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Estudio de una familia de funciones de periodo

tres y su dinamica caética
Study of a family of period three functions and its chaotic
dynamics

Julio César Macias Ponce®*, Luis Fernando Martinez Alvarez®*

RESUMEN

Objetivo: construir sistemas dinamicos cadticos unidimensionales mediante el estudio de una familia de funciones con
dominio y contradominio en el intervalo [0,1] la cual se define en términos de cuatro parametros.

Método: con base a los parametros que definen a cada funcidon que proponemos, se identificaron aquellas que tienen
periodo tres, las cuales inducen un sistema cadtico en el contexto de Li-Yorke. Los teoremas del punto fijo y de Sharkovskii
fueron la herramienta fundamental de nuestro trabajo.

Resultados: se obtuvo un conjunto de sistemas dinamicos caéticos, se describié un procedimiento sencillo para
obtener sistemas dinamicos cadticos (adicionales a los obtenidos) y se sugiere como primera aplicacion la obtencién
de nameros pseudoaleatorios.

Limitaciones: los sistemas dinadmicos construidos son cadticos en el sentido de Li-Yorke, -no necesariamente en el
sentido de Devaney-.

Principales hallazgos: las funciones estudiadas tienen una grafica en forma de Zeta, y para cada una de ellas se
identifica a su respectiva dual (las graficas que se obtienen presentan una relacion de simetria), de esta manera se
muestran las condiciones que deben verificar los parametros -primal y dual- para obtener (y no obtener) periodo tres.

ABSTRACT

Purpose: To build one-dimensional chaotic dynamical systems through the study of functions with domain and codo-
main in the interval [0, 1] which is defined in terms of four parameters.

Methodology: Based on the parameters that define each function that is proposed, those which have period three were
identified and which induce a chaotic system in the context of Li-Yorke. The fixed point and Sharkovskii theorems were
the fundamental tools in this work.

Results: We obtained a set of chaotic dynamic systems. In turn, we described a simple process in order to obtain chaotic
dynamic systems (additional to those obtained) and we suggest, as a first application, the obtainment of pseudo-random
numbers.

Limitations: The dynamic systems that were built are chaotic in the Li-Yorke sense -not necessarily in the Devaney sense-.
Findings: The functions that were studied have a Zeta form graphic, and for each of those we identified its respective
dual (the obtained graphics present a symmetric relation) and that is how we show the conditions that must verify the
parameters -primal and dual- in order to obtain (or not) period three.
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() Estudio de una familia de funciones de periodo tres y su dindmica caética

INTRODUCCION

En Ramirez de La Cruz (2004) se relata lo siguiente:

A finales del siglo x1x, Henri Poincaré cuestioné la
perfeccién newtoniana en relacién con las 6rbitas
planetarias, lo que se conoce como el problema de
los tres cuerpos. Planteaba una atraccion gravita-
toria mdaltiple, que hasta entonces se resolvia con
las leyes de Newton y la suma de un pequeiio valor
que compensara la atraccion del tercer elemento.

Poincaré descubri6 que, en situaciones criticas, ese
tir6n gravitatorio minimo podia realimentarse hasta
producir un efecto de resonancia que modificara la
o6rbita o incluso lanzara el planeta fuera del sistema
solar. Los procesos de retroalimentacion se corres-
ponden en fisica con las ecuaciones iterativas, don-
de el resultado del proceso es utilizado nuevamente
como punto de partida para el mismo proceso. El
ideal clasico sblo contemplaba sistemas lineales, en
los que efecto y causa se identifican plenamente; se
sumaban las partes y se obtenia la totalidad. Poinca-
ré introdujo el fantasma de la no linealidad, donde
origen y resultado divergen y las formulas lineales
no sirven para resolver el sistema. Se habia dado el
primer paso para la teoria del caos (p.16).

Hoy en dia, apoyandose en los avances tecnologicos
muchos matematicos se dedican al estudio, generacién
y aplicacién de modelos caéticos, en este trabajo nos
restringiremos al estudio de sistemas dinamicos discre-
tos unidimensionales y construiremos modelos inéditos.

El alcance de este trabajo es explicativo, proporciona
una familia de sistemas dinamicos inédita, cuyas pro-
piedades se demuestran con el debido rigor matematico;
en este sentido, se pueden tomar los ejemplos expuestos
para utilizarlos en contextos pertinentes relativos a los
sistemas dinamicos discretos.

Debido a que la composicion de una funcién consigo
mismo serd mencionada con frecuencia; para el resto del
trabajo denotaremos con f™ -donde n es un entero posi-
tivo- a la composicién de f consigo misma n veces. Asi,
estamos en condiciones de dar la definicién de punto pe-
riédico que sera de utilidad en el desarrollo del trabajo.

Definicion 1. Sea x € D e decimos que x, es de periodo
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nsi, n f"(x,)=x, paraalginn € N, y f* (x, )#x, , para
k < n. Al conjunto de puntos periodicos se le denotara
como Per(f) (Devaney, 1989).

La definicién matematica mas aceptada en la teoria del
caos se debe a Devaney (1989) y es la siguiente:

Definicion 2. Decimos que una funcioén f:/-I es caé-
tica si f satisface las siguientes tres condiciones:

e Existe una §>0 tal que, para cualquier x € I y cual-
quier vecindad B de x , existeunay € B yn >0
tal que |f™ (x)—f™ (¥)|=6 . A esta condici6n se le
conoce como sensibilidad a condiciones iniciales

e Para cualquier par de conjuntos abiertos U, V c [
existe k > 0 tal que f* (U)N V+¢ . Si esto sucede,
se dice que la funcion es topolégicamente transitiva.

e Per(f)esdensoenl.

Sin embargo, en Aulbach y Kieninger (2000) se en-
cuentra otra definicion que se atribuye a Li y Yorke (una
década anterior a la definicién de Devaney, 1989), misma
que tendra prioridad en nuestro trabajo:

Definicion 3. Una funcién f: X—X en un espacio mé-
trico compacto (X, d) es cadtica en el sentido de Li y
Yorke si existe un conjunto no contable S € X con las
siguientes condiciones:

e lim

n—

e lim

n—

Ssupd(f(x),f"(y))>0paratodox,y €S, x#y

Linfd(f" (x),f*(y))=0paratodox,y €S, x #y

e lim__supd(f" (x),f"(p))>0paratodoxE€S,p€X,
p periddico.

En Aulbach y Kieninger (2000) se estudia la relacién
entre estas definiciones, en particular se tiene que la
primera definicién (Devaney, 1989 ) implica la segunda
(pero la otra implicacién no es valida). En lo que resta
del trabajo nos referiremos -cuando el contexto se preste
a confusién- a la primera definicién usando simplemente
“caos” mientras que la segunda se enunciara como “caos
en el sentido de Li-Yorke”.

En Devaney (1989) encontramos diversos sistemas
dinamicos discretos que son cabticos, algunos unidi-
mensionales y otros de dos o mas dimensiones, en este
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trabajo nos restringimos a los primeros, podemos ci-
tar la funcién tienda, la funcién logistica y la funcién
“recorrimiento” (King y Mendez, 2015), éstas han sido
tratadas desde ilustracién para los conceptos relativos
al caos hasta la aplicacién en modelos de encriptacion
(Liy Yorke, 1975), asi como modelos econémicos (Tara-
sova y Tarasov, 2017). En el presente trabajo nos enfo-
camos en construir modelos y exhibir sus propiedades
cadticas dejando en segunda prioridad la aplicacion,’
en particular presentamos una familia de sistemas di-
namicos que dependen de un conjunto de parametros
y buscamos condiciones entre estos, de manera que
los sistemas sean cadticos en el sentido de Li-Yorke. La
forma de proceder se sustenta fuertemente en los teo-
remas de Sharkovskii (Devaney, 1989) y del punto fijo
para funciones unidimensionales; el primero de ellos
se presenta a continuacion.

El teorema de Sharkovskii es de gran utilidad para es-
tudiar la existencia de puntos periédicos, para enunciarlo
necesitamos “listar” a los nimeros naturales como sigue,
que es el orden de Sharkovskii (De Melo y Van Strien, 1993).

3<5<7<9<-(Nameros impares)

..<3:2<5:2<7-2<9-2< - (Nameros impares multiplicados por 2)

W<3-22<5-22<7-22<9-22< --~({V1’1meras impares multiplicados por 22)

W=<3:2"<5:2"<7:2" < 92" < .- (Numeros impares multiplicados por 2™)
< 2" <0 <28 <22 < 2 < 1(Potencias de 2)

Como se observa primero se enlistan los niimeros im-
pares excepto el uno, después se contintia multiplicando
estos ntimeros por las potencias de dos, y para terminar
se agregan las potencias de dos en orden decreciente.
Se utiliza la notacion a < b para representar “a precede
ab”.

Ahora bien, el teorema de Sharkovskii enuncia lo si-
guiente:

Teorema 1. Sea f: -] una funcién continua donde
Ies un intervalo cerrado y acotado. Suponga que f tiene
un punto periédico de periodo k Si k < [ en el orden de
Sharkovskii, entonces f también tiene un punto peri6-
dico de periodo [ (Devaney, 1989).

El teorema argumenta, que las funciones con puntos
de periodo tres tienen puntos periddicos de cualquier
orden; luego, a partir del trabajo de (Li y Yorke, 1975)
“periodo tres implica caos” -Li y Yorke argumentan que
la existencia de puntos con periodo tres implica que se

1 Una aplicacion inmediata que proponemos para trabajos futuros seria la
generacién de nimeros pseudoaleatorios que a su vez seria la base para otras
aplicaciones.
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verifican las condiciones de su definicion de caos-, los
sistemas dinamicos unidimensionales son susceptibles a
observarse desde la perspectiva del periodo tres. Luego,
el procedimiento para “construir caos” es sencillo, basta
con definir funciones continuas con dominio y contra-
dominio un intervalo cerrado y acotado / y encontrar
puntos fijos de la funcién compuesta consigo misma
tres veces (estos seran los candidatos a ser puntos de
periodo tres).

En particular cada funciéon que se presenta en este
trabajo tiene una “forma de Z”, su grafica consiste de 3
rectas que “se pegan bien” definidas en el intervalo uni-
tario y con rango el mismo intervalo. Ademas de la gra-
fica de cada funcién en forma de Zeta, se presentan las
graficas de dicha funcién compuesta tres veces consigo
misma para identificar los puntos fijos de esta tiltima los
cuales corresponde a candidatos de puntos de periodo
tres de la funcidn original. Luego entonces mostramos
matematicamente las condiciones que deben satisfacer
los valores de los parametros, de manera, que se garan-
tice la existencia de periodo tres, y por tanto de caos.

El articulo se encuentra dividido en tres secciones.
En la primera, se refieren los aspectos metodol6gicos,
se presenta la definicién de la familia de funciones que
se abordaran y se presentan los resultados te6ricos, con
las demostraciones correspondientes, que garantizan la
existencia del caos. En la segunda seccion se presentan
diversos ejemplos donde se exhiben los resultados te6-
ricos y computacionales obtenidos, también se muestra
una lista de nameros generados con una funcion tipo
Zeta junto con los resultados de las pruebas estadisticas
pertinentes. La tercera y tiltima secci6n expone las con-
clusiones, primero se describe un procedimiento para
construir sistemas ca6ticos y posteriormente una estra-
tegia para generar secuencias de nimeros susceptibles
a pruebas de aleatoriedad.

ASPECTOS METODOLOGICOS

Comenzamos definiendo una familia de funciones que
por la forma de la grafica le llamaremos Funciones tipo
Zetay a partir de éstas obtendremos sistemas dinamicos
los cuales podran ser (o no) cadticos.

© ENES Unidad Leon/UNAM
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Definicion 4. Sean a,b,c,d € [0,1] con 0<b<c<1,
definimos una Funcién tipo Zeta

fapca:[0,1] = [0,1] como:

1—-a ,
5 x+a six € [0, b]
c—x
fapea(x) =5 ) six € (b,c]
d
T (x—0  sixe(c]]

En la figura 2 presentamos la forma de la grafica de
una funcién tipo Zeta con parametros a=0.2, b=0.35,
c=0.68, d=0.4

Figura 1. Tipica forma de una funcion tipo Zeta

09}
08
0.7
06}
051
04}

0.3

Fuente: elaboracion propia.

Para cada arreglo de parametros (a, b, ¢, d) que defi-
nen a una funcién tipo Zeta identificamos a otra funcion
de la misma familia a la que llamaremos la funcién dual.

Definicion 5. Dada una funcion tipo Zeta f_, , defi-
nimos la funcién dual de f como la funcién dada por

f*u,b,c,d: fl—d,l—c,l—b,l—a *

Note pues que la funcion f* , ,:[0,1]-[0,1] sera la
funcién dada por:
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( _ ; _
| 1_Cx+(1 d) sixe[0,1-c]
1-b-—
F apea® = —%  sixe(-c1-0]
c—b
—a
(x+b—-1) sixe(1-b1]

b

Enla figura 2 se visualiza la grafica de la funcion dual
asociada a la funcion representada en la figura 1.

Figura 2. Dual de la funcidn tipo Zeta

Fuente: elaboracion propia.

Cuando no se preste a confusién omitiremos los para-
metros (a, b, ¢, d) y nos referiremos simplemente a las
funciones como f'y f*y donde una es la funciéon dual
de la otra (obsérvese que f**=f).

El siguiente resultado sera ttil para trabajar de manera
operativa con las funciones fy f.

Proposicion 1. Dada la funcién tipo Zeta f y su funcién
dual f* se tiene que

f(x)=1—f" (1—x) para todo x €[0,1].

Demostracion: particionando el dominio de la funcién
tenemos lo siguiente:

Si x=b, tendremos que

1-f(1-b)=1
=f(b)

Entreciencias 7(19): 11-25. Abr. - Jul. 2019
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Para el caso x=c, tenemos que

1-fAl-0)=1-[d+ (1 —d)]
=0
=f(c)

Elcaso0<x<bequivaleal —b<1—x<1,luego

1—a
1—f*(1—x)=1—T(b—x)

=1-(1-a)+
= f(x)

Cuando b < x < c se sigue que 1—c<1—x<1-b, y asi

obtenemos
x—>b
1-f (-0 =1-"=
_¢c—=b—(x—Db)
N c—b
=f()

Obsérvese que ¢ < x < 1 equivale a 0<1—x<1—c, por
tanto

1—
:dgjg—g
=d(1—c)
=f(x)

Corolario 1. Dada la funcion tipo Zeta f y su funcién
dual f~ se tiene que

f"(x)=1—f" (1—x) para todo x € [0,1] y para todon € N.
Demostracion: por induccién matematica.

Como dijimos anteriormente, las funciones tipo Zeta
son fundamentales en el desarrollo de nuestro trabajo,
ya que a partir de estas generaremos sistemas dinamicos
discretos y los estudiamos en el contexto del caos. A con-
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tinuacién presentamos los conceptos basicos relativos a
los sistemas y su dinamica.

Para el resto de este trabajo, si A es un subconjunto
del dominio de una funcién f denotaremos con f(4) a
la imagen del conjunto A bajo la funcion f.

Las siguientes definiciones son esenciales para el de-
sarrollo de este trabajo.

Definicion 6. Sea f una funcion real de variable real
con f(D f) SD,yxeED, definimos y denotamos la 6rbita
de x, bajo f como sigue

0(x,f)={f" (x,):m € N U{0}}
Donde f° (x, )= x,, ademas, un punto x, € ] es fijosi f (x,)= x,.

La siguiente definicion se debe a Hirsch, Smale, y De-
vaney (2004) y habla de un sistema dindmico general
pero redefiniendo el dominio se tiene la definiciéon que
necesitamos en nuestro contexto: basta sustituir R por
N U {0} en el dominio de la funcién ¢.

Definiciéon 7. Un sistema dinamico en R" es una fun-
cion continuamente diferenciable
¢:RXR*—R", donde ¢(t,x)=¢, (x) satisface:

1) ¢,:R*—R"es la funcion identidad ¢, (x)=x.
2) ¢ =0, paracadat,sé€R.

En el contexto de la definicién 7, recordemos que n=1
para sistemas unidimensionales y estamos usando su-
praindices para la funcién f. Abusando del lenguaje,
estamos escribiendo “f es caftica” para referirnos al
respectivo sistema dindmico discreto inducido por la
funcion f donde ¢ (x)=f" (x). Ademas, para nuestro
proposito se puede relajar la condicién de continuamen-
te diferenciable por continua.

En la definicién anterior tenemos que pueden existir
puntos a los que conoceremos como preperiédicos: un
puntoyeD, es preperiddico si existe un k € N tal que
f* () € Per(f).

En este orden de ideas, el resultado mas importante
para el objetivo corresponde a Li y Yorke “Period Three
Implies Chaos” (Li y Yorke, 1975), pues basta mostrar
que f tiene puntos de periodo tres (y por tanto de todos
los periodos) para afirmar que f es cadtica en el sentido

© ENES Unidad Leon/UNAM
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de Li-Yorke.

Proposicién 2. Dada f'y su respectiva funcion dual f~
entonces f tiene un punto de periodo 3 siy solo si f“posee
un punto de periodo 3.

Demostracion:

=) Sea x, un punto de periodo 3 y que no es punto
fijo de f, entonces mostraremos que 1—x, es punto de
periodo 3 para f".

Por el corolario 1 se tiene que

(f)°(1 = x0) = 1= f3(x)

=1_XO

veamos ahora que 1—x, no es punto fijo de f

fT(1—=x) =1— f(xo)

#1—x

Por tanto si f posee un punto de periodo tres también
f"lo tendra.

<) Supongamos que f* posee un punto de periodo 3,
por la parte anterior entonces f** = f posee también un
punto de periodo 3.

En la figura 3 podemos observar las graficas de las
funciones f3 y f*3 asociadas a una funcion tipo Zeta
con parametros a=0.4, b=0.25, ¢=0.72, d=0.8, donde
los puntos de periodo 3, ademas de los posibles puntos
fijos (de f ) son aquellos donde se intersecta la grafica
de la funcién f? correspondiente con la de la funcién
identidad.
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Figura 3. Representacion de los puntos de periodo 3 de
una funcién tipo Zeta y su respectiva funcién dual

oo )

Fuente: elaboraci6n propia.

Ahora identificaremos un punto en el dominio de la
funcién tipo Zeta que sera relevante en el resto del tra-
bajo.

Proposicion 3. Sea f una funcion tipo Zeta, entonces

= —° _ esun punto fijo de la funcién.

" 1+c-b

XF

Demostracion: sabemos que 0 < b < c¢ <1, porloque
se obtienen las siguientes desigualdades

b(c—b)<c—b
= b+bc—b?><c
= b(l+c—-b)<c

Y asuvez

0<c(c—Db)
= c<c+c?-bc
= c<c(l+c—-b)

Ademas, claramente 1 + ¢ — b > 0 por lo que b <x,<c,
y asi

_ c
C“T+c—b
c—b
B c® —bc
T (c=b)(A+c—-b)
c

flxp) =

=1+c—b

Proposicion 4. Si f es una funcién tipo Zeta tal que
a =x,y d < x, entonces f no tiene puntos de periodo 3.

Entreciencias 7(19): 11-25. Abr. - Jul. 2019
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Demostracion: bajo la condiciones anteriores es claro
que f (x) = x,paratodox € [0,x,]y f(x)<x,six€[x,1]
asi pues note que

e Si0<x<x,

f(x) = xp
= f2(x) < xp
= f3x)=x>x

e Six,<x<1

f(x) < xp
= f2(x) = xp
= f3x)<xp<x

La figura 4 presenta la grafica de f° para dos funciones
tipo Zeta que poseen los parametros indicados y que
cumplen las condiciones de la proposicioén 4, como se
observa, la grafica de f° no intersecta a la grafica de la
funcion identidad —a excepcion del punto fijo x, — por
lo que no poseen puntos de periodo 3.

Figura 4. Ausencia de puntos de periodo tres segiin las
condiciones de la proposicion 4

1 1
09 08—

08 08

[iig 07

06 06

05 05

04 04

03 03

0 02 04 06 08 1 0 02 04 06 08 1
a=08 b=03 c=075 d=04 a=086, b=042 c=075, d=024

Fuente: elaboracion propia.

Proposicion 5. Sea f una funcion tipo Zeta tal que a=0
entonces f posee un punto de periodo 3 en el intervalo
(0, b).

Demostracion: primeramente notamos que si a=0 se
tiene que f(0)=0vy f((0,b)) = (0, 1).

Dado que f es continua entonces existen puntos x,, x,€
(0,b) tales que f(x, )=x,V f(x,)=c, ademas debido a que
f es creciente en el intervalo (0,b) tendremos que x, <x,.

Observe que f* (x, )=x,>x, y f? (x,)=0 <x,.

Definamos ahora la funcién & sobre el intervalo (0,b)

DOI: 10.22201/enesl.20078064e.2018.19.65822
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dada por h(x)=f3 (x)—x.

Debido a que la funcién f es continua en el intervalo
(0,b) tendremos que h es continua también en este in-
tervalo.

Notese que h(x, )>0y h(x,)<0 entonces por el teore-
ma del valor intermedio existe un punto x € (x, x,) < (0,b)
tal que h(x, )=x, o equivalentemente f* (x )=x,.

Verifiquemos finalmente que x, no es un punto fijo
de f:

Puesto que x, € (x,, x,) y debido a que f es creciente
en (0,b) tendremos que

fe)>f(x ) )=x>x,.

En la figura 5 presentamos la grafica de f° para dos
funciones que cumplen la condicién dada en la propo-
sicibon 5. Igual que en la figura 3 las intersecciones de la
grafica de la funcion f3 con la de la identidad represen-
tan ademas de los dos puntos fijos, los puntos de periodo
3 de ambas funciones.

Figura 5. Puntos de periodo tres dadas las condiciones
de la proposicion 5

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1
=0, b=0.38, c=0.56, d=0.62 a=0, b=0.51, c=0.8, d=0.2

Fuente: elaboracion propia.

Corolario 2. Sea f una funcién tipo Zeta, si d=1 enton-
ces f posee un punto de periodo 3 en el intervalo (c,1).

Demostracion: ya que d=1 entonces 1-d=0, luego la
proposicion 5 implica que f* posee un punto de periodo
3 en (0, 1—c) por tanto f posee un punto de periodo 3
en (c,1) debido a la proposicién 2.

Antes de enunciar el siguiente resultado mostraremos
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dos puntos en el dominio de la funcion tipo Zeta parti-
cularmente ubicados en el intervalo (b,c) que nos seran
de mucha utilidad.

Por la continuidad de la funcién tipo Zeta tenemos
que f(bx,)=(x,1)y f(x,.c)=(0,x,) por lo que existen
puntos x €(b,x,) y x,€ (x,,c) tales que f(x_)=cy f(x,
)=b, alin mas, es sencillo encontrar el valor de estos
dos puntos en términos de los parametros de la funcion,
estos son x =c+bc—c*y x,=c—bc+b*.

Entonces tenemos la relacion b<x <x,<x,<c.

Una vez conocidos los puntos x_y x, y sus propiedades
c
presentamos nuestro resultado mas importante ya que
nos brinda las condiciones necesarias y suficientes para
identificar si una funcién tipo Zeta poseera o no puntos
de periodo 3.

Teorema 2. Dada f una funcién tipo Zeta entonces se
tiene que

i) Sia<x od = x, entonces f posee un punto de
periodo 3.

ii) Sia > x_yd < x, entonces f no posee puntos de
periodo 3.

Demostracion:

i) Analicemos primero el caso en que a < X,
Recordando que x <x,y puesto que f([0,b))=[a,1),
luego existen dos puntos

x,, X,€[0,b) tales que f(x, )=x_y f(x,)=x, donde
x,<x, pues f es creciente en el intervalo [0,b).

Asipues, tendremos que f3 (x, )=0<x, y f* (x,)=x,>x,.

Aligual que en la demostracién de la proposicién 5,
se define la funcién continua h(x)=f3 (x)—x sobre
el intervalo [0,b) la cual cumple que h (x, ) <Oy
h (x,) >0, por lo que al igual que antes existe un
punto x, € (x,,x,) tal que f* (x,)=x, .

Atn mas, puesto que x, € (x,,x,) y debido a que f es
creciente en (0,b) tendremos que f(x,)>f(x,)=x>x,,
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asique X, 10 es un punto fijo de f y por tanto es un
punto de periodo 3 de f.

Continuemos ahora en el caso d=> x, .

Note que d= x, implica que 1-d< 1-x, don-
de utilizando la funcién dual de f se tiene que
fr(1=x,)=1-f(x,)=1-b.

Es decir f* cumple las condiciones del primer caso
que analizamos, luego f* posee un punto de periodo
3, V por la proposicién 2 tenemos que f tiene un
punto de periodo 3.

Dividiremos la demostracién en 4 casos:

Caso1:a=x,yd<x,
La demostracién esta dada en la proposicion 4.

Caso 2: x <a<x,yd<x,

Primeramente notamos que se cumplen las des-
igualdades f* (x_)>x_y f* (x, )<x,.

Ademas f([0,b])=[a,1], por lo que existe un
punto x'e€ [0,b] que cumple las relaciones

fxD=x,y f* (x)>x".
Ahora bien, observe que:

fU0,x']) € (xc, xr]
= f2([0,xD) & f(Cxe, x]) © [xp, )
= f2([0,x'D < f([xp, ¢)) < (0,xF]

Ademas sabemos que f es una recta creciente
en el intervalo (0,x'] y es una recta decrecien-
te en los intervalos (x,x,.]y [x,c) por lo cual f*
es una recta creciente en el intervalo [0,x'], lue-
go f no posee puntos de periodo 3 en [0,x'] pues
f2(0)>0y f* (x)>x".

Continuando, se tiene que:

fxc]) € (xp, 1]
= fz((xl'xc]) c [0' xF]
= 3 xD < (e 1]

Por lo cual f no posee puntos de periodo 3 en
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(', x_].

Ahora, se observa que f((x, x,))=(x,, ¢) y conse-
cuentemente existe un punto
x"€(x, x,) tal que f(x"")=x,, alin més f* (x"")=1.

Para el intervalo (x, x'") tenemos que:

f((xc' x”)) = (Xb,C)
= f2((x;,x")) = (0,b)
= 3 ((xe,x") € (x,1]

Recordando que f es una recta decreciente en los
intervalos (x, x") y (x,, ¢), ademas de una recta
creciente en el intervalo (0, b) entonces f no posee
puntos de periodo 3 en (x, x") pues tendremos
que f* es unarecta creciente en el intervalo (x , x"")
donde /3 (x,)>x,y f3 (x")>x".

Luego, para el intervalo (x", x,) se cumple:

f("xp)) = (xp, Xp)
= f2((",xp)) = (b, xp)
= 3" xp) = (xr, 1)

Por lo que f no posee puntos de periodo 3 en (x", x,).
Prosiguiendo, f tampoco posee puntos de periodo
3 en el intervalo (x,, x,) pues:

f((xpxp)) = (b, xp)
= fz((xF'xb)) = (xF' 1)
= f3((xr %)) = (0,x)

Siguiendo ahora con el intervalo (x,, ¢), evaluando
en el intervalo se tiene que f((x,, ¢))=(0, b) por lo
cual f? ((x,, ¢))=(a, 1) y por tanto existe un punto
x""€(x,, c) tal que f* (x"")=c.

Realizando las evaluaciones para el intervalo

(x, x""") obtenemos:

f((xp, x") = (f(x"), b)
= f2((x,x") = (c, 1)
= f3((xb!xm)) c (0' xF]

Consecuentemente f no posee puntos de periodo
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nr

Para (x"”, ¢) se cumple:

f(x", ) = (0,f(x")) < (0,b)
= f2((x"",¢)) € (xc,0)
= f3((x"",¢)) = (0,0)

Cumpliéndose pues que 3 (x"")<x"’, f3 (¢) <c y
que f es una recta decreciente en los intervalos
(x"", )y (x, c) ademas de una recta creciente en el
intervalo (0,b) por lo que f* es una recta creciente
en el intervalo (x"”, ¢); luego f no posee puntos de
periodo 3 en el intervalo (x'”, ¢).

Finalmente para el intervalo (c, 1):

fl(e, 1) < (0, x¢]
= f2((c, 1)) € (x, 1]
= f3((c,; D) < (0,0)

Por lo tanto f no posee puntos de periodo 3 en tal
intervalo.

Caso3:a=x,y x,<d<x,

Comencemos notando que 1—x,<1—-d<l-x,y1—
a<1-—x,donde se sabe que 1—x,esel punto fijode

f

Ademas, se verificaque f* (1—x,)=1—f(x, )=1-b;
conlo cual f* esta satisfaciendo las condiciones del
caso anterior, de esta manera f* no posee puntos
de periodo 3y por la proposicién 2 tampoco f tiene
puntos de periodo 3.

Caso 4: x <a<x,y x,<d<x,
Iniciemos notando que se satisfacen las desigual-

dades £ (b) > by f? (c)<c.

Ademas f3 (0)>0, esto pues:
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f(0) = a & (xc, xr)
= f2(0) = f(a) € (xr,0)
= f3(0) = f*(a) € (0,x5)

De manera semejante se tiene que f3 (1)<1, esto
pues se cumple:

f() =d € (xp,xp)
= f2(1) = f(d) € (b,xp)
= (D) =f*@d) € (xp, 1)

Seguidamente f(0,b)=(a,1) por lo que existe
x" € (0,b) con f(x")=x,.

De manera analoga al caso 2 se puede mostrar que
f no posee puntos de periodo 3 en el intervalo (0,x']
y para el intervalo (x',b) tampoco los hay pues
f((x',b)) € (x,,1) conlo cual f* ((x",b)) € (0,x,) ¥
f?((x',b)) < (b,1).

Evaluando el intervalo (b,x) obtenemos
f((bx,))=(c,1) y por tanto f2 ((b,x,))=(0,d), por
lo cual se tiene la existencia de un punto x"’€ (b,x_)
tal que /2 (x'")=b.

Asi, tendremos que:

f((b,x") =(fx"),1) c (1)
= f2((b,x")) = (b,d) c (b, xp)
= f3((b,x") c (b, 1)

Y debido a que f es una recta decreciente en los
intervalos (b, x"") y (b, x,) y una recta creciente en
el intervalo (¢, 1) tendremos que f es una recta
creciente en el intervalo (b, x""), lo cual, aunado
con el hechode que f3 (b)>b y f? (x" )>x", indica
que f no posee puntos de periodo 3 en el intervalo
(b, x'").

Para (x", x) tendremos que f((x", x, ))=(c,f(x"
))<(c, 1) delo cual se sigue que f2 ((x", x,))=(0,b)
yf*((x",c))=(a,1) c(x,1) y conlo cual f no posee
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puntos de periodo 3 en tal intervalo.

En el intervalo (x,, x,) no existen puntos de perio-
do 3, la demostracion es equivalente a la mostra-
da en el caso 2. Hemos mostrado que f no posee
puntos de periodo 3 en (0, x,) para las condiciones
X <a<x,y x,<d<x,.

Continuando, es claro que, 1—x,<1-d<1-x, 1—
x,<1-a<l-—x_,donde 1—x,es el punto fijode f"y
se cumplen las igualdades f* (1—x, )=1—f(x, )=
1-by f* (1=x_)=1—f(x )=1-c.

Es decir f* no posee puntos de periodo 3 para el
intervalo (0,1—x,) por lo ya demostrado anterior-
mente en este caso para la funcién f, lo cual por la
proposicién 2 nos conduce a que f no tiene puntos
de periodo 3 en el intervalo (x,,1).

En la figura 6 podemos apreciar dos graficas, la del

lado izquierdo muestra que la grafica de f* para una fun-
cién que cumple las hipétesis de la parte i) del teorema
2 si posee puntos de periodo 3 pues hay intersecciones
(contando el punto fijo) con la grafica de la funcién iden-
tidad, en cambio la figura del lado derecho muestra que
la grafica de f3 de una funcién que cumple las hip6tesis
de la parte ii) del teorema no presenta intersecciones con
la grafica dela funcién identidad (ademas del punto fijo)
por lo que no posee puntos de periodo 3.

Figura 6. Representacion de la presencia o ausencia
de puntos de periodo tres segiin las condiciones del

teorema 2

0.2 0.8 1 0 0.2 08 1

04 06 04 06
2=0.54, b=0.22, c=068, d=0.74 2=0.45, b=0.34, c=0.56, 4=0.16

Fuente: elaboracion propia.

Entreciencias 7(19): 11-25. Abr. - Jul. 2019


http://10.22201/enesl.20078064e.2018.19.65822
http://10.22201/enesl.20078064e.2018.16.62611

() Julio César Macias Ponce, Luis Fernando Martinez Alvarez 21

RESULTADOS Figura 7. Primeros 40 elementos de la 6rbita del punto 5
|-

Para los ejemplos que a continuacién mostramos, se
generd una aplicacion computacional que permite la ge-
neracion de modelos inéditos de funciones caéticas. Las 0g 4
funciones evaluadas estan limitadas por la capacidad
computacional,? referente a componentes irracionales.
06 -

Funciones tipo Zeta

A continuacién, basados en los resultados te6ricos obte- 044
nidos presentamos algunos ejemplos de funciones tipo

Zeta —f,, ,— convalores particulares en los parame-

tros cuya dinamica es cadtica en el sentido Li-Yorke, y 0.2
de manera computacional pretendemos ilustrar la sen-
sibilidad a condiciones iniciales (correspondiente a la
definicion de Devaney).

En la figura 7, tenemos en color azul, 1a grafica de 1@ ...rnerrecrecerceeesessesessesesssesesssesesseens
funcion f . ., 601, — 1as condiciones del teorema 2 se
verifican— a su vez, la linea vertical en color rojo ilustra
la evaluacioén del punto fijo 19/36. Mientras que en la
figura 8 evaluamos la funcién en el punto 19.00001/36,
pero la 6rbita es totalmente diferente a la del punto fijo: 1 i

] T T T T T T T T T 1

19.00001

Figura 8. Primeros 100 elementos de la érbita del punto 222>

36
1_

el sistema presenta sensibilidad a condiciones iniciales.

A su vez, en las figuras 9 y 10 identificamos un punto
que en la segunda evaluacion se obtiene un punto fijo
—un punto preperiddico—, pero en la figura 11 se observa 064
que una pequena modificacién en la condicién inicial
genera orbitas diferentes.

0.2

0.4+

0.2

i T T T T 7 T T T T )

a0 nz 0.4 0a 0.z 1

2 Se utilizé una computadora portatil Toshiba con procesador Intel Core i7-
2630QM a 2.0 GHz y para llevar a cabo la programacién y los experimentos se
utiliz6 MATLAB R2014a y Maple 13.
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Figura 9. Evaluacion del punto % Figura 11. Primeros 200 elementos de la 6rbita del punto .~
L -
1 —_
0.2 A
DS N ] ==
0.6 o
0.6 A I
All
0.4
0.4 1 _E T
0.2 A
0z
| k|
U T T T T T T T T 1 ]
1] 0z 0.4 0a 0g 1 a
0 02 0.4 0é 0 1
Fuente: elaboracién propia. - ;
Fuente: elaboracién propia.
. 0 2 . 164
Figura 10. Primeros 200 elementos de la 6rbita del punto T En la figura 12, tenemos la grafica de la funcién
1 £ sy, 2/mas5 —1as condiciones del teorema 2 se veri-

fican— y se ilustra la evaluacién de un punto de periodo
3; observemos que en la figuras 13 y 14 se ha modificado
08 la condici6n inicial y por tanto la 6rbita para los primeros
puntos parece ser la misma que la figura 12; sin embargo
cuando se muestran mas puntos de la 6rbita, se aprecia

0.6 la sensibilidad a condiciones iniciales.
Figura 12. Primeros 300 elementos de la 6rbita del punto %
0.4
1 _
024 0z 4
0 T T T T T T T T 1 06+
a 0z 0.4 0.& 0g 1
Fuente: elaboraci6n propia.
0.4+
02+
D T T T T T T T T T 1
i} nz 04 08 0E 1

Fuente: elaboracién propia.
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Figura 13. Primeros 6 elementos de la érbitade — 35
2179.000001

1_

0E+

064

04

Fuente: elaboracion propia.

136

Figura 14. Primeros 300 elementos de la 6rbita del punto TT75.500001

08+

044 f i

024 \

D T T T T T T T T T 1
a 02 0.4 0.6 0z 1

Fuente: elaboracion propia.
Aplicacion a generacion de niimeros pseudoaleatorios

Consideremos una funcién tipo Zeta con parametros

1 2
b=zic=

a=-:
2

| u

2
yd=3
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Los siguientes son puntos de periodo tres:

10375
24871’

13210
24871

3287 305 482 22975
3524’881 '881° 24871’

. . s e . 1
Si consideramos como punto inicial al nimero w5 5e
obtiene la secuencia que aparece en la tabla 1.

Tabla 1. Secuencia generada por el punto inicial 1/451

0.00221 0.50277 0.54323 0.36338 0.95423 0.58531 0.17639
0.72049 0.16976 0.71220 0.15503 0.69379 0.12230 0.65288
0.04956 0.56195 0.28017 0.85022 0.40039 0.99822 0.66351
0.06847 0.58559 0.17513 0.71892 0.16697 0.70871 0.14883
0.68603 0.10851 0.63563 0.01891 0.52364 0.45047 0.77566
0.26785 0.83481 0.37300 0.96625 0.60667 0.08143 0.60179
0.10313 0.62891 0.00696 0.50871 0.51684 0.48069 0.64134
0.02906 0.53633 0.39408 0.99260 0.65352 0.05070 0.56338
0.27385 0.84231 0.38634 0.98293 0.63632 0.02013 0.52516
0.44369 0.80579 0.32141 0.90176 0.49202 0.59097 0.15120
0.68900 0.11379 0.64224 0.03065 0.53831 0.38525 0.98157
0.63390 0.01582 0.51978 0.46762 0.69944 0.13235 0.66543
0.07189 0.58986 0.15616 0.69520 0.12480 0.65600 0.05512
0.56890 0.24931 0.81164 0.33182 0.91477 0.51515 0.48818
0.60807 0.07522

Fuente: elaboracion propia.

Cabe senalar que los ntimeros presentados aqui han
sido truncados, no redondeados, para facilitar la lectura.

La grafica de la secuencia generada se presenta en
la figura 15.

Figura 15. Secuencia asociada al punto inicial 1/451

lé
09} v

0.8 /

0Tt .

0.4 : 4

0.3 i y

0.2 E

01 E

Fuente: elaboracién poropia.

En la tabla 2 se presentan los resultados de las pruebas
de aleatoriedad (Coss Bu, 2003) a la secuencia.
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Tabla 2. Resultados de las pruebas de aleatoriedad para
la secuencia 1

Pruebas de aleatoriedad

Promedios SI
Frecuencias NO

Kolmogorov-Smirnov SI
Varianza NO

Distancias SI
Series NO

Poker SI
Corridas NO

Fuente: elaboracién propia.

CONCLUSIONES

Hemos construido una familia de sistemas cadticos en
el sentido Li-Yorke y al mismo tiempo estamos sugirien-
do un “proceso para generar caos” el cual lo podemos
sintetizar en dos instrucciones:

1) Defina una funcién continua de la forma f:I-I con
I un intervalo cerrado y acotado.

2) Construya la funcién h=f(f(f(x))):I-I y resuel-
va la ecuacion h(x)=x sujeta a f(x)#x. Si existen
puntos que verifican la ecuacion y la restricciéon
entonces f tiene puntos de periodo tres y por lo
tanto se tiene un sistema dindmico caético.

La teoria que fundamenta la validez del proceso son
los teoremas de Sharkovskii, del punto fijo y el trabajo
de Liy Yorke. Es muy frecuente que se vuelva dificil de-
mostrar directamente con la definicién que un sistema
dinamico es caético; sin embargo, el encontrar puntos
de periodo tres, tendriamos la respuesta si lo que bus-
camos es caos.

En este trabajo se mostré analiticamente las condicio-
nes que deben verificar los parametros para las funcio-
nes tipo Zeta que garantizan la existencia de caos en el
sentido de Li-Yorke. En particular mostramos una familia
deZ’s con puntos de periodo tres -y por tanto cadticas
en el sentido mencionado-.

Si existe interés en una aplicacién de los modelos cons-
truidos, se sugiere como primera opcion la construccién
de listas de niimeros “pseudoaleatorios”. A continuaciéon
se enumera el procedimiento basico a seguir:
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1) Iniciar con un nimero arbitrario en el intervalo
unitario.

2) Elegir una de las funciones tipo Zeta que satisfaga
las condiciones de periodo tres (el teorema de Li-
Yorke garantiza que el sistema inducido es cadtico).

3) Generar la 6rbita de tamafio conveniente; por ejem-
plo, L (L seria la cantidad de ntimeros deseados
para la lista).

4) Con un procesador comparar si hay una repeticion
en lalista de tamafio L, en caso de existir repeticion
se desecha la lista (en este caso se tiene un punto
de periodo L o preperiédico); en caso contrario se
continua con el paso 5.

5) Aplicar las pruebas estadisticas para validar “la
aleatoriedad” de la lista.

Este trabajo fue una propuesta adicional a las exis-
tentes en la literatura relativa a los sistemas dinamicos
cadbticos unidimensionales, asi como para identificar
la generacion de ntimeros pseudoaleatorios como una
primera aplicacion.
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