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Resumen
Se propone un método no paramétrico para aproximar curvas de mortalidad con 
énfasis en aquellas generadas a través del modelo de Heligman y Pollard (HP), 
donde mediante funciones de pérdida se suaviza de manera controlada, tal que la 
tendencia de la mortalidad observada se aproxime lo más posible a la curva de 
mortalidad producida por el modelo de HP. Por medio de varias aproximaciones, se 
observa un mejor ajuste en la mortalidad masculina sobre la femenina y más aún a 
partir de los 12 años de edad, con lo que se proporciona un rango de referencia para 
la selección de parámetros de suavizamiento para aproximar con esta perspectiva a 
aquellas curvas de mortalidad que se obtendrían tras aplicar el modelo HP.
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Abstract
A non-parametric method is proposed to approximate mortality curves with empha-
sis on those coming from the Heligman and Pollard model (HP), where loss functions 
and controlled smoothness are applied such that the trend of the observed mortality 
data is as close as possible to the curve of mortality produced by the HP model. It 
can be appreciated with several estimates that the best fit results are obtained for 
male mortality, and even more so after 12 years old. Using this perspective, it is 
provided a reference range of the smoothing parameters to approximate those mor-
tality curves that would be obtained after applying the HP model.

Keywords: Heligman and Pollard model; smoothness; smoothing para-
meter; trends; mortality curve; generalized least squares.

Introducción

La modelación de curvas de mortalidad es bastante antigua y se tiene como 
primera propuesta la de Moivre (1725). Posteriormente son de destacar las 
elaboradas por Gompertz (1825; 1860; 1862) y Makeham (1867; 1890). 
Asimismo, se fueron afinando las propuestas de modelaje de la mortalidad 
donde sobresale la incorporación de patrones cada vez más específicos y 
característicos de las distintas etapas de la vida humana, como se hace ori-
ginalmente en Thiele (1871), idea que se retoma tiempo después en los 
modelos desarrollados por Heligman y Pollard (1980). En Forfar (2006) se 
hace un amplio recorrido cronológico de las diversas propuestas existentes 
en la literatura en cuanto a curvas (leyes) de mortalidad.

El modelo de Heligman y Pollard (HP) (1980), además de ser útil para 
la graduación, entre varias aplicaciones, también ha sido empleado para 
analizar o predecir el comportamiento de la mortalidad futura. Por ejemplo, 
en Felipe, Guillen y Pérez-Marín (2002) se realiza un estudio de la evolución 
de sus parámetros con modelos ARIMA y se pronostica su comportamiento 
para la población española. También se ha recurrido al modelo para detectar 
los cambios en la mortalidad en edades jóvenes, la joroba, debido a los 
efectos del VIH en África (Sharrow, Clark, Collinson, Kahn y Tollman, 2013). 
En Hartmann (1987) y Yuen (1997) se lleva a cabo una comparación entre 
diferentes modelos para ajustar la mortalidad y se concluye que Heligman y 
Pollard (1980) proporciona un mejor ajuste. Por otra parte, Kostaki (1991), 
Irnawati (2008) y Syahmi, Md Yusuf, Suhaylah y Yazis (2015) han utilizado 
esta herramienta para crear tablas de mortalidad a partir de datos agregados.

El modelo de HP tiene diferentes formas de ser estimado: una posibili-
dad es por medio de optimización no lineal, donde es fundamental utilizar 
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valores iniciales, y otra es a través de técnicas bayesianas. Se considera que, 
en ambos casos, se requiere del conocimiento de herramientas teóricas que 
permitan su estimación con el fin de facilitar la convergencia del modelo, al 
igual que tener acotados intervalos y la distribución para los parámetros. Por 
ejemplo, en Sharrow, Clark, Collinson, Kahn y Tollman (2013) se propone 
el uso de distribuciones uniformes continuas para sus parámetros de la si-
guiente manera: A ~ U [0,0.25], B y C ~ U [0,1], D ~ U [0,0.25], E ~ U [0,20], 
F ~ U [15,55], G ~ U [0,0.01] y H ~ U [1,1.5]. La relevancia de los rangos 
de referencia de dichos parámetros resulta orientativa para intentar la esti-
mación del modelo, sin embargo, puede no resultar atractivo por las exigen-
cias técnicas que más adelante se implican.

En este trabajo se tienen por objetivos: 1) ilustrar la aplicación de un 
método para estimar tendencias con suavizamiento controlado (método 
propuesto por Guerrero, 2008), es decir, en el presente contexto, curvas de 
mortalidad donde se impone la suavidad por medio de un índice (o porcen-
taje); así como 2) proponer un método para medir la suavidad inducida, 
sujeta a funciones de pérdida, ejemplificado para estimaciones previas cita-
das en la literatura con el modelo HP. El índice de suavizamiento se susten-
ta en el llamado filtro de Hodrick y Prescott (1997), mismo que ha tomado 
una gran aceptación en el campo de la economía en el marco de series de 
tiempo. En este documento se puede concebir a los valores de las qx como 
una serie de tiempo.

Se tienen entonces como preguntas centrales de investigación: ¿desde 
la perspectiva de suavizamiento, con una técnica no paramétrica, es posible 
aproximar de mejor manera curvas de mortalidad en comparación con otros 
métodos?, ¿qué tan factible es medir la suavidad inducida en curvas de 
mortalidad estimadas con el modelo HP, para que con esa información se 
pueda orientar en cómo poder fijar la suavidad y luego se puedan estimar 
curvas de mortalidad en general?, y ¿resulta satisfactoria la propuesta para 
todas las edades de las curvas de mortalidad?

Es importante reconocer que en la propuesta existen problemas al 
aproximar la curva de HP en las colas, esto es, no se logra un ajuste “idóneo” 
tanto al inicio como al final de la curva de mortalidad, como se verá más 
adelante; sin embargo, para edades centrales es notable su potencial. Adicio-
nalmente, se entiende en el trabajo como términos equivalentes la tendencia 
en estadística y la curva de mortalidad en demografía. Se emplean estima-
ciones provenientes de HP (1980), Kostaki (1991), Felipe, Guillen y Pérez-
Marín (2002) y Jos (2014).

Se considera que la relevancia de este trabajo radica en que algún ana-
lista interesado en estimar curvas de mortalidad, con no mucha holgura de 
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tiempo y con una formación estándar en la profesión demográfica, pueda 
realizarlo de una manera sencilla y expedita, en términos de la aproximación 
aquí propuesta, con los beneficios agregados que más abajo se enuncian. En 
principio, este tipo de herramientas no sólo es útil para analizar series eco-
nómicas, sino que por su objetividad, que se verifica en este trabajo, también 
es útil en tópicos demográficos. Como se menciona en Guerrero (2008), la 
necesidad de estimar la tendencia para fines informativos de una serie de 
tiempo es de suma importancia para cualquier tipo de análisis, y puede ser 
apoyada desde la gráfica de los datos.

El trabajo está organizado como sigue. En la primera sección (Introduc-
ción) se describe el tema de investigación. En la segunda se enmarca el 
modelo HP, así como algunas de sus variantes. En la tercera se aborda la 
estimación de tendencias de mortalidad con suavizamiento controlado. En 
el cuarto apartado se exponen ejemplos y comparativos en la aplicación del 
llamado índice de suavidad, con estimaciones previamente elaboradas, y se 
señala la manera de aproximar las curvas generadas mediante HP de los 
artículos seleccionados. Posteriormente se exponen aplicaciones diversas 
con la presentación de los patrones observados en funciones de pérdida, y el 
comportamiento del parámetro de suavizamiento, donde se hace una ilustra-
ción de las aproximaciones y se presentan cuadros resumen de los resultados 
obtenidos. Finalmente se señalan las principales conclusiones a partir de los 
hallazgos encontrados en el presente trabajo.

El modelo de Heligman y Pollard (HP)

El modelo HP es utilizado en la literatura demográfica para estimar la mor-
talidad de una población. En el artículo seminal de 1980 se presentan distin-
tas expresiones matemáticas que generan las correspondientes curvas de 
mortalidad basadas en la siguiente propuesta:

	 = + ++ − −q
p

A De GHx

x

x B E x F x( ) (log log )C 2

donde qx es la probabilidad de morir durante un año de una persona a edad 
x, = −p q1x x  y los parámetros a estimar resultan ser A, B, C, D, E, F, G y 
H. La naturaleza de la ecuación no permite valores mayores a 1 ni menores 
que 0. La curva está compuesta por tres términos que poseen interpretaciones 
demográficas. El primer sumando representa la caída rápida de la mortalidad 
infantil y requiere tres parámetros. El segundo término ajusta una curva que 
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se asemeja a la distribución log-normal. En tanto que el último sumando está 
basado en la función de Gompertz. En Heligman y Pollard (1980) y Sharrow, 
Clark, Collinson, Kahn y Tollman (2013) se proporciona una descripción 
detallada de la interpretación de cada uno de los parámetros desde un punto 
de vista demográfico.

De la ecuación previa, en Heligman y Pollard (1980) se proponen otras 
expresiones de la curva de mortalidad, que se presentan de manera reducida 
y en donde sólo se expresa el valor de qx. Sus expresiones son las siguientes:

	
= + +

+

= + +
+

+ − −

+ − −
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C
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2
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Las ecuaciones anteriores muestran una diferencia en el tercer sumando. 
Como lo mencionan Heligman y Pollard (1980), ambas formas presentan un 
mejor ajuste en la joroba de accidentes y en edades avanzadas. En este tra-
bajo se utiliza la respectiva expresión, en función de lo que fue elegido en 
cada una de las fuentes bibliográficas seleccionadas y consultadas para este 
fin. Algunos ejemplos de las curvas estimadas con sus valores observados 
de qx, en escala de logaritmo natural, se muestran en la Gráfica 1.

De acuerdo con Dellaportas, Smith y Stavropoulos (2001), Debón, 
Montes y Sala (2006) y Congdon (1993), el modelo HP tiene algunos incon-
venientes: los errores estándar para las estimaciones de los parámetros son 
muy grandes, ya que cuentan con una alta correlación entre ellos; se tienen 
dificultades cuando se estima el parámetro K, que en muchas ocasiones re-
sulta insignificante y que imposibilita la estimación del modelo; no siempre 
se logra la convergencia en rutinas iterativas de estimación no lineal; las 
correlaciones entre los parámetros del modelo HP son altas, especialmente 
entre A y B, A y C, B y C, G y H, en ambos sexos, así como entre G y K, H 
y K para hombres. Todas estas desventajas que presenta el modelo HP son 
significativamente superadas con la propuesta que se realiza en el presente 
documento.

Estimación de curvas de mortalidad con suavizamiento controlado

Al analizar series de tiempo se puede llegar a distintas formas de interpretar 
los datos. Una de ellas es considerar una serie de tiempo cualquiera, como la 
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suma de una tendencia no observable, pero sí subyacente, que varía dinámi-
camente a lo largo del tiempo, adherida a un componente aleatorio, es decir,

	 yt = τt + ηt ,         t = 1,…,N

donde τt es la tendencia, ηt es el componente aleatorio y N el número de 
datos. 

Existen otras técnicas para calcular la tendencia de una serie de tiempo, 
como pueden ser, por ejemplo, promedios móviles, suavizamiento exponen-
cial, regresión no paramétrica, entre varias. Todos los métodos anteriores 
funcionan aplicando filtros a las series yt{ },  dando como resultado otra 
serie τ̂t{ },  es decir la tendencia estimada. Este tipo de filtros utilizan ope-
raciones que involucran retrasos de la forma ∇ =1− B  en donde B está dado 
por BXt = Xt−1.

El llamado filtro de Whittaker (1923) ha tenido extensiones como las 
elaboradas por Knorr (1984) y Nocon y Scott (2012). Con los parámetros de 
orden de diferenciación d = 2 y la matriz de pesos idénticos en las observacio-
nes, W = I, el método de Whittaker se utilizó por Hodrick y Prescott (1997) 
para estimar tendencias y ciclos económicos y se le conoce en el ámbito de la 
econometría como filtro de Hodrick y Prescott. En él se reduce gradualmente 
el componente aleatorio, induciendo a una suavidad, y a través de éste se es-
timan valores suavizados que representan mejor a los valores verdaderos no 
observables. En el filtro se considera además un parámetro de suavizamiento, 
λ, mismo que simultáneamente pondera tanto la bondad del ajuste como la 
suavidad. En este filtro se sustenta el método de Guerrero (2008). Es impor-
tante mencionar que, en general, cuando se realizan estimaciones de manera 
automática, es decir, utilizando herramientas implementadas en los softwares 
estadísticos, no se puede decidir qué valor otorgarle al parámetro λ; por lo 
tanto, se ignora la suavidad alcanzada y no se tienen elementos válidos, desde 
el punto de vista estadístico, para hacer comparativos con otras estimaciones.

El filtro es relativamente sencillo de aplicar para cualquier serie de datos 
y, como lo menciona y demuestra Guerrero (2008), produce resultados idénticos 
a otros métodos de suavizamiento. En Kaiser y Maravall (2001) se proporciona 
una explicación más detallada de la teoría matemática detrás del filtro. La es-
tructura del filtro Hodrick y Prescott proviene de la siguiente expresión:

	

donde λ es el parámetro que penaliza la ausencia de suavidad. El primer 
término tiene como propósito el ajuste de la tendencia con los datos obser-
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vados, en tanto que el segundo a la inducción de la suavidad. Puede apre-
ciarse que cuando λ→ 0  la tendencia estimada τ̂t{ }, converge a los valores 
observados yt, debido a que el segundo parámetro se vuelve cero y el valor  
τ̂t{ }, de la serie que minimiza es el mismo yt{ },. Por otro lado, cuando λ→ 0

el valor que minimiza la serie sería el modelo lineal ∇2τt
 = 0.  La expresión 

anterior, escrita en forma matricial está dada por

	 min
τ
M λ( ) = y − τ( )' y − τ( )+λ(K2τ)' (K2τ)

donde y = ( y1,…, yN )
' , τ = (τ1,…,τN )

' , y K2 es la matriz de N − 2( ) × N de 
segundas diferencias. Es decir, es la matriz tridiagonal

	 K2 = 

1 −2 1 0 0 … 0 0 0 0
0 1 −2 1 0  0 0 0 0
  . . .      
0 0 0 0 0 … 0 1 −2 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

La solución al problema que se propone es alcanzable tras aplicar mí-
nimos cuadrados generalizados, con lo que se obtiene el resultado

	 ˆ = IN + K2
' K2( ) 1

y

La serie τ̂t{ }, representa la tendencia estimada dado un valor de λ, que 
en el presente trabajo se refiere a la curva de mortalidad. Nótese que el valor 
de λ se establecerá, bajo este enfoque, con base en la necesidad del análisis 
que se requiera y, en general, de la naturaleza de los datos. También, como 
fue mencionado anteriormente, la varianza de τ̂, en términos del error cua-
drático medio, está dada por  Var τ̂( ) = IN + λK2

' K2( )−1 2ση
− (para conocer los 

detalles, véase Guerrero, 2008). Debe tenerse presente que por medio de 
Var τ̂( ) se obtienen los intervalos de las respectivas estimaciones, elemento 
que no proporciona el modelo HP per se.

Dada la solución anterior a la tendencia τ̂,  Guerrero (2008) propone 
medir la suavidad por medio de la siguiente expresión, que es un índice,

	 S λ;N( ) = 1− tr IN + λK2
' K2( )−1⎡

⎣⎢
⎤
⎦⎥
/ N

en donde tr(.) representa la traza de la matriz. Puede notarse que la suavidad 
no depende de los datos, sino exclusivamente del valor del parámetro λ y del 
número total de datos N. De hecho, a mayor cantidad de datos se requerirá 
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un índice más alto para suavizar. Es claro que cuando λ→ 0  la suavidad 
S λ;N( )→ 0,  en tanto que cuando λ→∞  la suavidad S λ;N( )→1;  este 
índice se puede representar en términos porcentuales como S λ;N( )%. Es 
demostrable que el máximo del índice de suavidad alcanzable para un con-
junto de N datos está dado por 1 – 2/N. Con ello, por ejemplo, con 100 datos 
la máxima suavidad a la que se puede aspirar es de S = 98%. Sin embargo, 
este orden de índice de suavidad podría ser demasiado alto y ello generaría 
la ausencia de sentido demográfico en el contexto de suavizado de curvas de 
mortalidad. Asimismo, el índice cuenta con algunas propiedades deseables, 
como lo son: linealidad, adherencia a la unidad y no alteración ante transfor-
maciones lineales de los datos. En el contexto estadístico, se deduce que el 
índice es una reparametrización de lo que se conoce, en el marco del suavi-
zamiento o graduación, como grados de libertad (df = degree of freedom).

Una crítica que existe a esta propuesta de índice radica en cómo justifi-
car la imposición de determinado porcentaje de suavidad, aun cuando se 
argumenta que es relevante para hacer comparativos. Por ejemplo, en Alba 
y Gómez (2012) se abona al respecto desde la perspectiva bayesiana y se 
propone un método para tal fin. En este trabajo, justamente, la propuesta para 
imponer la suavidad pertinente se resume en realizar mediciones de suavi-
dades inducidas en aplicaciones previamente construidas. Otras opciones 
podrían ser ejercicios de simulación o a través de indicadores de cobertura. 
Para esto último, dada una determinada suavidad impuesta, el indicador de 
cobertura podría indicar cuántas observaciones están contenidas dentro del 
intervalo de estimación e imponer aquella en la que se tengan coberturas de 
órdenes específicos como: 90, 95 o 99%.

Desde una óptica usual, para suavizar datos, se podría obtener un valor 
del parámetro de suavizamiento λ óptimo mediante criterios automáticos 
como el Akaike, Schwarz, validación cruzada generalizada (VCG) o el de 
validación cruzada ordinaria (VCO). En Cortés-Toto, Guerrero y Reyes 
(2017) se mide la suavidad alcanzada cuando el parámetro de suavizamien-
to λ es elegido a través de esta clase de criterios. En tal trabajo se concluye 
que en principio el analista depende de la cantidad de datos y del tipo de 
tendencia subyacente a los mismos, y que son menos relevantes la eventual 
presencia de estacionalidad y la varianza existente. Además, se dimensiona 
la suavidad inducida y se evidencia que escapa la misma de la decisión del 
analista. En la Gráfica 2 se presentan algunos ejemplos y comparativos que 
ponen de manifiesto la necesidad y la ventaja de imponer suavidades como 
es factible con el uso de la propuesta aquí expuesta.

Con el software estadístico R, con la librería pspline, los criterios VCG 
y VCO están disponibles (véase el código genérico en los Anexos). Al em-
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Gráfica 2 
Estimaciones de tendencias con criterios automáticos e impuesto

Fuente: Elaboración propia.
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plearlo con datos de Mendoza, Madrigal y Gutiérrez-Peña (2001), con el 
criterio VCG se obtiene de manera automática λ = 0.99, lo cual implica un 
índice de suavidad de aproximadamente el S = 60.13% y grados de libertad 
de 35.09. Se observa cómo la tendencia se dispone próxima a los datos. Con 
el criterio VCG se obtiene λ = 12 805 701, un índice de suavidad de S = 97.71% 
y grados de libertad de 2.01, lo cual hace que la tendencia sea prácticamente 
una recta. En ambos casos queda sin sentido demográfico la estimación de 
la curva de mortalidad. Por un lado, es demasiada rugosa la estimación, y 
por el otro, en principio la curvatura de la mortalidad en edades jóvenes es 
ignorada y se evoca a la añeja propuesta de Moivre.

Es claro que para un mismo conjunto de datos, dos criterios automáticos 
estadísticos ad hoc generan estimaciones totalmente distintas. Si se impone 
un índice de suavidad, por ejemplo de S = 85% como el sugerido en Ovin y 
Silva (2016a; 2016b), con λ = 45.5 y grados de libertad de 13.18, se obtienen 
resultados con más sentido demográfico. En términos operativos, para obte-
ner determinado índice de suavidad, en la ecuación para S(λ; N), se calibra 
dando distintos valores de λ, hasta que de manera heurística se obtiene la 
suavidad deseada.

Con la finalidad de sensibilizar al usuario de la presente propuesta, en 
la Gráfica 3 se muestra un ejemplo con diferentes valores de λ, con datos 
simulados. Se puede observar cómo con valores pequeños de λ, como en la 
Gráfica 3a, la tendencia estimada se aproxima bastante a los valores obser-
vados. En cambio, cuando λ crece la suavidad se vuelve más evidente como 
muestra el hecho de que los datos quedan alrededor de la curva suavizada, 
y para λ mayores a 1000 la tendencia comienza a parecerse a una recta, como 
en la Gráfica 3d.

Comparativo con otras curvas de mortalidad y funciones de pérdida

En esta sección se contrastan resultados desde la perspectiva aquí propuesta 
con algunas curvas de mortalidad obtenidas en Vargas (2014) y comparables 
con aquellos estimados por medio de índices de suavidades impuestas del 
S = 85% y S = 90%, respectivamente. En todos los casos se utiliza el loga-
ritmo natural de las qx y sin pérdida de generalidad se ilustra con una pobla-
ción selecta; la lógica de la ilustración sería la misma para cualquier otra 
población que cuente con estimaciones de curvas de mortalidad. Se eligen 
los que ahí se refieren como tablas de mortalidad mexicana ajustada median-
te el modelo de: a) CNSF, b) Makeham, c) extrapolación polinomial, y 
d) Gompertz. En particular, el modelo HP empleado no resultó ser compa-
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rable pues en casi todas las edades se tiene una estimación constante hasta 
casi los 75 años (véase Vargas, 2014, p. 88). Debe tenerse presente que cada 
estimación hecha de a a d, así como las de otros modelos de mortalidad, 
tienen una complejidad superior a lo que sencillamente se realiza con la 
estimación y/o medición de tendencias y suavidades respectivamente, pues 
tienen el común denominador de emplear criterios matemáticos de optimi-
zación lineal o no lineal con sus respectivos valores iniciales.

En general, con base en las Gráficas 4 y 5, se aprecia cómo las estima-
ciones seleccionadas y realizadas por la autora están comprendidas dentro 
del intervalo de estimación de la tendencia o en algunos casos cercanos a 
alguna de las fronteras del mismo. También se tiene un mejor patrón en la 
estimación de la respectiva curva de mortalidad con la propuesta no para-
métrica sobre todas las propuestas paramétricas expuestas por la autora. Es 
probable que en términos numéricos la diferencia parezca insignificante, pero 
deja de serlo si se consideran indicadores demográficos como esperanza de 
vida, que considera todas las qx.

Dado que uno de los propósitos del trabajo es estimar la suavidad nece-
saria para aproximar lo mejor posible la curva de mortalidad que proporcio-
na el modelo de HP, y así tener un parámetro de referencia en cuanto a la 
suavidad necesaria para estimar una curva de mortalidad, se propone conse-
guirlo a través de medir la diferencia punto a punto que hay entre la tenden-
cia estimada y los valores de la mortalidad estimados por el modelo HP. Por 
medio de dos de las funciones de pérdida propuestas en Carriere (1992), se 
logra el objetivo. Sin pérdida de generalidad, sean {qx} los valores observa-
dos, y q̂x{ }  los valores estimados mediante HP. Sean τ̂t{ }  los valores 
suavizados con el logaritmo aplicado a los qx{ }  dado un valor de λ. Al 
compararlos con los valores estimados mediante HP q̂x{ }  se necesita aplicar 
el inverso del logaritmo para manejarlos en la misma escala (como probabi-
lidades); a esta serie se le llamará t̂x{ }.  Las funciones de pérdida elegidas 
dependen exclusivamente del valor de λ, y son:

	

P1(λ) =
x=0

n

∑ 1− t̂x
q̂x

⎛
⎝⎜

⎞
⎠⎟

2

P2(λ) =
x=0

n

∑ log log 1− t̂x( ) / log 1− q̂x( )⎡⎣ ⎤⎦( )2

Ahora se realizan las siguientes tareas. La primera, encontrar el valor 
de λ que minimiza las expresiones anteriores. Después, encontrar el porcen-
taje de suavidad logrado para cada uno de los dos valores de λ obtenidos 
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mediante la expresión que se define para S(λ; N). Por último, se analiza el 
valor mínimo obtenido por las funciones de pérdida para poder comparar las 
distintas series de datos entre sí. Este valor representará la distancia total que 
existe entre la serie suavizada t̂x{ }. y la serie estimada por HP q̂x{ }.

Resultados con el modelo de Heligman y Pollard (HP)

Se utilizan estimaciones realizadas en los trabajos de Heligman y Pollard 
(1980), Kostaki (1991), Felipe, Guillen y Pérez-Marín (2002) y Jos (2014), 
en donde se encuentran los valores de los respectivos parámetros para el 
modelo de HP. Los valores observados de HP y Kostaki se encuentran en los 
anexos correspondientes; los de Jos (2014) en Asian Mortality Table, ubica-
dos en la página web de la sociedad actuarial de Hong Kong. Los datos 
observados de Felipe, Guillen y Pérez-Marín (2002) fueron obtenidos de la 
página HumanMortality.com. El número total de series, es decir tablas de 
mortalidad utilizadas, es de 42. Los cálculos de este apartado se elaboraron 
con el software de R versión 3.4.1 y Mathematica de Wolfram, versión 10 
(véase el código genérico en los Anexos).

Cuando se busca la minimización de las funciones de pérdida, se obtie-
nen valores pequeños de λ que están entre 0.07 y 0.08 en los dos casos, 
siendo prácticamente el mismo resultado para todas las series analizadas. 
Usando este valor de λ, la suavidad alcanzada está en el rango de S = 23% 
a S =25%, con lo cual se tienen estimaciones demasiado rugosas. Los patro-
nes de comportamiento de las funciones de pérdida se muestran a continua-
ción. Nótese que en las series el mínimo se localiza relativamente pronto y 
luego hay un crecimiento de manera aparentemente cuadrática. El mecanis-
mo utilizado para construir las gráficas de las funciones de pérdida fue a 
través de asignar paulatinamente distintos valores crecientes del parámetro 
de suavizamiento λ (véase la Gráfica 6).

Al realizar este procedimiento de análisis para todas las series mencio-
nadas, se tienen los siguientes resultados, mostrados en los histogramas de 
la Gráfica 7. La descriptiva de los mismos, así como los demás hallazgos, 
aparecen más adelante en el Cuadro 2. En ambos casos se aprecia una asi-
metría a la derecha, con una cola pesada.

Para P1 los valores más frecuentes se ubican entre 0.04 y 0.08; para P2 
los valores más comunes estuvieron alrededor de 0.08. En la Gráfica 8 se 
tienen dos segmentos de la serie suavizada de España 1990 con un parámetro 
de suavizamiento de λ = 0.07. Así, el índice de suavidad en este caso es de 
S = 23.47%. Se observa claramente cómo la tendencia estimada se aproxima 
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a casi todos los valores observados de la serie; esto debido al valor pequeño 
del parámetro λ, lo cual se manifiesta prácticamente con la totalidad de las 
series utilizadas. El problema no es tan evidente, pues el desbalance (o des-
ajuste) generado en las colas de los datos hace que el valor de la función de 
pérdida crezca con gran rapidez conforme el valor de λ crece por apenas 
valores mayores a 0.1, lo cual ocurre para los primeros valores observados y 
para los últimos. La falta de precisión en los primeros datos hace que las 
funciones de pérdida crezcan rápidamente, haciendo que el valor de λ que 
minimiza dichas funciones sean valores muy pequeños. El problema se pre-
senta en menor escala en los valores finales de la serie (entre 90 y 99 de los 
valores observados) y sólo en algunos casos de las 42 series.

En el Cuadro 1 se presenta la evolución del comportamiento de las 
funciones de pérdida, con distintos valores del parámetro de suavizamiento 
λ, pero considerándolas en dos partes. De esta manera las funciones de pér-
dida se reescriben como sigue:

	
P1 λ( ) =

x=0

11

∑ 1− t̂x
log(q̂x )

⎛
⎝⎜

⎞
⎠⎟

2

+
x=12

99

∑ 1− t̂x
log(q̂x )

⎛
⎝⎜

⎞
⎠⎟

2

P1 λ( ) = P1(0,11) λ( )+ P1(12,99) λ( )

y con un razonamiento similar se tiene:

	 P2 λ( ) = P1(0,11) λ( )+ P2(12,99) λ( )
Se puede observar cómo para valores pequeños del parámetro de sua-

vizamiento λ, entre 0.03 y 0.5, P1(0,11) alcanza su mínimo y se incrementa 
rápidamente cuando λ crece, mientras P1(12,99) alcanza su mínimo para valo-
res entre 4 y 20, pero el total de P1 es fuertemente influenciado por el creci-
miento rápido de P1(0,11). Un escenario similar ocurre en la función de pérdi-
da P2. De hecho, también se aprecia cómo el valor P2(0,11) para valores entre 
8 y 20 es considerablemente mayor que P2(12,99), donde su mínimo se encuen-
tra de modo aproximado. Se debe recalcar que P2(0,11) contiene solamente 12 
de los 100 datos, mientras P2(12,99) el resto. La presente situación se manifies-
ta análogamente en las demás series analizadas en el documento.

Dado que el desajuste empieza a crecer más significantemente en la 
parte de la mortalidad infantil, se decide omitirles y así la propuesta, en rela-
ción a la curva de la mortalidad del modelo HP, como se notará más adelante, 
crea un ajuste casi perfecto en el resto de los datos. Con esta restricción del 
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Gráfica 8  
España, hombres, 1990, con λ=0.07. Mortalidad infantil y mortalidad senil 

Datos observados: puntos; curva estimada (tendencia) con el modelo HP: línea gris; 
tendencia estimada: línea negra.

Fuente: Elaboración propia.
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número de datos a emplear, la máxima suavidad a la que se puede aspirar es 
de S = 97.7%. Las funciones de pérdida quedan como sigue:

	 P1(12,99) λ( ) = x=12
99∑ 1−

t̂x
log(q̂x )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

	 (11)

	 P2(12,99) λ( ) = x=12
99∑ log log 1− t̂x( ) / log 1− q̂x( )⎡

⎣
⎤
⎦( )

2

	 (12)

En la Gráfica 9 se presentan los comportamientos de las funciones P1(12,99), 
y P2(12,99). Cabe notar que el patrón a continuación expuesto es similar en el 
resto de las series elegidas y, una vez localizado el mínimo, el patrón de las 
funciones de pérdida, a diferencia de los anteriores, crece de manera menos 
acelerada. Al igual que con las otras funciones de pérdida, se tiene una dis-
tribución asimétrica a la derecha.

Ahora el valor que minimiza la función P1(12,99) es λ = 23.12, que impli-
ca una suavidad de S= 82.5%, y para P2(12,99) el valor obtenido es λ = 28.36 
con una suavidad alcanzada de S = 83.25%. En otras palabras, los dos valo-
res de λ fueron muy similares para las dos funciones de pérdida. La mayor 
discrepancia fue encontrada en la última parte de las series.

Se aprecia, con base en la Gráfica 10, que existe una mejora sustantiva 
en el ajuste para casi todos los valores. Al eliminar los primeros valores de 
la serie de las funciones de pérdida se logra que el método proporcione re-
sultados más consistentes e interpretables en función de los valores de λ y 
de la suavidad S. El resumen de todos los valores de λ obtenidos para las 42 
series se presenta en el Cuadro 2; en él se realiza una comparativa de las 
funciones P1, P2, P1(12,99) y P2(12,99), así como su media y desviación estándar. 
La información está organizada tanto por décadas como por sexo.

En la Gráfica 11 se presentan ejemplos de los resultados obtenidos con 
sus respectivos valores de λ. Aunque otra vez la falta de ajuste se da en los 
últimos valores, se observa en general un aumento en el ajuste por medio de 
la aplicación del método no paramétrico propuesto; además, adicionalmen-
te a las estimaciones puntuales, ahora se tienen intervalos de estimación de 
dos desviaciones estándar de tamaño. Así pues, una buena guía para el ana-
lista es seleccionar el valor de la media de valores de λ (o su equivalente 
medido en suavidad alcanzada) presentados en el Cuadro 2.
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Cuadro 1 
Comportamiento de las funciones de pérdida seleccionadas 
para el caso de España, hombres, 1990

λ S% P1(0,11) P1(12,99) P1 P2(0,11) P2(12,99) P2

0 0.00 0.27 0.39 0.67 0.23 0.51 0.75

0.01 5.27 0.26 0.38 0.63 0.22 0.49 0.71

0.02 9.59 0.25 0.37 0.61 0.21 0.48 0.69

0.03 13.21 0.24 0.36 0.60 0.21 0.47 0.68

0.04 16.30 0.24 0.35 0.59 0.20 0.46 0.67

0.05 19.00 0.24 0.35 0.59 0.20 0.45 0.66

0.06 21.37 0.24 0.34 0.58 0.21 0.45 0.65

0.07 23.47 0.24 0.34 0.58 0.21 0.44 0.65

0.08 25.36 0.25 0.34 0.58 0.21 0.44 0.65

0.09 27.06 0.25 0.33 0.59 0.21 0.44 0.65

0.1 28.62 0.26 0.33 0.59 0.22 0.43 0.65

0.2 39.11 0.33 0.31 0.64 0.27 0.42 0.68

0.3 45.08 0.40 0.31 0.70 0.32 0.41 0.72

0.4 49.11 0.46 0.30 0.76 0.36 0.40 0.76

0.5 52.08 0.52 0.30 0.82 0.41 0.39 0.80

0.6 54.40 0.57 0.29 0.87 0.45 0.39 0.84

0.7 56.27 0.62 0.29 0.91 0.49 0.39 0.88

0.8 57.83 0.67 0.29 0.95 0.52 0.38 0.91

0.9 59.18 0.71 0.28 0.99 0.56 0.38 0.94

1 60.33 0.75 0.28 1.03 0.59 0.38 0.97

2 67.14 1.02 0.26 1.28 0.86 0.36 1.21

3 70.51 1.19 0.25 1.44 1.05 0.34 1.39

(continúa)
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Cuadro 1 
(concluye)

λ S% P1(0,11) P1(12,99) P1 P2(0,11) P2(12,99) P2

4 72.66 1.32 0.24 1.55 1.20 0.33 1.53

5 74.22 1.41 0.23 1.64 1.33 0.32 1.65

6 75.40 1.49 0.23 1.71 1.45 0.31 1.76

7 76.36 1.55 0.22 1.77 1.55 0.31 1.85

8 77.16 1.60 0.22 1.82 1.64 0.30 1.94

9 77.84 1.65 0.21 1.86 1.72 0.30 2.01

10 78.42 1.69 0.21 1.90 1.79 0.29 2.08

20 81.86 1.91 0.20 2.11 2.31 0.27 2.58

30 83.58 2.01 0.20 2.21 2.64 0.27 2.91

40 84.69 2.06 0.21 2.27 2.89 0.27 3.17

50 85.49 2.10 0.22 2.32 3.11 0.28 3.39

60 86.11 2.14 0.23 2.36 3.30 0.29 3.60

70 86.61 2.17 0.24 2.41 3.48 0.31 3.79

80 87.03 2.21 0.25 2.46 3.64 0.32 3.96

90 87.38 2.24 0.27 2.51 3.80 0.34 4.14

100 87.69 2.28 0.29 2.57 3.94 0.36 4.30

200 89.53 2.77 0.46 3.23 5.15 0.56 5.71

300 90.45 3.31 0.64 3.95 6.07 0.77 6.84

400 91.05 3.83 0.81 4.64 6.81 0.97 7.77
Fuente: Elaboración propia.
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Fuente: Elaboración propia.

Gráfica 9 
Distribución de los valores de λ que minimizan P1(12,99) vs. P2(12,99); 
y comportamiento funciones de pérdida. España, hombres, 1990
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Datos observados: puntos; curva estimada (tendencia) con el modelo HP: línea gris; 
tendencia estimada: línea negra.

Fuente: Elaboración propia.

Gráfica 10 
España, hombres, 1990, con: a) λ = 23.12 y S = 82.5%;  
b) λ = 28.36 y S = 83.25% 
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Conclusiones

Con base en los resultados comparativos con curvas de mortalidad previa-
mente elaboradas, se tiene con la aplicación expuesta, una estimación 
altamente acertada en relación con las que se estimaron en Vargas (2014). 
Con el valor agregado de que el proceso para la generación de tales estima-
ciones es expedito y satisfactorio para los rangos de edades establecidos. 
Con ello queda de manifiesto lo que al menos con los comparativos mostra-
dos aquí se aprecia: se cuenta con una estimación apropiada.

Se encontró que el valor de la función de pérdida para las series de 
Felipe, Guillen y Pérez-Marín (2002) de hombres es bajo, comparado con el 
de las mujeres, lo cual se puede observar en el Cuadro 1. Aunque se resolvió 
el problema del mal ajuste para los primeros datos de la serie, no se puede 
observar un patrón de distribución que siga los valores de λ. Es evidente que 
los resultados sugieren que el estudio de la suavidad inducida a través del 
modelo HP es perfectible para abarcar toda la experiencia de mortalidad.

Los resultados son más convincentes cuando se omite de las estimacio-
nes la mortalidad infantil y para menores de 12 años. Ahora se puede afirmar 
un rango adecuado de índices de suavidades para obtener curvas de morta-
lidad similares a aquellas que se obtendrían con la aplicación del modelo HP. 
En cada uno de los casos se encontró un valor de λ que aproxima lo suficien-
temente bien las estimaciones del modelo HP y además se proporciona un 
intervalo de dicha estimación.

Los porcentajes de suavidad dependen claramente de la cantidad de 
datos. Por ejemplo, para el rango de edades de 12-99 años, ellos están entre 
S = 85.26% y S = 89.29%, y S = 75%  y S = 87.71% para mujeres y hombres, 
respectivamente. Es posible encontrar casos en los cuales los valores de las 
funciones de pérdida sean altos con respecto a lo que se espera, lo cual su-
giere que no hay un valor de λ que se aproxime lo suficiente a la tendencia 
estimada con la curva de mortalidad objetivo.

Se detectó homogeneidad en los resultados si se agrupan las estimaciones 
por décadas. De hecho, en muchos casos el índice de suavidad requiere ser 
más alto para el caso de las mujeres que para el de los hombres. Así pues, se 
tienen dos conclusiones sustantivas: cuando sólo se tiene una serie con ten-
dencia lineal ascendente, es decir, cuando se omite la mortalidad infantil y de 
menores de 12 años, el índice de suavidad es alto, en tanto que cuando hay 
una tendencia no lineal en un segmento y otra tendencia lineal en el otro, es 
decir, cuando se toman todas las edades, entonces el índice de suavidad es 
más bajo.

Se puede afirmar que con la perspectiva del suavizamiento controlado 



	 APROXIMACIÓN A CURVAS DE MORTALIDAD� 159

Estudios Demográficos y Urbanos, vol. 34, núm. 1 (100), 2019, pp. 129-167
doi: http://dx.doi.org/10.24201/edu.v34i1.1805

se aproximan de manera más sencilla curvas de mortalidad en comparación 
con otros métodos que exigen al analista más herramientas técnicas que no 
necesariamente se traducen en mejores estimaciones: aquí es sólo un índice 
que genera tendencias. También queda evidenciado que sí es factible medir 
la suavidad inducida en curvas de mortalidad estimadas con el modelo HP 
con funciones de pérdida, con lo que el analista ahora tiene información útil 
para poder estimar curvas de mortalidad en general; es decir, se tiene la 
suavidad que se puede imponer para obtener resultados satisfactorios. La li-
mitante se tiene para las edades iniciales de la vida, así como en igualar la 
calidad de las estimaciones para los dos sexos.

Una futura línea de investigación justamente consiste en realizar la 
aproximación no paramétrica a través de tres segmentos, por medio de 
la propuesta de Guerrero y Silva (2015), con lo que se podría replicar y ade-
cuar el procedimiento aquí señalado, pero para cada una de las tres etapas 
de la vida, a saber: mortalidad infantil, mortalidad en edades jóvenes-adultas 
y mortalidad senil. Se considera que bajo dicha óptica se podría superar la 
limitante de la estimación que se manifiesta para la primera etapa de la vida.

El enfoque no paramétrico se puede utilizar en cualquier otro modelo 
de mortalidad, siguiendo el mismo criterio aquí expuesto. Aun cuando la 
mortalidad es un fenómeno que se va transformando por lo general lenta-
mente en el tiempo y que los niveles pueden variar de contexto a contexto, 
es verdad que los patrones son sistemáticos en muchos países del mundo. Es 
meritorio recalcar que ésta es una primera aproximación a resultados deri-
vados de la aplicación del modelo HP y que también es factible realizar 
pronósticos de la tendencia, es decir, de la edad máxima estimada a partir de 
propuestas ya existentes en torno al suavizamiento controlado.
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Anexos

Código genérico en R

y=c(-6.354696075, -6.029097178, -2.73532538,
-8.160661094, -5.86261605, -3.734734913,
-8.628615298, -5.700140932, -3.56836254,
-7.867584313, -5.686275349, -3.652087507,
NA, -5.572622275, -3.720553349,
-7.740788618, -5.493523721, -3.708137271,
-7.625161374, -5.417462626, -3.494944328,
-7.215632059, -5.399672453, -3.425384607,
-7.494469941, -5.342734315, -3.623395604,
-7.279588664, -5.134066835, -3.251121388,
-7.531393582, -5.212026206, -3.515105334,
-7.608454949, -4.910675475, -3.395626337,
-7.125685263, -4.858957693, -3.167292773,
-7.051136586, -4.856911569, -4.19532048,
-7.222525466, -4.845460239, -2.088217027,
-6.808152292, -4.691432513, -2.865492162,
-6.920991469, -4.594643274, -3.041945117,
-6.762307676, -4.497914872, -2.715955381,
-6.712910348, -4.377063183, -2.960752555,
-6.731242903, -4.447910379, -3.271579888,
-6.773377732, -4.44855785, -3.112032729,
-6.684363299, -4.179004487, -2.628800829,
-6.683345203, -4.307189652, -2.517696473,
-6.623781979, -4.162422327, -2.772588722,
-6.572735833, -4.021370202, -3.005682604,
-6.500151287, -4.102163378, -1.897119985,
-6.336973546, -4.007564039, -3.060270795,
-6.297451984, -3.838045958, -1.945910149,
-6.106109201, -3.90978223, 0)
-6.198545573, -3.835674764,

(continúa)
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mean(y, na.rm=TRUE)

n=length(y)
t<-seq(1,n-1,by=1)

x2=t
y2=y#[1:71]

library(pspline) #load the package containing the smooth.Pspline function

# method = 1 uses the value supplied for spar #descartado. 
# method = 2 adjusts spar so that the degrees of freedom is equal to df. 
# method = 3 adjusts spar so that the generalized cross-validation criterion 
is minimized. 
# method = 4 adjusts spar so that the ordinary crossvalidation criterion is 
minimized. 

y2 <- na.omit(y2) 

fit <- smooth.Pspline(x2,y2, method=3)
fit
fit$spar
fit$df

lambdar2=fit$spar

K2=diag(n-1)
K2=diff(diff(K2))
Ysr2=solve(diag(1,n-1)+lambdar2*t(K2)%*%K2)%*%y2 

df2 <- sum(diag(solve(diag(1,n-1)+lambdar2*t(K2)%*%K2))) 
df2
SUA2<- 1-(df2/(n-1))
SUA2

windows()
plot(x2, y2, xlab="Edades", ylab="log(qx)", cex=1.0,pch=20, col="red", 
type="p") #plot data poin
lines(x2, Ysr2, xlab=" ", ylab=" ",type="l",col="red",lwd=2) #

Código genérico en R 
(concluye)
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Código genérico en Mathematica

Manipulate[
n=Dimensions[yo][[1]];
l=a;
i=IdentityMatrix[n];
k2=Differences[i,2];
k2tk2=Transpose[k2].k2;
lb=Table[l,{i,n}];
t=N[Inverse[i+lb*k2tk2]].Log[yo];
tt=Partition[Flatten[Table[{{i+14},t[[i]]},{i,n}]],2];
yot=Partition[Flatten[Table[{{i+14},Log[yo][[i]]},{i,n}]],2];
yht1=Partition[Flatten[Table[{{i+14},Log[yh1][[i]]},{i,n}]],2];
yht2=Partition[Flatten[Table[{{i+14},Log[yh2][[i]]},{i,n}]],2];
yht3=Partition[Flatten[Table[{{i+14},Log[yh3][[i]]},{i,n}]],2];
yht4=Partition[Flatten[Table[{{i+14},Log[yh4][[i]]},{i,n}]],2];
s=N[1-Tr[Inverse[i+lb*k2tk2]]/n,2];

dvr=N[Diagonal[Inverse[i+lb*k2tk2]]^.5];
yis=t+dvr*1.96;
yii=t-dvr*1.96;

yist=Partition[Flatten[Table[{{i+11},yis[[i]]},{i,n}]],2];
yiit=Partition[Flatten[Table[{{i+11},yii[[i]]},{i,n}]],2];

(*Selección de la serie de mortalidad*)
ListPlot[{tt,yot,yht7,yist,yiit},

]
{{a,.1,"λ"},0,100]

(* Funcion de pérdida *)
d11[x_]:=Total[((1-N[Inverse[Table[x,{j,n}]*k2tk2+i].Log[yo]]/
Log[yh2])^2)[[13;;n]]];
e11=Partition[Flatten[Table[{h,d11[h]},{h,0,max12,.1}]],2];
d12[x_]:=Total[((Log[Log[1-N[Inverse[Table[x,{j,n}]*k2tk2+i].yo]]/Log[1-
yh]])^2)[[13;;n]]];

e12=Partition[Flatten[Table[{h,d12[h]},{h,0,max12,.1}]],2];
(* encontrar  mínimo*)
maxm=1000;stpm=10;minm=0;
MinimalBy[Table[{h,d11[h]},{h,minm,maxm,stpm}],Last
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