce a detalle y es motivo de investigacié®'. En
este contexto, se ha sugerido que las HSP acttian
como “moléculas de sefnalizacién” o “moléculas in-
munomoduladoras” alertando y activando al siste-
ma inmunoldgico innato y adaptativo durante el
proceso inflamatorio en enfermedades infecciosas
causadas por virus o bacterias, o incluso en algunas
alteraciones como el cdncer’>%,

Se ha descrito que la HSP60, HSP70, HSP90,
GP96 (HSP90B1, HSPC4) v la calreticulina (una
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HSP de reticulo endopldsmico de 46 kDa) acttian
como activadores del sistema inmune innato que
inducen la produccién de citocinas proinflamato-
rias como el factor de necrosis tumoral (TNF-a) o
interleucinas (IL-1, 6 y 12)*4, asi como la activacién
de los receptores tipo Toll (TLR, Toll-like receptor)
4y 2%. Especificamente, la actividad de HSP60 se
ha asociado con la activacién de los linfocitos-T ci-
totéxicos®’; asi como a los receptores CD14, CD40
y TLR¥. A estas HSP que participan en el sistema
inmunolégico se les ha denominado como “cha-
perocinas’, ya que ademds de presentar la funcién
de chaperona pueden activar el mecanismo para la
produccién de citocinas®®.

FORMACION DE COMPLEJOS HSP-PEPTIDOS
EN EL SISTEMA INMUNE
Diversos estudios han demostrado que las HSP for-
man complejos con péptidos derivados de particulas
antigénicas virales o bacterianas, provenientes de
células infectadas o de células bacterianas comple-
tas™. Estos péptidos se generan por dos vias, la
endocitica o exdgena y la citosélica o endédgena.
En la via exégena, los antigenos se adhieren a la
membrana de los macréfagos, donde son fagocita-
dosy procesados por enzimas endosomales y lisoso-
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Figura 1. a) Via exégena o endocitica

El antigeno es reconocido y endocitado por el receptor de células T (TCR). En el endosoma, el antigeno es procesado por proteasas
y enzimas lisosomales para la generacién de péptidos de 13-18 aminoacidos. El MHC Il es transportado por vesiculas hasta el
endosoma tardio donde es liberado de la cadena invariante para unirse a los péptidos proteicos. La vesicula con el complejo

MHC lI-péptido se fusiona con la membrana plasmética y el complejo queda expuesto hacia el exterior de la célula. RE = reticulo
endoplasmico; Ci = Cadena invariable. b) Via endégena o citosdlica. Los antigenos son procesados por el proteasoma generando
péptidos de entre 8y 16 aminoacidos. Los péptidos son reconocidos por la HSP90 y transportados hasta el reticulo endopldsmico
donde son translocados por la proteina TAP. En el interior del reticulo, el péptido se une al complejo PLC y al MHC I. Una vez formado
el complejo MHC I-péptido, las HSP se liberan y el complejo se dirige a la superficie celular donde los péptidos se presentan a los
linfocitos CD8+ generando la respuesta inmunitaria. Modificado de: McCarthy MK, Weinberg JB, 2015%'.

males. Los péptidos generados son reconocidos por
el complejo principal de histocompatibilidad clase
11 (major histocompatibility complex type 1I, MHC
IT) y dirigidos a la membrana celular para ser pre-
sentados a los linfocitos T CD4+ (figura 1a). Por
otro lado, los antigenos endégenos (proteinas viricas
sintetizadas dentro de la célula), se procesan por el
proteasoma o inmunoproteasoma por la via citosdli-
ca, generando péptidos de entre 8 y 16 aminodcidos
que son reconocidos por el complejo principal de
histocompatibilidad clase I (major histocompatibi-
lity complex type I, MHC I)*. Estos péptidos, los

generados por el proteasoma, son transportados al
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reticulo endopldsmico por la proteina TAP (trans-
portador asociado con la presentacion de antigeno)
donde se unen al MHC I / PLC (peptide-loading
complex o complejo de carga del péptido), el cual
estd formado por chaperonas como la calreticulina,
tapasina, calnexina y la enzima ERp57. Se ha des-
crito que la HSP90 interacciona con el proteasoma
para proteger a los péptidos recién generados® y
que la HSP70 se asocia con la proteina TAP, lo que
promueve su funcién®® (figura 1b).

Una vez que el péptido es reconocido por el
MHC, las chaperonas del complejo PLC se libe-
ran y el MHC I-péptido se dirige hacia la superficie
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celular donde el péptido se presenta a los linfocitos
CD8+. Durante este proceso, desde la liberacién del
péptido y hasta su presentacion a las células CD8+,
la actividad de las HSP resulta indispensable, ya
que los péptidos antigénicos no pueden permanecer
libres en un ambiente acuoso sin ser degradados.
En la via exdgena, la formacién del complejo
HSP-péptido permite a las HSP70, HSP90, GP96 y
calreticulina asociarse con las células presentadoras
de antigenos a través del receptor CD91 (también
llamado receptor alfa 2-macroglobulina), interna-
lizarse y coadyuvar en el incremento en la presen-
tacion de antigenos a los linfocitos CD4+ y CD8+
para promover la respuesta inmune; sin embargo, la
inmunogenicidad se anula al disociarse el complejo
HSP-péptido**#4, lo que significa que las HSP o los
péptidos no presentan efecto inmunogénico per se.
La sobreexpresion de las HSP durante procesos
infecciosos ha sido de interés para su estudio como
blancos terapéuticos o marcadores de dafio celular
en la regulacién de la respuesta inmune. Se han
utilizado proteinas purificadas o péptidos sintéticos
de la HSP60 y HSP70 para estimular a las células
T y NK. En este sentido, se han administrado de
forma exégena péptidos dnaJP1 derivados de HSP-
dnJ (una HSP bacteriana homdloga de la HSP40
humana) como inmunoterapia en pacientes con
artritis reumatoide. El tratamiento desperté diver-
sas respuestas inmunes y cambios en la funcién
proinflamatoria y reguladora de las células T, se
increment6 la produccién de IL-4, IL-10 y dismi-
nuyd la expresién de IL-2, [FN-y y TNF-a#. Los
resultados del tratamiento sugieren una tendencia
hacia la eficacia en la aplicacién clinica, ya que la
susceptibilidad al tratamiento se basa en la coexpre-
sién de moléculas que puedan contribuir a dismi-
nuir la baja respuesta de la inmunidad adaptativa.

LAS HSP Y LAS INFECCIONES VIRALES

Las HSP tienen una participacién diferencial en
funcién de cémo se llevan a cabo los procesos mole-
culares en una infeccién. Se ha descrito que las HSP
se secretan al medio extracelular en condiciones
patolégicas donde presentan actividad inmunomo-
duladora e inducen la activacién de macréfagos,
la respuesta inmune y antiinflamatoria, asi como
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la regulacién de la apoptosis y procesos de comu-
nicacién celular®. Ademds de estar involucradas
en la internalizacién, replicacién, transcripcién y
expresién génica viral, la HSP60, HSP70 y HSP90
actian como proteinas hospederas, colaboran con
el plegamiento de proteinas virales, favorecen la
propagacion y la eficacia de la infeccién®*®, asi
como la activacién de los macréfagos®. De ahi la
importancia de su localizacién cuando se detecta
la infeccién viral.

De manera particular, se ha descrito que la
HSP60 tiene una funcién importante en la via del
inflamasoma, en la sintesis y liberacion de proteinas
pro y antiinflamatorias como p53, interleucinasy el
factor de necrosis tumoral TNF-0°%%; interacciona
con la proteina HBx del virus de la hepatitis B, la
cual es esencial para su replicacion y la persistencia
de la infeccién™. De igual forma, la HSP90 partici-
pa regulando la replicacién del virus de la hepatitis
Cy del virus de la influenza, donde también tienen
una funcién la HSP40 y la HSP70°%.

Con base en las diferentes actividades antivirales
y proinfeccién de las HSP, se ha sugerido que estas
pueden tener una participacién importante en la
enfermedad del COVID-19, causada por el virus
del SARS-CoV-2 (del inglés: severe acute respiratory
syndrome (SARS)-like coronavirus). La infeccién por
este tipo de coronavirus ocasiona un dafo severo
a nivel respiratorio, corazén, higado, rifones, ce-
rebro, sistema nervioso y gdstrico’®. La infeccién
viral inicia cuando la proteina espiga (o spike) del
SARS-CoV-2 reconoce como receptor a la enzima
convertidora de angiotensina 2 (ACE2) en la su-
perficie celular, donde por via endosomal o fusién
con la membrana celular, inyecta su genoma al ci-
toplasma para iniciar la replicacién y la formacién
de los viriones que son liberados por exocitosis para
mantener la progresién de la infeccion®.

El virus del SARS-CoV-2 presenta cuatro protei-
nas estructurales principales: la spike (o de espiga),
las de membrana, las de envoltura y las de la nucleo-
cdpside; ademds de otras accesorias como ORF3a,
ORF6, ORF7a, ORF7b, ORF8, ORF9 y ORF1”.
Mediante andlisis bioinformdtico (Immune Epitope
Database and Analysis Resource), Marino Gam-
mazza et al. (2020) compararon la secuencia de
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Aminoacidos con potencial inmunogénico/antigénico con el SARS-CoV-2
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Datos publicados en: Lucchese G, Fléel A, 20208,

aminodcidos de las proteinas de SARS-CoV-2 con
20,365 proteinas de humano. Los resultados demos-
traron que diferentes HSP, que corresponden a pro-
teinas de la familia de la HSP70, HSP60, HSP40 y
HSP90, comparten un segmento de seis aminodci-
dos con potencial inmunogénico/antigénico con el
SARS-CoV-2 y que estos hexapéptidos correspon-
den a los epitopes inmunogénicos predichos para
los linfocitos B/T>® (tabla 2). Con estos resultados,
Marino Gammazza et al. (2020) sugieren que cuan-
do las células se encuentran en condiciones de estrés
provocado por el SARS-CoV-2, se incrementa la
translocacion de HSP al espacio extracelular y se
desencadenan diversos procesos asociados con la
autoinmunidad®®. Igualmente, experimentos rea-
lizados por Luchese y Floel (2020) demostraron
que fosfoproteinas de la nucleocdpside y ORFab
del SARS-CoV-2 comparten un hexapéptido con
potencial inmunogénico con proteinas de la familia
de HSP90 (KDKKKK) y HSP60 (EIPKEE) respec-
tivamente, lo que “constituye el candidato ideal para
obtener una respuesta autoinmune contra HS90B,
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H90B2 y HSP60, asi como un potencial mecanis-
mo patogénico de neuropatia como consecuencia

de la infeccidon por SARS-CoV-2"%.

La participaciéon de la HSP60
Se ha mostrado que el péptido CIGB-258 (APL1 o
CIGB-814) derivado de la proteina HSP60, puede
inducir un efecto inmunorregulador y antiinfla-
matorio en pacientes con artritis reumatoide®. Se
demostré también que el péptido tiene un efecto
terapéutico al administrarse a pacientes con CO-
VID-19 que se encontraban en condicién critica
con sindrome de dificultad respiratoria aguda. Des-
pués de 48 horas de tratamiento con CIGB-258, los
pacientes mostraron una recuperacién importante
y una disminucién significativa en los niveles de
IL-6, IL-10, TNF-0, granzima B y perforina, al
parecer a través de la activacién de los linfocitos T
reguladores®’.

También se han identificado concentraciones
elevadas de HSPGO circulante (en plasmay suero) en
diversas enfermedades, principalmente en pacientes
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Estudios basados en modelado molecular del
dominio de unién al receptor de la proteina
espiga del SARS-CoV-2 y el dominio de unién a
sustrato de la GRP78, sugieren que la proteina
espiga puede presentar hasta 4 sitios de union
con la GRP78. Debido a que esta proteina es
esencial para el anclaje e internalizacién del
virus a la célula hospedera, es probable que

la inhibicion de esta interaccion disminuya

la velocidad de la infeccién viral. En suero de
pacientes con neumonia positivos para SARS-
CoV-2, se ha identificado un incremento de hasta
4 veces los niveles de la GRP78, lo que sugiere
un blanco terapéutico potencial para el uso de
inhibidores y moléculas con actividad antiviral
para suprimir la replicacién del SARS-CoV-2.

con hipertensién o enfermedades cardiovascula-
res?»%2. En este sentido, se ha descrito a las HSP
circulantes como mediadores de procesos patolé-
gicos debido a su actividad inmunogénica.

Se ha demostrado que HSPGO estd involucrada
en la internalizacién, transcripcion y replicacién
de diferentes virus, ya que favorece el plegamien-
to y estabilizacién de las proteinas virales®. Se ha
descrito que la HSP60 muestra caracteristicas de
DAMP (del inglés: canonical damage-associated mo-
lecular pattern)®, el cual participa en la activacién
de la respuesta inmune innata al estimular la sefial
inflamatoria a través de los receptores TLR y de
la via NK-»B, e induce la liberacién de citocinas
proinflamatorias y 6xido nitrico*®®. Contrario a
los efectos positivos descritos en las secciones ante-
riores, los resultados sugieren que la HSP60 podria
participar en el mecanismo responsable del desa-
rrollo del sindrome de dificultad respiratoria aguda
(ARDS) e inflamacién microvascular sistémica o
fase hiperinflamatoria relacionada con la tormenta
de citocinas durante el COVID-19%4¢¢,

Es necesario insistir, como se comentd al inicio,
que las funciones de las HSP dependen de una serie
de factores, por lo que ciertas condiciones contribu-
yen a combatir una infeccién virica, pero en otras
favorecen la replicacién viral.
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Las funciones de laHSP70

La HSP72 (0o HSPA1A) es una proteina de la fa-
milia de las HSP70 que participa en los procesos
inflamatorios en pacientes con resistencia a la insu-
lina y diabetes. Se sugiere que la disminucién en la
concentracion de HSP72 en pacientes con diabetes
se asocia con la expresién de proteinas involucradas
en la respuesta inflamatoria como JNK, TNK-a
y NF-#B y, por lo tanto, a la inhibicién del factor
de transcripcién HSF-1%. Se ha demostrado que
la concentracién de HSP72 en plasma y suero se
encuentra elevada en pacientes con diabetes tipo 1
y obesos con diabetes tipo 2, por lo que HSP72 po-
drfa funcionar como un biomarcador de diabetes®.

Otra proteina de la familia de las HSP70 es la
GRP78 (glucose-regulated protein 78 o HSPAS),
una chaperona molecular inducible por estrés que
participa en el plegamiento de proteinas y en la
translocacién de polipéptidos sintetizados a tra-
vés de la membrana del reticulo endopldsmico’™
Cuando la célula se encuentra en condiciones de
estrés, incrementa la concentracién de proteinas no
plegadas en el reticulo endopldsmico activindose la
via de senalizacién UPR (unfolded protein response)
conformada por la cinasa PERK (prozein R-like ER
kinase), IRE1 (inositol-requiring enzyme 1) y ATFG
(activating transcription factor 6). El incremento de
proteinas no plegadas provoca que la GRP78 se
transloque a la membrana celular donde acttia como
receptor de diversos virus como el SARS-CoV-2,
MERS-CoV, influenza, zika o ébola, favoreciendo
su internalizacién a la célula hospedera” 3.

En este sentido, estudios basados en modela-
do molecular del dominio de unién al receptor de
la proteina espiga del SARS-CoV-2 y el dominio
de unién a sustrato de la GRP78, sugieren que la
proteina espiga puede presentar hasta cuatro sitios
de unién con la GRP78. Debido a que la proteina
espiga es esencial para el anclaje e internalizacién
del virus a la célula hospedera, es probable que la
inhibicién de esta interaccién disminuya la veloci-
dad de la infeccién viral™®. En suero de pacientes
con neumonia positivos para SARS-CoV-2, se ha
identificado un incremento de hasta cuatro veces
los niveles de la GRP78, lo que sugiere un blanco
terapéutico potencial para el uso de inhibidores y
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Figura 2. GRP78 en la infeccién viral

El receptor ACE2 y GRP78 reconocen a la proteina spike, lo que favorece la internalizacién del virus por endocitosis. El estrés
induce la expresion de la GRP78 favoreciendo el plegamiento y produccién de proteinas virales en el reticulo endoplasmico.
Elincremento de GRP78 induce su translocacion a la membrana celular para el reconocimiento e internalizacién del virus. La

GRP78 puede asociarse y liberarse junto con las particulas virales (viriones) para mejorar su infectividad como un factor huésped
accesorio. El circulo con el 78 en su interior representa a la proteina GRP78. Modificado de: Ha DP, Van Krieken R, Carlos AJ, et al.,
20207°. RE = reticulo endoplésmico.

moléculas con actividad antiviral para suprimir la
replicacién del SARS-CoV-27>77 (figura 2).

Por el contrario, también se ha sugerido que,
en respuesta al estrés, la HSP70 presenta actividad
antiinflamatoria. La HSP70 se une al complejo
NF-%B/I-#B atenuando la activacién y migracién
de NF-%B al ntcleo, e inhibe la tormenta de cito-
cinas ocasionada por el virus’®. Los pacientes con
COVID-19 son susceptibles de presentar sintomas
graves, sobre todo aquellos con patologia previa
como hipertensién, obesidad, diabetes, enferme-
dades respiratorias o cardiovasculares”.

Se ha observado un decremento en la expresién

de HSP70 y del factor transcripcional de choque

térmico HSF-1, principalmente en pacientes con
obesidad y diabetes mellitus; esta disminucién se
relaciona con la activacion persistente del UPR y del
inflamasomay, por lo tanto, a la produccién masiva
de citoquinas inflamatorias que inducen una con-
dicién conocida como fenotipo secretor asociado a
la senescencia (SASP), el cual se ha identificado en
pacientes infectados con SARS-CoV-2%°.

La HSP90 en los procesos virales

HSPI0 es otra proteina chaperona que ha tomado re-
levancia durante la infeccién viral. En experimentos
in vitro, Li et al. (2020) demostré que la inhibicién de
HSP90 afectan la replicacién virica de MERS-CoV
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Figura 3. Participacion de las HSP en el ciclo viral

Se presenta la participacion de diferentes HSP en el proceso de la infeccién viral, interviniendo desde la entrada y liberacién del
genoma viral al citoplasma de la célula huésped, hasta su ensamblaje y su liberacién. Modificado de: Wan Q, Song D, Li H, He ML, 2020%*.

y que existe una interaccién directa entre HSP90 y
proteinas de la nucleocdpside. Esta relacién mantiene
la integridad funcional y estabilidad de las proteinas
viricas, lo que permite sugerir que este tipo de inte-
raccion serfa una posible estrategia terapéutica, ya que
el uso de inhibidores de HSP90 puede desestabilizar
a las proteinas de la nucleocdpside SARS-CoV-2%'. A
este respecto, se ha demostrado que los inhibidores
de HSPI0 reducen la inflamacién®, lo que indica
que podrian tener una funcién importante durante
las infecciones virales asociadas con procesos infla-
matorios. El uso de inhibidores de HSP90 para la
actividad anticancerigena ha demostrado que tienen
una efectiva distribucién celular y son bien tolerados
por los pacientes®, lo que sugiere que esta podria

Revista de la Facultad de Medicina de la UNAM |

ser una estrategia terapéutica alternativa contra la
infeccién del coronavirus.

CONCLUSIONES

Las HSP tienen multiples funciones, y su actividad
biolégica estd intimamente ligada con su estructura,
conformacién oligomérica y localizacién intra y
extracelular. A la vez, las posibles funciones en cada
evento biolégico dependerdn especificamente de
lo que las células requieren. Sobresale el papel que
desempenan en la respuesta inmune como chape-
rocinas, lo que complementa y fortalece ante una
infeccién, incluidas las virales, un mecanismo que
coadyuva al sistema inmunolégico para evitar el
dafo causado por estos agentes daninos (figura 3).
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Sin embargo, las mismas HSP pueden participar
coadyuvando a propagar las infecciones virales, lo
que sigue siendo motivo de estudios. En un futuro
no lejano se podrd entender con mayor claridad las
funciones de estas proteinas para su aplicacién en
la préctica médica.
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