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1. Introduction

Economic activities on the macro and micro levels often entail wide-
spread externalities. This leads to disputes regarding the compen-
sation levels for the various parties affected. The problem of how
to fairly divide a surplus obtained through cooperation is one of the
most fundamental issues studied in coalitional game theory, and it
is relevant to a wide range of economic and social situations. These
issues are often difficult to resolve, especially in environments with
externalities, where the benefits of a group depend not only on its
members but also on the arrangement of agents outside the group.
This is the general problem to which this paper contributes. In this
line, the concept of partition function form games effectively modeled
such a problem in Lucas and Thrall (1963). In this sense, a game
with externalities assigns a value to each pair consisting of a coali-
tion and a coalition structure. The advantage of this model is that it
considers both internal factors (coalition itself) and external factors
(coalition structure) that may affect cooperative outcomes and allow
to go deeper into cooperation problems. Thus, it is closer to real-life
situations but more complex to analyze.

Given a game with externalities, we are usually interested to
know how the “fruits” of cooperation are shared among the involved
players. A solution for this kind of game is a function that assigns
to every game a payoff vector, where each component of the vector
is the payoff assigned to the corresponding individual player. Usu-
ally, the payoffs assigned to the individual players are based on their
contribution to the different coalitions they are or can be members.

There has been a surge of literature that deals with solutions
for games with externalities. The first paper that proposed a value
concept for this type of games was Myerson (1977). More recently,
Albizuri et al. (2005), Macho-Stadler et al. (2007), Ju (2007), and
Pham Do and Norde (2007) apply the axiomatic approach to charac-
terize a value for these games. All of them satisfy three basic proper-
ties in the cooperative game theory framework: linearity, symmetry,
and efficiency.

Linearity allows us to determine the value of any game that can
be established as their linear combination. Symmetry is an elemen-
tary property that states that players’ names do not matter, and
efficiency merely states that the value is a distribution of the value of
the grand coalition among these players.

In particular, notice that the value does not always generate
a Pareto efficient outcome; it would be Pareto efficient only when
forming the grand coalition generates the largest total surplus. Hence,
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we have in mind economic environments where doing so is the most
efficient way of organizing society. International negotiations and
many other interesting economic environments clearly satisfy that
the players maximize total surplus when they make decisions jointly
because they can internalize the externalities.

In this work, we propose a simple mechanism (based on transfers
among players) to share the joint surplus of cooperation among them
by means of the different externalities to consider. In particular,
we show that every linear-symmetric-efficient solution presented in
Sánchez-Pérez (2017, Theorem 3) is obtained from this mechanism.

2. Preliminaries

Let N = {1, 2, ..., n} be a fixed nonempty finite set, and let the mem-
bers of N be interpreted as players in some game situation. Given
N , let PT be the set of partitions of N , so:

{S1, S2, ..., Sm} ∈ PT iff
m
∪

i=1
Si = N, Sj ∩ Sk = ∅∀j 6= k

Also, let EC = {(S, Q) |S ∈ Q ∈ PT} be the set of embedded
coalitions; that is, the set of coalitions and specifications on how the
other players are aligned.

Definition 1: A game with externalities is a mapping

w : EC →

The set of games with externalities with player set N is denoted
by G, i.e.,

G = {w : EC → }

The value w (S, Q) represents the payoff of coalition S, given
the coalition structure Q forms. In this kind of game, the worth of
some coalition depends not only on what the players of such coalition
can jointly obtain but also on how the other players are organized.
We assume that, in any game situation, the universal coalition N
(embedded in {N}) would actually form, so that the players would
have w (N, {N}) to divide among themselves. But we also anticipate
that the actual allocation of this worth would depend on all the other
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potential worths w (S, Q), as they influence the relative bargaining
strengths of the players.

Given w1, w2 ∈ G and c ∈ , we define the sum w1 + w2 and
the product cw1, in G, in the usual form, i.e., (w1 + w2) (S, Q) =
w1 (S, Q)+w2 (S, Q) and (cw1) (S, Q) = cw1 (S, Q) respectively. It is
easy to verify that G is a |EC| − dimensional linear space with these
operations.

For any S ⊆ N , let [S] denote the partition of S which consists of
the singleton elements of S, i.e., [S] = {{j} |j ∈ S}. For Q ∈ PT and
i ∈ N , Qi denotes the member of Q where i belongs. Additionally, we
denote the cardinality of a set by its corresponding lower-case letter,
for instance n = |N |, s = |S|, q = |Q|, qi =

∣

∣Qi
∣

∣ and so on.
A solution is a function ϕ : G→ n such that ϕi (w) is inter-

preted as the utility payoff which player i should expect from the
game w.

Example 1: As an illustration of the kind of problems that can be
modelled with a game with externalities, consider the following game
w, which describes the situation where 3 companies (N = {1, 2, 3})
are competing for a market. When companies 1, 2, and 3 are on their
own, each of them gets a worth of 50 monetary units. However, if
any two of them get together, they can take over a larger share of
the market and thus make more profit, affecting the other company.
Finally, if the grand coalition is formed, they monopolize the entire
market and thus obtain the maximum profit of 200 monetary units.

The intermediate worths are presented in table 1:

Table 1
Set of worths for Example 1

Embedded coalitions Worths

{1} , {2} , {3} 50 50 50

{1, 2} , {3} 120 40

{1, 3} , {2} 125 45

{2, 3} , {1} 130 10

{1, 2, 3} 200

Source: Author’s elaboration.

Thus, what is the utility payoff which each company should expect
from the previous situation?
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Now, the group of permutations of N , Sn = {θ : N → N |θ is bijective},
acts on EC in the natural way; i.e., for θ ∈ Sn:

θ (S1, {S1, S2, ..., Sl}) = (θ (S1) , {θ (S1) , θ (S2) , ..., θ (Sl)})

And also, Sn acts on the space of payoff vectors, n:

θ (x1, x2, ..., xn) =
(

xθ−1(1), xθ−1(2), ..., xθ−1(n)

)

Next, some preliminaries related to integer partitions are needed
for subsequent developments.

A partition of a non-negative integer is a way of expressing it as
the unordered sum of other positive integers, and it is often written
in tuple notation. Formally, λ = [λ1, λ2, ..., λl] is a partition of n if
λ1, λ2, ..., λl are positive integers and λ1 + λ2 + · · ·+ λl = n. The set
of all partitions of n will be denoted by Π (n), and, if λ ∈ Π (n), |λ|
is the number of elements of λ.

For example, the partitions of n = 4 are [1, 1, 1, 1], [2, 1, 1], [2, 2],
[3, 1] and [4]. Sometimes we abbreviate this notation by dropping the
commas, so [2, 1, 1] becomes [211].

If Q ∈ PT , there is a unique partition λQ ∈ Π (n), associated
with Q, where the elements of λQ are exactly the cardinalities of the
elements of Q. In other words, if Q = {S1, S2, ..., Sm} ∈ PT , then
λQ = [|S1| , |S2| , ..., |Sm|].

For a given λ ∈ Π (n), we represent by λ◦ the set of numbers
determined by the λi’s and for k ∈ λ◦, we denote by mλ

k the mul-
tiplicity of k in partition λ. So, if λ = [4, 2, 2, 1, 1, 1], then |λ| = 6,
λ◦ = {1, 2, 4}, and mλ

1 = 3, mλ
2 = 2, mλ

4 = 1.
Let λ, γ ∈ Π (n) be partitions such that γ◦ ⊆ λ◦, we define the

difference λ − γ as a new partition obtained from λ by removing the
elements of γ. For example, [4, 3, 2, 1, 1, 1 ]−[ 3, 1, 1 ]=[ 4, 2, 1].

2.1 The axioms

In the cooperative game theory framework, an axiomatization is an
important approach to better understanding cooperative solution con-
cepts. Over the years, many different values and other concepts have
been fully characterized by axioms. In particular, we define the usual
linearity, symmetry, and efficiency axioms which are asked for solu-
tions to satisfy in the cooperative game theory framework.
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Axiom 1 (Linearity) ϕ is linear if ϕ (w1 + w2) = ϕ (w1) + ϕ (w2)
and ϕ (cw1) = cϕ (w1), for all w1, w2 ∈ G and c ∈ .

The axiom of linearity means that when a group of players shares
the benefits (or costs) stemming from two different issues, how much
each player obtains does not depend on whether they consider the
two issues together or one by one. Hence, the agenda does not affect
the final outcome. Also, the sharing does not depend on the unit used
to measure the benefits.

Axiom 2 (Symmetry) ϕ is said to be symmetric if and only if
ϕ (θ · w) = θ ·ϕ (w) for every θ ∈ Sn and w ∈ G. Here, the game θ ·w
is defined as (θ · w) (S, Q) = w

[

θ−1 (S, Q)
]

.

Symmetry means that players’ payoffs do not depend on their
names. A player’s payoff is only derived from his influence on the
worth of the coalitions.

Axiom 3 (Efficiency) ϕ is efficient if
∑

i∈N

ϕi (w) = w (N, {N}) for

all w ∈ G.

We assume that the grand coalition forms, and we leave issues of
coalition formation out of this paper. Efficiency means that the value
must be feasible and exhaust all the benefits from cooperation, given
that everyone cooperates.

A solution that satisfies the previous axioms is referred to as an
LSEsolution.

3. LSE solutions and the transfers procedure

Sánchez-Pérez (2017, Theorem 3) prove that a solution ϕ satisfies the
axioms of linearity, symmetry and efficiency, if there exist |Dn| real
numbers {β (λ, j, k) | (λ, j, k) ∈ Dn} such that,
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ϕi (w) =
w (N, {N})

n
+

∑

(λ,j,k)∈Dn

, β (λ, j, k)

















∑

(S,Q)∈EC

S3i,|S|=j

λQ=λ

∑

T∈Q\{S}

|T |=k

kw (S, Q) −
∑

(S,Q)∈EC

S i,|S|=j

λQ=λ,|Qi|=k

jw (S, Q)

















(1)

Here, the set Dn is defined as Dn = {(λ, j, k) |λ ∈ Π (n) \ {[n]} , j ∈
λ◦, k ∈ (λ − [j])

◦}.
Although the parameters β = {β (λ, j, k) | (λ, j, k) ∈ Dn} in

formula (1) can be any collection of real numbers, if β (λ, j, k) ∈
[0, 1] we can refer to them as weights (or fractions) of the worths
{w (S, Q)}(S,Q)∈EC .

Now, we describe the final payoff for player i ∈ N as a result of
the following elementary procedure:

1. He/she receives the egalitarian amount w(N,{N})
n .

2. For each embedded coalition (S, Q), such that S 6= N , there are
transfers between players in S and players in N\S.
(a) If player i belongs to S, then he/she receives (from each

player in each T ∈ Q\ {S}) a fraction β (λQ, s, t) of the worth
w (S, Q). In total from coalition T :

tβ (λQ, s, t) · w (S, Q)

(b) If player i does not belong to S, then he/she pays (to each
player in S) a fraction β (λQ, s, qi) of the worth w (S, Q). In total
to coalition S:

sβ (λQ, s, qi) · w (S, Q)

Notice that the weights are symmetric in the following sense:

◦ If i ∈ S, then the weights associated to the embedded coalition
(S, Q) depend on three parameters: the structure of Q, the car-
dinality of S and the cardinality of other coalitions T different
from S.
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◦ If i /∈ S, the weights depend on: the structure of Q, the
cardinality of S and the cardinality of the coalition that contains
player i.

In this note, we introduce a new entity that reflects the system
of transfers described above. We define for any embedded coalition
(S, Q) such that S 6= N and for any fixed w ∈ G, the quantity:

∑

T∈Q\{S}

tβ (λQ, s, t) · w (S, Q) if i ∈ S

Aβ
i (S, Q) =

−sβ (λQ, s, qi) · w (S, Q) if i /∈ S

Thus, if i ∈ S, then Aβ
i (S, Q) = is the amount that player i

receives in total from all other coalitions (in Q) different from S. On

the other hand, if i /∈ S, then Aβ
i (S, Q) = is the amount that player

i must pay in total to the members in coalition S.
We can now state the main result:

Theorem 1: Let ϕ be a value on G, ϕ is linear, symmetric and effi-
cient if and only if there exists a unique sequence {β (λ, k, j) | (λ, k, j) ∈
Dn} such that for any i ∈ N ,

ϕβ
i (w) =

w (N, {N})

n
+

∑

(S,Q)∈EC

S 6=N

Aβ
i (S, Q) (2)

Proof. It is immediate; one only needs to substitute the definition

of Aβ
i (S, Q) into (2), and re-arrange the terms to obtain (1).
Thus, every linear, symmetric and efficient ϕ can be obtained

from the transfers procedure previously described.

Example 2: Let N = {1, 2, . . . , 9} be the set of players and take a
particular embedded coalition (S, Q), such that S = {1, 8} and

Q = {{2, 6, 7} , {1, 8} , {4, 9} , {3} , {5}} .

Notice that λQ = [32211] and in order to compute the payoff for
player 1 or 8, one has to consider the transfers (associated to the



AN ELEMENTARY TRANSFERS https://doi.org/10.24201/ee.v38i2.445 325

coalition structure Q) between members of S and members of remain-
ing coalitions T ∈ Q\ {S} (table 2).

Table 2
Transfers among players for a particular

embedded coalition

T Each member receives Each member of S

from T : pays to T :

{2, 6, 7} 3β (λQ, 2, 3) · w ({1, 8} , Q) 3β (λQ, 3, 2) · w ({2, 6, 7} , Q)

{4, 9} 2β (λQ, 2, 2) · w ({1, 8} , Q) 2β (λQ, 2, 2) ·w ({4, 9} , Q)

{3} β (λQ, 2, 1) · w ({1, 8} , Q) β (λQ, 1, 2) ·w ({3} , Q)

{5} β (λQ, 2, 1) · w ({1, 8} , Q) (λQ, 1, 2) · w ({5} , Q)
Source: Author’s elaboration.

The next example shows how to obtain any linear, symmetric
and efficient solution (for n = 3) by applying the transfers procedure.

Example 3: If N = {i, j, k}, there are 5 different partitions for the
set of players. According to the transfers procedure, the payoff for
player i is obtained from the following system of transfers (table 3):

Table 3
System of transfers for the case n=3

Partition Transfers related to player i

2β ([111] , 1, 1) ·w ({i} , Q1)

Q1 = {{i} , {j} , {k}} −β ([111] , 1, 1) · w ({j} , Q1)

−β ([111] , 1, 1) · w ({k} , Q1)

Q2 = {{i, j} , {k}} β ([21] , 2, 1) · w ({i, j} , Q2)

−β ([21] , 1, 2) · w ({k} , Q2)

Q3 = {{i, k} , {j}} β ([21] , 2, 1) · w ({i, k} , Q2)

−β ([21] , 1, 2) ·w ({j} , Q2)

Q4 = {{j, k} , {i}} 2β ([21] , 1, 2) · w ({i} , Q4)

−2β ([21] , 2, 1) ·w ({j, k} , Q4)

Q5 = {{i, j, k}}

Source: Author’s elaboration.
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Thus, re-arranging the terms, any linear, symmetric efficient so-
lution is of the form (for player i):

ϕi (w) = w(N,{N})
n

+β ([111] , 1, 1) [2w ({i} , Q1) − w ({j} , Q1) − w ({k} , Q1)]

+β ([21] , 1, 2) [2w ({i} , Q4) − w ({j} , Q3) − w ({k} , Q2)]

+β ([21] , 2, 1) [w ({i, j} , Q2) + w ({i, k} , Q3)− 2w ({j, k} , Q4)]

for any choice of real numbers β ([111] , 1, 1), β ([21] , 1, 2), and
β ([21] , 2, 1).

In particular, for Example 1, we compute a player’s payoff through
the transfers procedure.

Example 4: From the game described in Example 1, we describe
the payoff (for player 1, without loss of generality) according to the
transfers procedure (table 4).

Table 4
Game of Example 1

Embedded coalitions Worths

{1} , {2} , {3} 50 50 50

{1, 2} , {3} 120 40

{1, 3} , {2} 125 45

{2, 3} , {1} 130 10

{1, 2, 3} 200

Source: Author’s elaboration.

◦ First, the quantity 200/3 is allocated to player 1.

◦ In partition {{1} , {2} , {3}}, he/she receives (from players 2 and
3) 100 · β ([111] , 1, 1) and pays them 100 · β ([111] , 1, 1).

◦ In partition {{1, 2} , {3}}, he/she receives (from player 3) 120 ·
β ([21] , 2, 1) and pays 40 · β ([21] , 1, 2).
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◦ In partition {{1, 3} , {2}}, he/she receives (from player 2) 125 ·
β ([21] , 2, 1) and pays 45 · β ([21] , 1, 2).

◦ In partition {{2, 3} , {1}}, he/she receives (from players 2 and 3)
20 · β ([21] , 1, 2) and pays 260 · β ([21] , 2, 1).

4. Examples of LSE solutions

In this section we briefly present some solutions that can be imple-
mented from the transfers procedure; i.e., they all are of the form (1).
As a first example, we take the expected stand-alone value, ϕESA,
which tells us how much a player may obtain in a game with exter-
nalities when we focus on the stand-alone side of the game:

ϕESA
i (w) = w(N,{N})

n

+
∑

∅6=S⊂N

i/∈S

s!(n−s−1)!
n! w ({i} , {S} ∪ N\ (S ∪ {i})] ∪ {{i}})

−
∑

j∈N\{i}

∑

S⊂N\{i,j}

s!(n−s−2)!
n! w ({j} , [N\ (S ∪ {i})] ∪ {S ∪ {i}})

which we obtain when we take in (1):

1
n(n−1)(n−2)

if λ ∈ {m, 1, ..., 1]}n−1
m=1 , s = 1

β (λ, s, t) = and t = m

0 otherwise

Shapley value

Pham Do and Norde (2007) define an extension of the Shapley (1953)
value to the class of games with externalities as:

ϕPN
i (w) = Shi (v) ,

for each i ∈ N and each w ∈ G, where Sh is the Shapley value
operator for transferable utilities (TU) games and v is defined as fol-
lows:

v (S) = w (S, {S, [N\S]})
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for each S ⊆ N .

This solution is of the form (1) with parameters:

(s−1)!(n−s−1)!
n! if λ ∈ {m, 1, ..., 1]}n−1

m=1 , s = m

β (λ, s, t) = and t = 1

0 otherwise

Consensus value

Ju (2007) define the consensus value, ϕJ , as the middle point between
the stand-alone value and the Shapley value of Pham Do and Norde
(2007). The corresponding parameters for the consensus value are:

1
2n(n−2)

if λ = [1, 1, ..., 1] and s = t = 1

1
2n(n−1)(n−2) if λ ∈ {m, 1, ..., 1]}n−1

m=1 , s = 1

β (λ, s, t) =
and t = m

(s−1)!(n−s−1)!
2n! if λ ∈ {m, 1, ..., 1]}n−1

m=1 , s = m

and t = 1

0 otherwise

Myerson value

Myerson (1977) proceeds axiomatically and proposes a value extend-
ing the well-known Shapley value (Shapley, 1953), which is defined
for TU games. His proposal satisfies the axioms of linearity, symme-
try, efficiency, and the “null” player property that states that players
who have no effect on the outcome should neither receive nor pay
anything. The Myerson value of a player is given by:

ϕM
i (w) =

∑

(S,Q)∈EC

(−1)q−1 (q − 1)!

·

(

1
n
−

∑

T∈Q\{S},i/∈T

1
(q−1)(n−t)

)

·w (S, Q)
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which we get with the parameters:

β (λ, s, t) =
(−1)

|λ|
(|λ| − 1)!

s





1

n
−

∑

r∈(λ−[s,t])
◦

m
λ−[s,t]
r

(|λ| − 1) (n − r)





The value of Albizuri et al.

Albizuri et al. (2005) obtain a unique value characterized by the prop-
erties of linearity, symmetry, efficiency, oligarchy, and an additional
symmetry requirement with respect to the embedded coalitions. They
define the value for a player as:

ϕAAR
i (w) =

∑

(S,Q)∈EC

i∈S

(s − 1)! (n − s)!

n!P (S, N)
w (S, Q)

−
∑

(S,Q)∈EC

i∈S

s! (n − s − 1)!

n!P (S, N)
w (S, Q)

where P (S, N) = |{(T, Q) ∈ EC|T = S}|. In fact, they notice
that P (S, N) = p (n − s), where p (k) represents the number of par-
titions of any set K with cardinality k.

This solution is also of the form (1). The corresponding param-
eters are:

β (λ, s, t) =
(n − s − 1)! (s − 1)!

n! · p (n − s)
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The value of Macho-Stadler et al.

As a final example, Macho-Stadler et al. (2007) characterize the value:

ϕMPW
i (w) =

∑

(S,Q)∈EC

i∈S

(s − 1)! Π
T∈Q\{S}

(t − 1)!

n!
w (S, Q)

−
∑

(S,Q)∈EC

i/∈S

s! Π
T∈Q\{S}

(t − 1)!

(n − s)n!
w (S, Q) ,

which we get when we choose:

β (λ, s, t) =

(s − 1)! Π
r∈(λ−[s])

◦

[(r − 1)!]
mλ−[s]

r

(n − s) n!
.

Example 5: We look at the system of weights for the different so-
lutions described above in the case n = 3. For this particular case,
there are 3 different weights associated with the transfers procedure:

Table 5
System of weights for LSE solutions for n = 3

Weights ϕESA ϕPN ϕJ ϕM ϕAAR ϕMPW

β ([111] , 1, 1) 1/6 1/6 1/6 -1/6 1/12 1/12

β ([21] , 1, 2) 1/6 0 1/12 1/3 1/12 1/12

β ([21] , 2, 1) 0 1/6 1/12 1/6 1/6 1/6

Source: Author’s elaboration.

Now, for the case n = 4 there are 7 different weights associated
with the transfers procedure (table 6):
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Table 6
System of weights for LSE solutions for n = 4

Weights ϕESA ϕPN ϕJ ϕM ϕAAR ϕMPW

β ([1111] , 1, 1) 1/24 1/12 1/16 1/6 1/60 1/72

β ([211] , 2, 1) 0 1/24 1/48 -1/12 1/48 1/48

β ([211] , 1, 2) 1/24 0 1/48 -1/6 1/60 1/72

β ([211] , 1, 1) 0 0 0 0 1/60 1/72

β ([31] , 3, 1) 0 1/12 1/24 1/12 1/12 1/12

β ([31] , 1, 3) 1/24 0 1/48 1/4 1/60 1/36

β ([22] , 2, 2) 0 0 0 1/8 1/48 1/48

Source: Author’s elaboration.

As we can observe, in both cases, the Myerson value is the only
solution that considers negative weights.

Example 6: Recall the game described in Example 1, and applying
the previous solutions, we get the following payoffs.

Table 7
Computation of LSE solutions for Example 1

Solution

Player ϕESA ϕPN ϕJ ϕM ϕAAR ϕMPW

1 55.83 64.17 60 42.5 58.75 58.75

2 73.33 66.67 70 80 70 70

3 70.83 69.17 70 77.5 71.25 71.25

Source: Author’s elaboration.

In order to select one of these solutions, one have to consider the
axioms (other than linearity, symmetry and efficiency) that charac-
terize each value. Some axioms are widely accepted and others could
be more controversial.

For instance with the Myerson value, player 1 obtains a payoff
of 42.5, which is less than his/her individual worth in the game (as-
suming all players are on their own). This might be a consequence of
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the “null” property considered in the characterization of the Myerson
value.

5. Final comments

The family of solutions for games with externalities that are simulta-
neously linear, symmetric, and efficient is wide and describes a |Dn| −
dimensional affine vector space. It contains, among others, the ex-
pected stand-alone value, the Myerson value (Myerson, 1977), the
Shapley value (Pham Do and Norde, 2007), the consensus value (Ju,
2007), the value of Albizuri et al. (2005), and the value of Macho-
Stadler et al. (2007). A better understanding pattern of solutions
is essential to get the difference (and similarity) between solutions
within a given class and to know what changes when we switch to
a different class of solutions. The paper unveils how any such class
reflects a policy for sharing the common surplus in terms of transfers
between players of a fixed embedded coalition and players of every
coalition that belongs to the same partition.

Joss Erick Sánchez-Pérez: joss.sanchez@uaslp.mx
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