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Resumen

Objetivo: construir sistemas dinámicos caóticos unidimensionales mediante el estudio de una familia de funciones con 
dominio y contradominio en el intervalo [0,1]  la cual se define en términos de cuatro parámetros.
Método: con base a los parámetros que definen a cada función que proponemos, se identificaron aquellas que tienen 
periodo tres, las cuales inducen un sistema caótico en el contexto de Li-Yorke. Los teoremas del punto fijo y de Sharkovskii 
fueron la herramienta fundamental de nuestro trabajo.
Resultados: se obtuvo un conjunto de sistemas dinámicos caóticos, se describió un procedimiento sencillo para 
obtener sistemas dinámicos caóticos (adicionales a los obtenidos) y se sugiere como primera aplicación la obtención 
de números pseudoaleatorios.
Limitaciones: los sistemas dinámicos construidos son caóticos en el sentido de Li-Yorke, -no necesariamente en el 
sentido de Devaney-. 
Principales hallazgos: las funciones estudiadas tienen una gráfica en forma de Zeta, y para cada una de ellas se 
identifica a su respectiva dual (las gráficas que se obtienen presentan una relación de simetría), de esta manera se 
muestran las condiciones que deben verificar los parámetros -primal y dual- para obtener (y no obtener) período tres. 

Abstract

Purpose: To build one-dimensional chaotic dynamical systems through the study of functions with domain and codo-
main in the interval [0, 1] which is defined in terms of four parameters.
Methodology: Based on the parameters that define each function that is proposed, those which have period three were 
identified and which induce a chaotic system in the context of Li-Yorke. The fixed point and Sharkovskii theorems were 
the fundamental tools in this work.
Results: We obtained a set of chaotic dynamic systems. In turn, we described a simple process in order to obtain chaotic 
dynamic systems (additional to those obtained) and we suggest, as a first application, the obtainment of pseudo-random 
numbers.
Limitations: The dynamic systems that were built are chaotic in the Li-Yorke sense -not necessarily in the Devaney sense-.
Findings: The functions that were studied have a Zeta form graphic, and for each of those we identified its respective 
dual (the obtained graphics present a symmetric relation) and that is how we show the conditions that must verify the 
parameters -primal and dual-  in order to obtain (or not) period three.
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Introducción

En Ramírez de La Cruz (2004) se relata lo siguiente:

A finales del siglo xix, Henri Poincaré cuestionó la 
perfección newtoniana en relación con las órbitas 
planetarias, lo que se conoce como el problema de 
los tres cuerpos. Planteaba una atracción gravita-
toria múltiple, que hasta entonces se resolvía con 
las leyes de Newton y la suma de un pequeño valor 
que compensara la atracción del tercer elemento.

Poincaré descubrió que, en situaciones críticas, ese 
tirón gravitatorio mínimo podía realimentarse hasta 
producir un efecto de resonancia que modificara la 
órbita o incluso lanzara el planeta fuera del sistema 
solar. Los procesos de retroalimentación se corres-
ponden en física con las ecuaciones iterativas, don-
de el resultado del proceso es utilizado nuevamente 
como punto de partida para el mismo proceso. El 
ideal clásico sólo contemplaba sistemas lineales, en 
los que efecto y causa se identifican plenamente; se 
sumaban las partes y se obtenía la totalidad. Poinca-
ré introdujo el fantasma de la no linealidad, donde 
origen y resultado divergen y las fórmulas lineales 
no sirven para resolver el sistema. Se había dado el 
primer paso para la teoría del caos (p.16).

Hoy en día, apoyándose en los avances tecnológicos 
muchos matemáticos se dedican al estudio, generación 
y aplicación de modelos caóticos, en este trabajo nos 
restringiremos al estudio de sistemas dinámicos discre-
tos unidimensionales y construiremos modelos inéditos.

El alcance de este trabajo es explicativo, proporciona 
una familia de sistemas dinámicos inédita, cuyas pro-
piedades se demuestran con el debido rigor matemático; 
en este sentido, se pueden tomar los ejemplos expuestos 
para utilizarlos en contextos pertinentes relativos a los 
sistemas dinámicos discretos.

Debido a que la composición de una función consigo 
mismo será mencionada con frecuencia; para el resto del 
trabajo denotaremos con 𝑓𝑛 -donde 𝑛 es un entero posi-
tivo- a la composición de 𝑓 consigo misma 𝑛 veces. Así, 
estamos en condiciones de dar la definición de punto pe-
riódico que será de utilidad en el desarrollo del trabajo.

Definición 1. Sea 𝑥0∊ 𝐷𝑓 , decimos que 𝑥0 es de periodo 

𝑛 si, 𝑛 𝑓𝑛(𝑥0)=𝑥0, para algún 𝑛 ∈ ℕ, y 𝑓𝑘 (𝑥0 )≠𝑥0 , para  
𝑘 < 𝑛. Al conjunto de puntos periódicos se le denotará 
como 𝑃𝑒𝑟(𝑓) (Devaney, 1989). 

La definición matemática más aceptada en la teoría del 
caos se debe a Devaney (1989) y es la siguiente:

 
Definición 2. Decimos que una función 𝑓:𝐼→𝐼  es caó-

tica si 𝑓 satisface las siguientes tres condiciones:

•	 Existe una 𝛿>0 tal que, para cualquier 𝑥 ∈ 𝐼  y cual-
quier vecindad 𝐵 de 𝑥 , existe una 𝑦 ∈ 𝐵  y 𝑛 ≥ 0  
tal que |𝑓𝑛 (𝑥)−𝑓𝑛 (𝑦)|≥𝛿 . A esta condición se le 
conoce como  sensibilidad a condiciones iniciales

•	 Para cualquier par de conjuntos abiertos 𝑈, 𝑉 ⊂ 𝐼 
existe 𝑘 >  0  tal que 𝑓𝑘 (𝑈)∩ 𝑉≠𝜙 . Si esto sucede, 
se dice que la función es topológicamente transitiva.

•	 𝑃𝑒𝑟(𝑓) es denso en 𝐼. 

Sin embargo, en Aulbach y Kieninger (2000) se en-
cuentra otra definición que se atribuye a Li y Yorke (una 
década anterior a la definición de Devaney, 1989), misma 
que tendrá prioridad en nuestro trabajo:

Definición 3. Una función 𝑓: 𝑋→𝑋  en un espacio mé-
trico compacto (𝑋, 𝑑) es caótica en el sentido de Li y 
Yorke si existe un conjunto no contable 𝑆 ⊆ 𝑋 con las 
siguientes condiciones:

•	 lim𝑛→∞ sup 𝑑(𝑓𝑛 (𝑥),𝑓𝑛 (𝑦))>0 para todo 𝑥, 𝑦 ∈ 𝑆, 𝑥 ≠ 𝑦    
•	 lim𝑛→∞ inf 𝑑(𝑓𝑛 (𝑥),𝑓𝑛 (𝑦))=0 para todo 𝑥, 𝑦 ∈ 𝑆, 𝑥 ≠ 𝑦   
•	 lim𝑛→∞ sup 𝑑(𝑓𝑛 (𝑥),𝑓𝑛 (𝑝))>0 para todo 𝑥 ∈ 𝑆, 𝑝 ∈ 𝑋,  

𝑝 periódico.

En Aulbach y Kieninger (2000) se estudia la relación 
entre estas definiciones, en particular se tiene que la 
primera definición  (Devaney, 1989 ) implica la segunda 
(pero la otra implicación no es válida). En lo que resta 
del trabajo nos referiremos -cuando el contexto se preste 
a confusión- a la primera definición usando simplemente 
“caos” mientras que la segunda se enunciará como “caos 
en el sentido de Li-Yorke”.

En Devaney (1989) encontramos diversos sistemas 
dinámicos discretos que son caóticos, algunos unidi-
mensionales y otros de dos o más dimensiones, en este 
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trabajo nos restringimos a los primeros, podemos ci-
tar la función  tienda, la función logística y la función 
“recorrimiento” (King y Mendez, 2015), éstas han sido 
tratadas desde ilustración para los conceptos relativos 
al caos hasta la aplicación en modelos de encriptación 
(Li y Yorke, 1975), así como modelos económicos (Tara-
sova y Tarasov, 2017). En el presente trabajo nos enfo-
camos en construir modelos y exhibir sus propiedades 
caóticas dejando en segunda prioridad la aplicación,1 
en particular presentamos una familia de sistemas di-
námicos que dependen de un conjunto de parámetros 
y buscamos condiciones  entre estos, de manera que 
los sistemas sean caóticos en el sentido de Li-Yorke. La 
forma de proceder se sustenta fuertemente en los teo-
remas de Sharkovskii (Devaney, 1989) y del punto fijo 
para funciones unidimensionales; el primero de ellos 
se presenta a continuación.

El teorema de Sharkovskii es de gran utilidad para es-
tudiar la existencia de puntos periódicos, para enunciarlo 
necesitamos “listar” a los números naturales como sigue,  
que es el orden de Sharkovskii (De Melo y Van Strien, 1993).

 1 

𝑓𝑓𝑛𝑛       𝑛𝑛   𝑓𝑓  𝑛𝑛  
 
𝑥𝑥0 ∊ 𝐷𝐷𝑓𝑓,    𝑥𝑥0  𝑛𝑛  𝑓𝑓𝑛𝑛(𝑥𝑥0) = 𝑥𝑥0 𝑛𝑛 ∈ ℕ  𝑓𝑓𝑘𝑘(𝑥𝑥0) ≠ 𝑥𝑥0   𝑘𝑘 < 𝑛𝑛.  
 
𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓)  
 
La definición matemática más aceptada en la teoría del caos se debe a (Devaney, 1989) la cual es 
la siguiente: 
  
Definición 2. Decimos que una función  𝑓𝑓: 𝐼𝐼 → 𝐼𝐼 es caótica si 𝑓𝑓 satisface las siguientes tres 
condiciones: 

 Existe una 𝛿𝛿 > 0 tal que, para cualquier 𝑥𝑥 ∈ 𝐼𝐼 y cualquier vecindad 𝐵𝐵 de 𝑥𝑥, existe una 
𝑦𝑦 ∈ 𝐵𝐵 y 𝑛𝑛 ≥ 0 tal que |𝑓𝑓𝑛𝑛(𝑥𝑥) − 𝑓𝑓𝑛𝑛(𝑦𝑦)| ≥ 𝛿𝛿. A esta condición se le conoce como  
sensibilidad a condiciones iniciales 

  Para cualquier par de conjuntos abiertos 𝑈𝑈, 𝑉𝑉 ⊂ 𝐼𝐼 existe 𝑘𝑘 > 0 tal que 𝑓𝑓𝑘𝑘(𝑈𝑈) ∩ 𝑉𝑉 ≠ 𝜙𝜙. 
Si esto sucede, se dice que la función es topológicamente transitiva. 

 𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) es denso en 𝐼𝐼. 
 
Definición 3. Una función  𝑓𝑓: 𝑋𝑋 → 𝑋𝑋 en un espacio métrico compacto (𝑋𝑋, 𝑑𝑑) es caótica en el 
sentido de Li y Yorke si existe un conjunto no contable 𝑆𝑆 ⊆ 𝑋𝑋  con las siguientes condiciones: 

 lim𝑛𝑛→∞ sup  𝑑𝑑(𝑓𝑓𝑛𝑛(𝑥𝑥), 𝑓𝑓𝑛𝑛(𝑦𝑦)) > 0 para todo 𝑥𝑥, 𝑦𝑦 ∈ 𝑆𝑆, 𝑥𝑥 ≠ 𝑦𝑦,  
  lim𝑛𝑛→∞ inf  𝑑𝑑(𝑓𝑓𝑛𝑛(𝑥𝑥), 𝑓𝑓𝑛𝑛(𝑦𝑦)) = 0 para todo 𝑥𝑥, 𝑦𝑦 ∈ 𝑆𝑆, 𝑥𝑥 ≠ 𝑦𝑦,  
 lim𝑛𝑛→∞ sup  𝑑𝑑(𝑓𝑓𝑛𝑛(𝑥𝑥), 𝑓𝑓𝑛𝑛(𝑝𝑝)) > 0 para todo 𝑥𝑥 ∈ 𝑆𝑆, 𝑝𝑝 ∈ 𝑋𝑋, 𝑝𝑝 periódico. 

 
 

3 ≺ 5 ≺ 7 ≺ 9 ≺ ⋯ (𝑁𝑁ú𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 
… ≺ 3 ∙ 2 ≺ 5 ∙ 2 ≺ 7 ∙ 2 ≺ 9 ∙ 2 ≺ ⋯ (𝑁𝑁ú𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝 2) 

… ≺ 3 ∙ 22 ≺ 5 ∙ 22 ≺ 7 ∙ 22 ≺ 9 ∙ 22 ≺ ⋯ (𝑁𝑁ú𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝 22) 
⋮ 

… ≺ 3 ∙ 2𝑛𝑛 ≺ 5 ∙ 2𝑛𝑛 ≺ 7 ∙ 2𝑛𝑛 ≺ 9 ∙ 2𝑛𝑛 ≺ ⋯ (𝑁𝑁ú𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝 2𝑛𝑛) 
… ≺ 2𝑛𝑛 ≺ ⋯ ≺ 23 ≺ 22 ≺ 2 ≺ 1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑 2) 

 
Como se observa primero se enlistan los números impares excepto el uno, después se continúa 
multiplicando estos números por las potencias de dos, y para terminar se agregan las potencias de 
dos en orden decreciente. Se utiliza la notación 𝑎𝑎 ≺ 𝑏𝑏 para representar “𝑎𝑎 precede a 𝑏𝑏”.  
 
Teorema 4.  Sea 𝑓𝑓: 𝐼𝐼 → 𝐼𝐼 una función continua donde I es un intervalo cerrado y acotado. 
Suponga que 𝑓𝑓 tiene un punto periódico de periodo 𝑘𝑘. Si 𝑘𝑘 ≺ 𝑙𝑙 en el orden de Sharkovskii, 
entonces 𝑓𝑓 también tiene un punto periódico de periodo 𝑙𝑙 (Devaney, 1989). 
 
 acotado 𝐼𝐼  
 
 
 

 

Como se observa primero se enlistan los números im-
pares excepto el uno, después se continúa multiplicando 
estos números por las potencias de dos, y para terminar 
se agregan las potencias de dos en orden decreciente. 
Se utiliza la notación 𝑎 ≺ 𝑏  para representar “𝑎 precede 
a 𝑏”. 

Ahora bien, el teorema de Sharkovskii enuncia lo si-
guiente: 

Teorema 1.  Sea 𝑓: 𝐼→𝐼  una función continua donde 
𝐼es un intervalo cerrado y acotado. Suponga que 𝑓 tiene 
un punto periódico de periodo 𝑘 Si 𝑘 ≺ 𝑙  en el orden de 
Sharkovskii, entonces 𝑓 también tiene un punto perió-
dico de periodo 𝑙 (Devaney, 1989).

El teorema argumenta, que las funciones con puntos 
de periodo tres tienen puntos periódicos de cualquier 
orden; luego, a partir del trabajo de (Li y Yorke, 1975) 
“periodo tres implica caos” -Li y Yorke argumentan que 
la existencia de puntos con periodo tres implica que se 

1  Una aplicación inmediata que proponemos para trabajos futuros sería la 
generación de números pseudoaleatorios que a su vez sería la base para otras 
aplicaciones.

verifican las condiciones de su definición de caos-, los 
sistemas dinámicos unidimensionales son susceptibles a 
observarse desde la perspectiva del periodo tres. Luego, 
el procedimiento para “construir caos” es sencillo, basta 
con definir funciones continuas con dominio y contra-
dominio un intervalo cerrado y acotado 𝐼 y encontrar 
puntos fijos de la función compuesta consigo misma 
tres veces (estos serán los candidatos a ser puntos de 
periodo tres).

En particular cada función que se presenta en este 
trabajo tiene una “forma de Z”, su gráfica consiste de 3 
rectas que “se pegan bien” definidas en el intervalo uni-
tario y con rango el mismo intervalo. Además de la grá-
fica de cada función en forma de Zeta, se presentan las 
gráficas de dicha función compuesta tres veces consigo 
misma para identificar los puntos fijos de esta última los 
cuales corresponde a candidatos de puntos de periodo 
tres de la función original. Luego entonces mostramos 
matemáticamente las condiciones que deben satisfacer 
los valores de los parámetros, de manera, que se garan-
tice la existencia de periodo tres, y por tanto de caos.

El artículo se encuentra dividido en tres secciones. 
En la primera, se refieren los aspectos metodológicos, 
se presenta la definición de la familia de funciones que 
se abordarán y se presentan los resultados teóricos, con 
las demostraciones correspondientes, que garantizan la 
existencia del caos. En la segunda sección se presentan 
diversos ejemplos donde se exhiben los resultados teó-
ricos y computacionales obtenidos, también se muestra 
una lista de números generados con una función tipo 
Zeta junto con los resultados de las pruebas estadísticas 
pertinentes. La tercera y última sección expone las con-
clusiones, primero se  describe un procedimiento para 
construir sistemas caóticos y posteriormente una estra-
tegia para generar secuencias de números susceptibles 
a pruebas de aleatoriedad.

Aspectos metodológicos  

Comenzamos definiendo una familia de funciones que 
por la forma de la gráfica le llamaremos Funciones tipo 
Zeta y a partir de éstas obtendremos sistemas dinámicos 
los cuales podrán ser (o no) caóticos.
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Definición 4.  Sean 𝑎,𝑏,𝑐,𝑑   ∈  [0,1]  con 0<𝑏<𝑐<1, 
definimos una Función tipo Zeta

 5 

 
𝑓𝑓𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑: [0,1] → [0,1] como: 
 
 

𝑓𝑓𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑(𝑥𝑥) =

{
  
 

  
 

     

1 − 𝑎𝑎
𝑏𝑏 𝑥𝑥 + 𝑎𝑎          𝑠𝑠𝑠𝑠 𝑥𝑥 ∈ [0, 𝑏𝑏]

 
      𝑐𝑐 − 𝑥𝑥𝑐𝑐 − 𝑏𝑏               𝑠𝑠𝑠𝑠 𝑥𝑥 ∈ (𝑏𝑏, 𝑐𝑐] 
𝑑𝑑

1 − 𝑐𝑐 (𝑥𝑥 − 𝑐𝑐)       𝑠𝑠𝑠𝑠 𝑥𝑥 ∈ (𝑐𝑐, 1]

 

 
En la figura 2 presentamos la forma de la gráfica de una función tipo Zeta con parámetros 
𝑎𝑎 = 0.2, 𝑏𝑏 = 0.35, 𝑐𝑐 = 0.68, 𝑑𝑑 = 0.4  
 
 

Figura 1. Típica forma de una función tipo Zeta  

 
 Fuente: elaboración propia. 

Para cada arreglo de parámetros (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) que definen a una función tipo Zeta identificamos a 
otra función de la misma familia a la que llamaremos la función dual. 

 
Definición 6. Dada una función tipo Zeta 𝑓𝑓𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑 definimos la función dual de 𝑓𝑓 como la función 
dada por 𝑓𝑓∗𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑 =  𝑓𝑓1−𝑑𝑑,1−𝑐𝑐,1−𝑏𝑏,1−𝑎𝑎. 
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{
  
 

  
 

     

𝑑𝑑
1 − 𝑐𝑐 𝑥𝑥 + (1 − 𝑑𝑑)      𝑠𝑠𝑠𝑠 𝑥𝑥 ∈ [0,1 − 𝑐𝑐] 

               1 − 𝑏𝑏 − 𝑥𝑥𝑐𝑐 − 𝑏𝑏             𝑠𝑠𝑠𝑠 𝑥𝑥 ∈ (1 − 𝑐𝑐, 1 − 𝑏𝑏]
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En la figura 2 se visualiza la gráfica de la función dual 
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Figura 2. Dual de la función tipo Zeta

 
Fuente: elaboración propia.

Cuando no se preste a confusión omitiremos los pará-
metros  (𝑎, 𝑏, 𝑐, 𝑑)  y nos referiremos simplemente a las 
funciones como 𝑓 y 𝑓∗ y  donde una es la función dual 
de la otra (obsérvese que 𝑓∗∗=𝑓).

El siguiente resultado será útil para trabajar de manera 
operativa con las funciones 𝑓 y 𝑓∗.

Proposición 1. Dada la función tipo Zeta 𝑓 y su función 
dual 𝑓∗ se tiene que  

𝑓(𝑥)=1−𝑓∗ (1−𝑥) para todo 𝑥 ∈ [0,1].  

Demostración: particionando el dominio de la función 
tenemos lo siguiente:

Si 𝑥=𝑏, tendremos que
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Para el caso 𝑥=𝑐 , tenemos que

 6 

 
En la figura 2 se visualiza la gráfica de la función dual asociada a la función representada en la 
figura 1. 
 
 

Figura 2. Dual de la función tipo Zeta 

 
 Fuente: elaboración propia. 

 
Cuando no se preste a confusión omitiremos los parámetros (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) y nos referiremos 
simplemente a las funciones como 𝑓𝑓 y 𝑓𝑓∗ donde una es la función dual de la otra (obsérvese que 
𝑓𝑓∗∗ = 𝑓𝑓). 

 
El siguiente resultado será útil para trabajar de manera operativa con las funciones 𝑓𝑓 y 𝑓𝑓∗. 

 
Proposición 7. Dada la función tipo Zeta 𝑓𝑓 y su función dual 𝑓𝑓∗ se tiene que 
 
 𝑓𝑓(𝑥𝑥) = 1 − 𝑓𝑓∗(1 − 𝑥𝑥) para todo 𝑥𝑥 ∈ [0,1]. 
 
Demostración: particionando el dominio de la función tenemos lo siguiente: 
 

Si 𝑥𝑥 = 𝑏𝑏, tendremos que 

 
1 − 𝑓𝑓∗(1 − 𝑏𝑏) = 1

                                  = 𝑓𝑓(𝑏𝑏) 

 
Para el caso 𝑥𝑥 = 𝑐𝑐, tenemos que 

 
1 − 𝑓𝑓∗(1 − 𝑐𝑐) = 1 − [𝑑𝑑 + (1 − 𝑑𝑑)]

  = 0      
   = 𝑓𝑓(𝑐𝑐) 

 

 
El caso 0 ≤ 𝑥𝑥 < 𝑏𝑏 equivale a 1 − 𝑏𝑏 < 1 − 𝑥𝑥 ≤ 1, luego 

 El caso 0 ≤ 𝑥 < 𝑏 equivale a 1 − 𝑏 < 1− 𝑥  ≤ 1, luego
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1 − 𝑓𝑓∗(1 − 𝑥𝑥) = 1 − 1 − 𝑎𝑎
𝑏𝑏 (𝑏𝑏 − 𝑥𝑥)

                                    = 1 − (1 − 𝑎𝑎) + 1 − 𝑎𝑎
𝑏𝑏 𝑥𝑥

    = 𝑓𝑓(𝑥𝑥)

 

 
Cuando 𝑏𝑏 < 𝑥𝑥 < 𝑐𝑐 se sigue que 1 − 𝑐𝑐 < 1 − 𝑥𝑥 < 1 − 𝑏𝑏, y así obtenemos 

 

1 − 𝑓𝑓∗(1 − 𝑥𝑥) = 1 − 𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏

                                         =  𝑐𝑐 − 𝑏𝑏 − (𝑥𝑥 − 𝑏𝑏)
𝑐𝑐 − 𝑏𝑏

                   = 𝑓𝑓(𝑥𝑥)

 

 
Obsérvese que 𝑐𝑐 < 𝑥𝑥 ≤ 1 equivale a 0 ≤ 1 − 𝑥𝑥 < 1 − 𝑐𝑐, por tanto 

 

1 − 𝑓𝑓∗(1 − 𝑥𝑥) = 𝑑𝑑 − 𝑑𝑑(1 − 𝑥𝑥)
1 − 𝑐𝑐

                             = 𝑑𝑑 (1 − 1 − 𝑥𝑥
1 − 𝑐𝑐)

                    = 𝑑𝑑 (𝑥𝑥 − 𝑐𝑐
1 − 𝑐𝑐)

           = 𝑓𝑓(𝑥𝑥)

 

∎ 
 
Corolario 8. Dada la función tipo Zeta 𝑓𝑓 y su función dual 𝑓𝑓∗ se tiene que 
 𝑓𝑓𝑛𝑛(𝑥𝑥) = 1 − 𝑓𝑓∗𝑛𝑛(1 − 𝑥𝑥) para todo 𝑥𝑥 ∈ [0,1] y para todo 𝑛𝑛 ∈ ℕ. 
 
Demostración: por inducción matemática. 
 
Como dijimos anteriormente, las funciones tipo Zeta son fundamentales en el desarrollo de 
nuestro trabajo, ya que a partir de estas generaremos sistemas dinámicos discretos y los 
estudiamos en el contexto del caos. A continuación presentamos los conceptos básicos relativos a 
los sistemas y su dinámica. 

 
Para el resto de este trabajo, si 𝐴𝐴 es un subconjunto del dominio de una función 𝑓𝑓 denotaremos 
con 𝑓𝑓(𝐴𝐴) a la imagen del conjunto 𝐴𝐴 bajo la función 𝑓𝑓.  

 
Las siguientes definiciones son esenciales para el desarrollo de este trabajo. 
 
Definición 9. Sea 𝑓𝑓 una función real de variable real con 𝑓𝑓(𝐷𝐷𝑓𝑓) ⊆ 𝐷𝐷𝑓𝑓 y 𝑥𝑥0 ∊ 𝐷𝐷𝑓𝑓, definimos y 
denotamos la órbita de 𝑥𝑥0 bajo 𝑓𝑓 como sigue 

𝑶𝑶(𝒙𝒙𝟎𝟎, 𝒇𝒇) = {𝒇𝒇𝒏𝒏(𝒙𝒙𝟎𝟎): 𝒏𝒏 ∈ ℕ ∪ {𝟎𝟎}}     
 Donde 𝑓𝑓0(𝑥𝑥0) = 𝑥𝑥0. Además, un punto 𝑥𝑥0 ∈ 𝐼𝐼 es fijo si 𝑓𝑓(𝑥𝑥0) = 𝑥𝑥0. 

Cuando 𝑏 < 𝑥 <  𝑐 se sigue que 1−𝑐<1−𝑥<1−𝑏, y así 
obtenemos
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Cuando 𝑏𝑏 < 𝑥𝑥 < 𝑐𝑐 se sigue que 1 − 𝑐𝑐 < 1 − 𝑥𝑥 < 1 − 𝑏𝑏, y así obtenemos 

 

1 − 𝑓𝑓∗(1 − 𝑥𝑥) = 1 − 𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏

                                         =  𝑐𝑐 − 𝑏𝑏 − (𝑥𝑥 − 𝑏𝑏)
𝑐𝑐 − 𝑏𝑏

                   = 𝑓𝑓(𝑥𝑥)

 

 
Obsérvese que 𝑐𝑐 < 𝑥𝑥 ≤ 1 equivale a 0 ≤ 1 − 𝑥𝑥 < 1 − 𝑐𝑐, por tanto 

 

1 − 𝑓𝑓∗(1 − 𝑥𝑥) = 𝑑𝑑 − 𝑑𝑑(1 − 𝑥𝑥)
1 − 𝑐𝑐

                             = 𝑑𝑑 (1 − 1 − 𝑥𝑥
1 − 𝑐𝑐)

                    = 𝑑𝑑 (𝑥𝑥 − 𝑐𝑐
1 − 𝑐𝑐)

           = 𝑓𝑓(𝑥𝑥)

 

∎ 
 
Corolario 8. Dada la función tipo Zeta 𝑓𝑓 y su función dual 𝑓𝑓∗ se tiene que 
 𝑓𝑓𝑛𝑛(𝑥𝑥) = 1 − 𝑓𝑓∗𝑛𝑛(1 − 𝑥𝑥) para todo 𝑥𝑥 ∈ [0,1] y para todo 𝑛𝑛 ∈ ℕ. 
 
Demostración: por inducción matemática. 
 
Como dijimos anteriormente, las funciones tipo Zeta son fundamentales en el desarrollo de 
nuestro trabajo, ya que a partir de estas generaremos sistemas dinámicos discretos y los 
estudiamos en el contexto del caos. A continuación presentamos los conceptos básicos relativos a 
los sistemas y su dinámica. 

 
Para el resto de este trabajo, si 𝐴𝐴 es un subconjunto del dominio de una función 𝑓𝑓 denotaremos 
con 𝑓𝑓(𝐴𝐴) a la imagen del conjunto 𝐴𝐴 bajo la función 𝑓𝑓.  

 
Las siguientes definiciones son esenciales para el desarrollo de este trabajo. 
 
Definición 9. Sea 𝑓𝑓 una función real de variable real con 𝑓𝑓(𝐷𝐷𝑓𝑓) ⊆ 𝐷𝐷𝑓𝑓 y 𝑥𝑥0 ∊ 𝐷𝐷𝑓𝑓, definimos y 
denotamos la órbita de 𝑥𝑥0 bajo 𝑓𝑓 como sigue 

𝑶𝑶(𝒙𝒙𝟎𝟎, 𝒇𝒇) = {𝒇𝒇𝒏𝒏(𝒙𝒙𝟎𝟎): 𝒏𝒏 ∈ ℕ ∪ {𝟎𝟎}}     
 Donde 𝑓𝑓0(𝑥𝑥0) = 𝑥𝑥0. Además, un punto 𝑥𝑥0 ∈ 𝐼𝐼 es fijo si 𝑓𝑓(𝑥𝑥0) = 𝑥𝑥0. 

Corolario 1. Dada la función tipo Zeta 𝑓  y su función 
dual 𝑓∗ se tiene que

𝑓𝑛 (𝑥)=1−𝑓∗𝑛 (1−𝑥) para todo 𝑥 ∈ [0,1] y para todo 𝑛 ∈ ℕ.
  
Demostración: por inducción matemática.

Como dijimos anteriormente, las funciones tipo Zeta 
son fundamentales en el desarrollo de nuestro trabajo, 
ya que a partir de estas generaremos sistemas dinámicos 
discretos y los estudiamos en el contexto del caos. A con-

tinuación presentamos los conceptos básicos relativos a 
los sistemas y su dinámica.

Para el resto de este trabajo, si 𝐴 es un subconjunto 
del dominio de una función 𝑓 denotaremos con 𝑓(𝐴)  a 
la imagen del conjunto 𝐴 bajo la función 𝑓. 

Las siguientes definiciones son esenciales para el de-
sarrollo de este trabajo.

Definición 6. Sea 𝑓 una función real de variable real 
con 𝑓(𝐷𝑓) ⊆ 𝐷𝑓  y  𝑥0 ∊ 𝐷𝑓, definimos y denotamos la órbita 
de 𝑥0 bajo 𝑓 como sigue

𝑶(𝒙𝟎,𝒇)={𝒇𝒏 (𝒙𝟎):𝒏 ∈ ℕ ∪{𝟎}}
		

 Donde 𝑓0 (𝑥0 )= 𝑥0, además, un punto 𝑥0 ∈ 𝐼 es fijo si 𝑓 (𝑥0 )= 𝑥0.

La siguiente definición se debe a Hirsch, Smale, y De-
vaney (2004) y habla de un sistema dinámico general 
pero redefiniendo el dominio se tiene la definición  que 
necesitamos en nuestro contexto: basta sustituir ℝ por  
ℕ ∪ {0} en el dominio de la función 𝜙.

Definición 7. Un sistema dinámico en ℝ𝑛 es una fun-
ción continuamente diferenciable

𝜙:ℝ×ℝ𝑛⟶ℝ𝑛, donde 𝜙(𝑡,𝑥)=𝜙𝑡 (𝑥) satisface:

1)	 𝜙0:ℝ𝑛⟶ℝ𝑛 es la función identidad 𝜙0 (𝑥)=𝑥.
2)	 𝜙𝑡

∘𝜙𝑠=𝜙𝑡+𝑠  para cada 𝑡, 𝑠 ∈  ℝ.

En el contexto de la definición 7, recordemos que 𝑛=1 
para sistemas unidimensionales y estamos usando su-
praíndices para la función 𝑓. Abusando del lenguaje, 
estamos escribiendo “𝑓 es caótica” para referirnos al 
respectivo sistema dinámico discreto  inducido por la 
función 𝑓 donde 𝜙𝑛 (𝑥)=𝑓𝑛 (𝑥). Además, para nuestro 
propósito se puede relajar la condición de continuamen-
te diferenciable por continua.

En la definición anterior tenemos que pueden existir 
puntos a los que conoceremos como preperiódicos: un 
punto 𝑦 ∊ 𝐷𝑓  es preperiódico si existe un 𝑘 ∈ ℕ tal que 
𝑓𝑘 (𝑦)  ∈ 𝑃𝑒𝑟(𝑓).

En este orden de ideas, el resultado más importante 
para el objetivo corresponde a Li y Yorke  “Period Three 
Implies Chaos” (Li y Yorke, 1975), pues basta mostrar 
que 𝑓 tiene puntos de periodo tres (y por tanto de todos 
los periodos) para afirmar que 𝑓 es caótica en el sentido 
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de Li-Yorke. 

Proposición 2. Dada 𝑓 y su respectiva función dual 𝑓* 
entonces 𝑓 tiene un punto de periodo 3 si y solo si 𝑓*posee 
un punto de periodo 3.

Demostración:
 

⟹) Sea 𝑥0 un punto de periodo 3 y que no es punto 
fijo de 𝑓, entonces mostraremos que 1−𝑥0 es punto de 
periodo 3 para 𝑓*.

Por el corolario 1 se tiene que

 8 

 
La siguiente definición se debe a (Hirsch, Smale, y Devaney, 2004) y habla de un sistema 
dinámico general pero redefiniendo el dominio se tiene la definición  que necesitamos en nuestro 
contexto: basta sustituir ℝ por ℕ ∪ {0} en el dominio de la función 𝜙𝜙. 
 
Definición 10. Un sistema dinámico en ℝ𝑛𝑛 es una función continuamente diferenciable 
 𝜙𝜙: ℝ × ℝ𝑛𝑛 ⟶ ℝ𝑛𝑛, donde 𝜙𝜙(𝑡𝑡, 𝑥𝑥) = 𝜙𝜙𝑡𝑡(𝑥𝑥) satisface: 

1. 𝜙𝜙0: ℝ𝑛𝑛 ⟶ ℝ𝑛𝑛 es la función identidad 𝜙𝜙0(𝑥𝑥) = 𝑥𝑥. 
2. 𝜙𝜙𝑡𝑡 ∘ 𝜙𝜙𝑠𝑠 = 𝜙𝜙𝑡𝑡+𝑠𝑠  para cada 𝑡𝑡, 𝑠𝑠 ∈ ℝ .

En el contexto de la definición 10, recordemos que 𝑛𝑛 = 1 para sistemas unidimensionales y 
estamos usando supraíndices para la función 𝑓𝑓. Abusando del lenguaje, estamos escribiendo “𝑓𝑓 
es caótica” para referirnos al respectivo sistema dinámico discreto  inducido por la función 𝑓𝑓 
donde  𝜙𝜙𝑛𝑛(𝑥𝑥) = 𝑓𝑓𝑛𝑛(𝑥𝑥). Además, para nuestro propósito se puede relajar la condición de 
continuamente diferenciable por continua. 
 
En la definición anterior tenemos que pueden existir puntos a los que conoceremos como 
preperiódicos: un punto 𝑦𝑦 ∊ 𝐷𝐷𝑓𝑓 es preperiódico si existe un 𝑘𝑘 ∈ ℕ tal que 𝑓𝑓𝑘𝑘(𝑦𝑦) ∈  𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓). 
 
En este orden de ideas, el resultado más importante para el objetivo corresponde a Li y Yorke  
“Period Three Implies Chaos” (Li y Yorke, 1975), pues basta mostrar que  𝑓𝑓 tiene puntos de 
periodo tres (y por tanto de todos los periodos) para afirmar que 𝑓𝑓 es caótica en el sentido de Li-
Yorke.  
 
Proposición 11. Dada 𝑓𝑓 y su respectiva función dual 𝑓𝑓∗, entonces 𝑓𝑓 tiene un punto de periodo 3 
si y solo si 𝑓𝑓∗ posee un punto de periodo 3. 
 
Demostración: 
  
⟹) Sea 𝑥𝑥0 un punto de periodo 3 y que no es punto fijo de 𝑓𝑓, entonces mostraremos que 1 − 𝑥𝑥0 
es punto de periodo 3 para 𝑓𝑓∗. 
 
Por el corolario 8 se tiene que 
 

(𝑓𝑓∗)3(1 − 𝑥𝑥0) = 1 − 𝑓𝑓3(𝑥𝑥0)
                  = 1 − 𝑥𝑥0

 

 
veamos ahora que 1 − 𝑥𝑥0 no es punto fijo de 𝑓𝑓∗ 
 

𝑓𝑓∗(1 − 𝑥𝑥0) = 1 − 𝑓𝑓(𝑥𝑥0)
                ≠ 1 − 𝑥𝑥0  

 
Por tanto si 𝑓𝑓 posee un punto de periodo tres también 𝑓𝑓∗ lo tendrá. 
 
⟸) Supongamos que 𝑓𝑓∗ posee un punto de periodo 3, por la parte anterior entonces 𝑓𝑓∗∗ = 𝑓𝑓 
posee también un punto de periodo 3.  

veamos ahora que 1−𝑥0 no es punto fijo de 𝑓*
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si y solo si 𝑓𝑓∗ posee un punto de periodo 3. 
 
Demostración: 
  
⟹) Sea 𝑥𝑥0 un punto de periodo 3 y que no es punto fijo de 𝑓𝑓, entonces mostraremos que 1 − 𝑥𝑥0 
es punto de periodo 3 para 𝑓𝑓∗. 
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                  = 1 − 𝑥𝑥0

 

 
veamos ahora que 1 − 𝑥𝑥0 no es punto fijo de 𝑓𝑓∗ 
 

𝑓𝑓∗(1 − 𝑥𝑥0) = 1 − 𝑓𝑓(𝑥𝑥0)
                ≠ 1 − 𝑥𝑥0  
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⟸) Supongamos que 𝑓𝑓∗ posee un punto de periodo 3, por la parte anterior entonces 𝑓𝑓∗∗ = 𝑓𝑓 
posee también un punto de periodo 3.  

Por tanto si 𝑓 posee un punto de periodo tres también 
𝑓* lo tendrá.

⟸) Supongamos que 𝑓* posee un punto de periodo 3, 
por la parte anterior entonces 𝑓∗∗ = 𝑓 posee también un 
punto de periodo 3. 

En la figura 3 podemos observar las gráficas de las 
funciones 𝑓3 y 𝑓∗³ asociadas a una función tipo Zeta 
con parámetros 𝑎=0.4, 𝑏=0.25, 𝑐=0.72, 𝑑=0.8, donde 
los puntos de periodo 3, además de los posibles puntos 
fijos (de 𝑓 ) son aquellos donde se intersecta la gráfica 
de la función 𝑓3 correspondiente con la de la función 
identidad.

Figura 3. Representación de los puntos de periodo 3 de 
una función tipo Zeta y su respectiva función dual

 
Fuente: elaboración propia.

Ahora identificaremos un punto en el dominio de la 
función tipo Zeta que será relevante en el resto del tra-
bajo.

Proposición 3. Sea 𝑓 una función tipo Zeta, entonces 
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Ahora identificaremos un punto en el dominio de la función tipo Zeta que será relevante en el 
resto del trabajo. 
 
Proposición 12. Sea 𝑓𝑓 una función tipo Zeta, entonces 𝑥𝑥𝐹𝐹 = 𝑐𝑐

1+𝑐𝑐−𝑏𝑏 es un punto fijo de la función. 
 
Demostración: sabemos que 0 < 𝑏𝑏 < 𝑐𝑐 < 1, por lo que se siguen las siguientes desigualdades 
 

𝑏𝑏(𝑐𝑐 − 𝑏𝑏) < 𝑐𝑐 − 𝑏𝑏
⟹   𝑏𝑏 + 𝑏𝑏𝑏𝑏 − 𝑏𝑏2 < 𝑐𝑐           
⟹   𝑏𝑏(1 + 𝑐𝑐 − 𝑏𝑏) < 𝑐𝑐         

 

 
Y a su vez 
 

0 < 𝑐𝑐(𝑐𝑐 − 𝑏𝑏)
⟹   𝑐𝑐 < 𝑐𝑐 + 𝑐𝑐2 − 𝑏𝑏𝑏𝑏   
⟹   𝑐𝑐 < 𝑐𝑐(1 + 𝑐𝑐 − 𝑏𝑏) 

 

 
Además, claramente 1 + 𝑐𝑐 − 𝑏𝑏 > 0 por lo que 𝑏𝑏 < 𝑥𝑥𝐹𝐹 < 𝑐𝑐, y así 
 

 es un punto fijo de la función.

Demostración: sabemos que 0 < 𝑏 < 𝑐 <  1 , por lo que 
se obtienen las siguientes desigualdades
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⟹   𝑐𝑐 < 𝑐𝑐 + 𝑐𝑐2 − 𝑏𝑏𝑏𝑏   
⟹   𝑐𝑐 < 𝑐𝑐(1 + 𝑐𝑐 − 𝑏𝑏) 

 

 
Además, claramente 1 + 𝑐𝑐 − 𝑏𝑏 > 0 por lo que 𝑏𝑏 < 𝑥𝑥𝐹𝐹 < 𝑐𝑐, y así 
 Además, claramente 1 + 𝑐 −  𝑏 > 0 por lo que 𝑏 <𝑥𝐹<𝑐, 

y así
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𝑓𝑓(𝑥𝑥𝐹𝐹) =
𝑐𝑐 − 𝑐𝑐

1 + 𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏

                       = 𝑐𝑐2 − 𝑏𝑏𝑏𝑏
(𝑐𝑐 − 𝑏𝑏)(1 + 𝑐𝑐 − 𝑏𝑏)

     = 𝑐𝑐
1 + 𝑐𝑐 − 𝑏𝑏

 

∎ 
 
Proposición 13. Si 𝑓𝑓 es una función tipo Zeta tal que 𝑎𝑎 ≥ 𝑥𝑥𝐹𝐹 y 𝑑𝑑 ≤ 𝑥𝑥𝐹𝐹 entonces 𝑓𝑓 no tiene 
puntos de periodo 3. 
 
Demostración: bajo la condiciones anteriores es claro que 𝑓𝑓(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹  para todo 𝑥𝑥 ∈ [0, 𝑥𝑥𝐹𝐹] y 
𝑓𝑓(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹 si 𝑥𝑥 ∈ [𝑥𝑥𝐹𝐹, 1] así pues note que 
 

 Si 0 ≤ 𝑥𝑥 < 𝑥𝑥𝐹𝐹 
𝑓𝑓(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹

⟹   𝑓𝑓2(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹           
⟹   𝑓𝑓3(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹 > 𝑥𝑥

 

 
 Si 𝑥𝑥𝐹𝐹 < 𝑥𝑥 ≤ 1 

 
𝑓𝑓(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹

⟹   𝑓𝑓2(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹        
⟹   𝑓𝑓3(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹 < 𝑥𝑥

 

∎ 
 

La figura 4 presenta la gráfica de 𝑓𝑓3 para dos funciones tipo Zeta que poseen los parámetros 
indicados y que cumplen las condiciones de la proposición 13, como se observa, la gráfica de 𝑓𝑓3 
no intersecta a la gráfica de la función identidad  —a excepción del punto fijo 𝑥𝑥𝐹𝐹— por lo que no 
poseen puntos de periodo 3. 
 
 
 

Figura 4. Ausencia de puntos de periodo tres según las condiciones de la proposición 13 

Proposición 4. Si 𝑓 es una función tipo Zeta tal que 
𝑎 ≥𝑥𝐹 y 𝑑 ≤  𝑥𝐹 entonces 𝑓 no tiene puntos de periodo 3.
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Demostración: bajo la condiciones anteriores es claro 
que 𝑓 (𝑥) ≥  𝑥𝐹 para todo 𝑥 ∈ [0, 𝑥𝐹 ] y 𝑓(𝑥)≤𝑥𝐹 si 𝑥 ∈ [𝑥𝐹,1]            
así pues note que

•	 Si 0 ≤ 𝑥 < 𝑥𝐹  
	

 10 

𝑓𝑓(𝑥𝑥𝐹𝐹) =
𝑐𝑐 − 𝑐𝑐

1 + 𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏

                       = 𝑐𝑐2 − 𝑏𝑏𝑏𝑏
(𝑐𝑐 − 𝑏𝑏)(1 + 𝑐𝑐 − 𝑏𝑏)

     = 𝑐𝑐
1 + 𝑐𝑐 − 𝑏𝑏

 

∎ 
 
Proposición 13. Si 𝑓𝑓 es una función tipo Zeta tal que 𝑎𝑎 ≥ 𝑥𝑥𝐹𝐹 y 𝑑𝑑 ≤ 𝑥𝑥𝐹𝐹 entonces 𝑓𝑓 no tiene 
puntos de periodo 3. 
 
Demostración: bajo la condiciones anteriores es claro que 𝑓𝑓(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹  para todo 𝑥𝑥 ∈ [0, 𝑥𝑥𝐹𝐹] y 
𝑓𝑓(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹 si 𝑥𝑥 ∈ [𝑥𝑥𝐹𝐹, 1] así pues note que 
 

 Si 0 ≤ 𝑥𝑥 < 𝑥𝑥𝐹𝐹 
𝑓𝑓(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹

⟹   𝑓𝑓2(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹           
⟹   𝑓𝑓3(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹 > 𝑥𝑥

 

 
 Si 𝑥𝑥𝐹𝐹 < 𝑥𝑥 ≤ 1 

 
𝑓𝑓(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹

⟹   𝑓𝑓2(𝑥𝑥) ≥ 𝑥𝑥𝐹𝐹        
⟹   𝑓𝑓3(𝑥𝑥) ≤ 𝑥𝑥𝐹𝐹 < 𝑥𝑥

 

∎ 
 

La figura 4 presenta la gráfica de 𝑓𝑓3 para dos funciones tipo Zeta que poseen los parámetros 
indicados y que cumplen las condiciones de la proposición 13, como se observa, la gráfica de 𝑓𝑓3 
no intersecta a la gráfica de la función identidad  —a excepción del punto fijo 𝑥𝑥𝐹𝐹— por lo que no 
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•	 Si 𝑥𝐹 < 𝑥 ≤  1
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La figura 4 presenta la gráfica de 𝑓𝑓3 para dos funciones tipo Zeta que poseen los parámetros 
indicados y que cumplen las condiciones de la proposición 13, como se observa, la gráfica de 𝑓𝑓3 
no intersecta a la gráfica de la función identidad  —a excepción del punto fijo 𝑥𝑥𝐹𝐹— por lo que no 
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Figura 4. Ausencia de puntos de periodo tres según las condiciones de la proposición 13 

La figura 4 presenta la gráfica de 𝑓3 para dos funciones 
tipo Zeta que poseen los parámetros indicados y que 
cumplen las condiciones de la proposición 4, como se 
observa, la gráfica de 𝑓3 no intersecta a la gráfica de la 
función identidad —a excepción del punto fijo 𝑥𝐹 — por 
lo que no poseen puntos de periodo 3.

Figura 4. Ausencia de puntos de periodo tres según las 
condiciones de la proposición 4

 
Fuente: elaboración propia.

Proposición 5. Sea 𝑓 una función tipo Zeta tal que 𝑎=0 
entonces 𝑓 posee un punto de periodo 3 en el intervalo 
(0, 𝑏). 

Demostración: primeramente notamos que si  𝑎=0 se 
tiene que 𝑓(0)=0 y 𝑓((0,𝑏)) = (0, 1). 

Dado que 𝑓 es continua entonces existen puntos 𝑥1, 𝑥2∈ 
(0,𝑏) tales que 𝑓(𝑥1 )=𝑥𝐹 y 𝑓(𝑥2 )=𝑐, además debido a que 
𝑓 es creciente en el intervalo (0,𝑏) tendremos que 𝑥1<𝑥2.

Observe que 𝑓3 (𝑥1 )=𝑥𝐹>𝑥1 y 𝑓3 (𝑥2 )=0 <𝑥2.
Definamos ahora la función ℎ sobre el intervalo (0,𝑏)  

dada por ℎ(𝑥)=𝑓3 (𝑥)−𝑥.
Debido a que la función 𝑓 es continua en el intervalo 

(0,𝑏) tendremos que ℎ es continua también en este in-
tervalo.

Nótese que ℎ(𝑥1 )>0 y ℎ(𝑥2 )<0 entonces por el teore-
ma del valor intermedio existe un punto 𝑥0 ∈ (𝑥1, 𝑥2) ⊂ (0,𝑏)  
tal que ℎ(𝑥0 )=𝑥0 o equivalentemente 𝑓3 (𝑥0 )=𝑥0.

Verifiquemos finalmente que 𝑥0 no es un punto fijo 
de 𝑓:

Puesto que 𝑥0 ∈ (𝑥1, 𝑥2) y debido a que  𝑓 es creciente 
en (0,𝑏) tendremos que

𝑓(𝑥0 )>𝑓(𝑥1 )=𝑥𝐹>𝑥0.

En la figura 5 presentamos la gráfica de 𝑓3 para dos 
funciones que cumplen la condición dada en la propo-
sición 5. Igual que en la figura 3 las intersecciones de la 
gráfica de la función 𝑓3 con la de la identidad represen-
tan además de los dos puntos fijos, los puntos de periodo 
3 de ambas funciones.

Figura 5. Puntos de periodo tres dadas las condiciones 
de la proposición 5

 
Fuente: elaboración propia.

Corolario 2. Sea 𝑓 una función tipo Zeta, si 𝑑=1 enton-
ces 𝑓 posee un punto de periodo 3 en el intervalo (𝑐,1).

Demostración: ya que 𝑑=1 entonces 1−𝑑=0 , luego la 
proposición 5 implica que 𝑓* posee un punto de periodo 
3 en (0, 1−𝑐) por tanto 𝑓 posee un punto de periodo 3 
en (𝑐,1) debido a la proposición 2.

Antes de enunciar el siguiente resultado mostraremos 
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dos puntos en el dominio de la función tipo Zeta parti-
cularmente ubicados en el intervalo (𝑏,𝑐) que nos serán 
de mucha utilidad.

Por la continuidad de la función tipo Zeta tenemos 
que 𝑓(𝑏,𝑥𝐹 )=(𝑥𝐹,1) y 𝑓(𝑥𝐹,𝑐)=(0,𝑥𝐹 ) por lo que existen 
puntos 𝑥𝑐∈(𝑏,𝑥𝐹) y 𝑥𝑏∈ (𝑥𝐹,𝑐) tales que 𝑓(𝑥𝑐 )=𝑐 y 𝑓(𝑥𝑏 
)=𝑏, aún más, es sencillo encontrar el valor de estos 
dos puntos en términos de los parámetros de la función, 
estos son  𝑥𝑐=𝑐+𝑏𝑐−𝑐2 y 𝑥𝑏=𝑐−𝑏𝑐+𝑏2. 

Entonces tenemos la relación 𝑏<𝑥𝑐<𝑥𝐹<𝑥𝑏<𝑐.

Una vez conocidos los puntos 𝑥𝑐 y 𝑥b y sus propiedades 
presentamos nuestro resultado más importante ya que 
nos brinda las condiciones necesarias y suficientes para 
identificar si una función tipo Zeta poseerá o no puntos 
de periodo 3.

Teorema 2. Dada 𝑓 una función tipo Zeta entonces se 
tiene que

i)	 Si 𝑎 ≤ 𝑥𝑐 o 𝑑 ≥ 𝑥𝑏 entonces 𝑓 posee un punto de 
periodo 3.

ii)	 Si 𝑎 > 𝑥𝑐 y 𝑑 < 𝑥𝑏 entonces 𝑓 no posee puntos de 
periodo 3.

Demostración:

i)	 Analicemos primero el caso en que 𝑎 ≤ 𝑥𝑐. 
	 Recordando que 𝑥𝑐<𝑥𝐹 y puesto que 𝑓([0,𝑏))=[𝑎,1), 

luego existen dos puntos

	 𝑥1, 𝑥2∈[0,𝑏)  tales que 𝑓(𝑥1 )=𝑥𝑐 y 𝑓(𝑥2 )=𝑥𝐹 donde      
𝑥1<𝑥2 pues 𝑓 es creciente en el intervalo [0,𝑏).

	 Así pues, tendremos que 𝑓3 (𝑥1 )=0<𝑥1   y  𝑓3 (𝑥2 )=𝑥𝐹>𝑥2.

	 Al igual que en la demostración de la proposición 5, 
se define la función continua ℎ(𝑥)=𝑓3 (𝑥)−𝑥 sobre 
el intervalo [0,𝑏) la cual cumple que ℎ (𝑥1 ) <0 y 
ℎ (𝑥2 ) >0 , por lo que al igual que antes existe un 
punto 𝑥0 ∈ (𝑥1,𝑥2)  tal que 𝑓3 (𝑥0 )=𝑥0 .

	 Aún más, puesto que 𝑥0 ∈ (𝑥1,𝑥2) y debido a que 𝑓 es 
creciente en (0,𝑏) tendremos que 𝑓(𝑥0 )>𝑓(𝑥1 )=𝑥𝑐>𝑥0, 

así que 𝑥0 no es un punto fijo de 𝑓 y por tanto es un 
punto de periodo 3 de 𝑓.

	 Continuemos ahora en el caso 𝑑≥ 𝑥𝑏 .

	 Note que 𝑑≥ 𝑥𝑏 implica que 1−𝑑≤ 1−𝑥𝑏  don-
de utilizando la función dual de 𝑓 se tiene que                                     
𝑓∗ (1−𝑥𝑏 )=1−𝑓(𝑥𝑏 )=1−𝑏.

	 Es decir 𝑓∗ cumple las condiciones del primer caso 
que analizamos, luego 𝑓∗ posee un punto de periodo 
3, y por la proposición 2 tenemos que 𝑓 tiene un 
punto de periodo 3.

ii)	 Dividiremos la demostración en 4 casos:

•	 Caso 1: 𝑎 ≥ 𝑥𝐹 y 𝑑≤𝑥𝐹 

	 La demostración está dada en la proposición 4.

•	 Caso 2: 𝑥𝑐<𝑎<𝑥𝐹 y 𝑑≤𝑥𝐹  
	 Primeramente notamos que se cumplen las des-

igualdades 𝑓3 (𝑥𝑐 )>𝑥𝑐 y 𝑓3 (𝑥𝑏 )<𝑥𝑏.
	 Además 𝑓([0,𝑏])=[𝑎,1], por lo que existe un 

punto 𝑥′∈ [0,𝑏] que cumple las relaciones                                    
𝑓(𝑥′)=𝑥𝐹 y 𝑓3 (𝑥′)>𝑥′.

	 Ahora bien, observe que: 
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 𝑥𝑥1, 𝑥𝑥2 ∈ [0, 𝑏𝑏) tales que 𝑓𝑓(𝑥𝑥1) = 𝑥𝑥𝑐𝑐 y 𝑓𝑓(𝑥𝑥2) = 𝑥𝑥𝐹𝐹 donde 𝑥𝑥1 < 𝑥𝑥2 pues 𝑓𝑓 es creciente en el 
intervalo [0, 𝑏𝑏). 
 
Así pues, tendremos que 𝑓𝑓3(𝑥𝑥1) = 0 < 𝑥𝑥1  y  𝑓𝑓3(𝑥𝑥2) = 𝑥𝑥𝐹𝐹 > 𝑥𝑥2. 
 
Al igual que en la demostración de la proposición 14, se define la función continua 
 ℎ(𝑥𝑥) = 𝑓𝑓3(𝑥𝑥) − 𝑥𝑥 sobre el intervalo [0, 𝑏𝑏) la cual cumple que ℎ(𝑥𝑥1) < 0 y ℎ(𝑥𝑥2) > 0, por 
lo que al igual que antes existe un punto 𝑥𝑥0 ∈ (𝑥𝑥1, 𝑥𝑥2) tal que 𝑓𝑓3(𝑥𝑥0) = 𝑥𝑥0. 
 
Aún más, puesto que 𝑥𝑥0 ∈ (𝑥𝑥1, 𝑥𝑥2) y debido a que 𝑓𝑓 es creciente en (0, 𝑏𝑏) tendremos que 
𝑓𝑓(𝑥𝑥0) > 𝑓𝑓(𝑥𝑥1) = 𝑥𝑥𝑐𝑐 > 𝑥𝑥0, así que 𝑥𝑥0 no es un punto fijo de 𝑓𝑓 y por tanto es un punto de 
periodo 3 de 𝑓𝑓. 
 
Continuemos ahora en el caso 𝑑𝑑 ≥ 𝑥𝑥𝑏𝑏. 
 
Note que  𝑑𝑑 ≥ 𝑥𝑥𝑏𝑏 implica que 1 − 𝑑𝑑 ≤ 1 − 𝑥𝑥𝑏𝑏 donde utilizando la función dual de 𝑓𝑓 se tiene 
que 𝑓𝑓∗(1 − 𝑥𝑥𝑏𝑏) = 1 − 𝑓𝑓(𝑥𝑥𝑏𝑏) = 1 − 𝑏𝑏. 
 
Es decir 𝑓𝑓∗ cumple las condiciones del primer caso que analizamos, luego 𝑓𝑓∗ posee un punto 
de periodo 3, y por la proposición 11 tenemos que 𝑓𝑓 tiene un punto de periodo 3. 
 

ii) Dividiremos la demostración en 4 casos: 
 
 Caso 1: 𝑎𝑎 ≥ 𝑥𝑥𝐹𝐹  y 𝑑𝑑 ≤ 𝑥𝑥𝐹𝐹  

La demostración está dada en la proposición 13. 
 

 Caso 2: 𝑥𝑥𝑐𝑐 < 𝑎𝑎 < 𝑥𝑥𝐹𝐹  y 𝑑𝑑 ≤ 𝑥𝑥𝐹𝐹 
Primeramente notamos que se cumplen las desigualdades 𝑓𝑓3(𝑥𝑥𝑐𝑐) > 𝑥𝑥𝑐𝑐 y 𝑓𝑓3(𝑥𝑥𝑏𝑏) < 𝑥𝑥𝑏𝑏. 
Además 𝑓𝑓([0, 𝑏𝑏]) = [𝑎𝑎, 1], por lo que existe un punto 𝑥𝑥′ ∈ [0, 𝑏𝑏] que cumple las 
relaciones 𝑓𝑓(𝑥𝑥′) = 𝑥𝑥𝐹𝐹 y 𝑓𝑓3(𝑥𝑥′) > 𝑥𝑥′. 

            Ahora bien, observe que:  
      𝑓𝑓([0, 𝑥𝑥′]) ⊂ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹]

⟹  𝑓𝑓2([0, 𝑥𝑥′]) ⊂ 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹]) ⊂ [𝑥𝑥𝐹𝐹, 𝑐𝑐)   
⟹   𝑓𝑓3([0, 𝑥𝑥′]) ⊂ 𝑓𝑓([𝑥𝑥𝐹𝐹, 𝑐𝑐)) ⊂ (0, 𝑥𝑥𝐹𝐹]    

 

 
 
Además sabemos que 𝑓𝑓 es una recta creciente en el intervalo (0, 𝑥𝑥′] y es una recta 
decreciente en los intervalos (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹] y [𝑥𝑥𝐹𝐹, 𝑐𝑐) por lo cual 𝑓𝑓3 es una recta creciente en el 
intervalo [0, 𝑥𝑥′], luego 𝑓𝑓 no posee puntos de periodo 3 en [0, 𝑥𝑥′] pues 𝑓𝑓3(0) > 0 y 
𝑓𝑓3(𝑥𝑥′) > 𝑥𝑥′. 

 
Continuando, se tiene que: 

      𝑓𝑓((𝑥𝑥′, 𝑥𝑥𝑐𝑐]) ⊂ (𝑥𝑥𝐹𝐹, 1]
⟹  𝑓𝑓2((𝑥𝑥′, 𝑥𝑥𝑐𝑐]) ⊂ [0, 𝑥𝑥𝐹𝐹]   
⟹   𝑓𝑓3((𝑥𝑥′, 𝑥𝑥𝑐𝑐]) ⊂ (𝑥𝑥𝑐𝑐, 1]    

 

	 Además sabemos que 𝑓 es una recta creciente 
en el intervalo (0,𝑥′] y es una recta decrecien-
te en los intervalos  (𝑥𝑐,𝑥𝐹] y [𝑥𝐹,𝑐) por lo cual 𝑓3 
es una recta creciente en el intervalo [0,𝑥′], lue-
go 𝑓 no posee puntos de periodo 3 en [0,𝑥′] pues                                             
𝑓3 (0)>0 y 𝑓3 (𝑥′)>𝑥′.

	 Continuando, se tiene que:

 13 

 𝑥𝑥1, 𝑥𝑥2 ∈ [0, 𝑏𝑏) tales que 𝑓𝑓(𝑥𝑥1) = 𝑥𝑥𝑐𝑐 y 𝑓𝑓(𝑥𝑥2) = 𝑥𝑥𝐹𝐹 donde 𝑥𝑥1 < 𝑥𝑥2 pues 𝑓𝑓 es creciente en el 
intervalo [0, 𝑏𝑏). 
 
Así pues, tendremos que 𝑓𝑓3(𝑥𝑥1) = 0 < 𝑥𝑥1  y  𝑓𝑓3(𝑥𝑥2) = 𝑥𝑥𝐹𝐹 > 𝑥𝑥2. 
 
Al igual que en la demostración de la proposición 14, se define la función continua 
 ℎ(𝑥𝑥) = 𝑓𝑓3(𝑥𝑥) − 𝑥𝑥 sobre el intervalo [0, 𝑏𝑏) la cual cumple que ℎ(𝑥𝑥1) < 0 y ℎ(𝑥𝑥2) > 0, por 
lo que al igual que antes existe un punto 𝑥𝑥0 ∈ (𝑥𝑥1, 𝑥𝑥2) tal que 𝑓𝑓3(𝑥𝑥0) = 𝑥𝑥0. 
 
Aún más, puesto que 𝑥𝑥0 ∈ (𝑥𝑥1, 𝑥𝑥2) y debido a que 𝑓𝑓 es creciente en (0, 𝑏𝑏) tendremos que 
𝑓𝑓(𝑥𝑥0) > 𝑓𝑓(𝑥𝑥1) = 𝑥𝑥𝑐𝑐 > 𝑥𝑥0, así que 𝑥𝑥0 no es un punto fijo de 𝑓𝑓 y por tanto es un punto de 
periodo 3 de 𝑓𝑓. 
 
Continuemos ahora en el caso 𝑑𝑑 ≥ 𝑥𝑥𝑏𝑏. 
 
Note que  𝑑𝑑 ≥ 𝑥𝑥𝑏𝑏 implica que 1 − 𝑑𝑑 ≤ 1 − 𝑥𝑥𝑏𝑏 donde utilizando la función dual de 𝑓𝑓 se tiene 
que 𝑓𝑓∗(1 − 𝑥𝑥𝑏𝑏) = 1 − 𝑓𝑓(𝑥𝑥𝑏𝑏) = 1 − 𝑏𝑏. 
 
Es decir 𝑓𝑓∗ cumple las condiciones del primer caso que analizamos, luego 𝑓𝑓∗ posee un punto 
de periodo 3, y por la proposición 11 tenemos que 𝑓𝑓 tiene un punto de periodo 3. 
 

ii) Dividiremos la demostración en 4 casos: 
 
 Caso 1: 𝑎𝑎 ≥ 𝑥𝑥𝐹𝐹  y 𝑑𝑑 ≤ 𝑥𝑥𝐹𝐹  

La demostración está dada en la proposición 13. 
 

 Caso 2: 𝑥𝑥𝑐𝑐 < 𝑎𝑎 < 𝑥𝑥𝐹𝐹  y 𝑑𝑑 ≤ 𝑥𝑥𝐹𝐹 
Primeramente notamos que se cumplen las desigualdades 𝑓𝑓3(𝑥𝑥𝑐𝑐) > 𝑥𝑥𝑐𝑐 y 𝑓𝑓3(𝑥𝑥𝑏𝑏) < 𝑥𝑥𝑏𝑏. 
Además 𝑓𝑓([0, 𝑏𝑏]) = [𝑎𝑎, 1], por lo que existe un punto 𝑥𝑥′ ∈ [0, 𝑏𝑏] que cumple las 
relaciones 𝑓𝑓(𝑥𝑥′) = 𝑥𝑥𝐹𝐹 y 𝑓𝑓3(𝑥𝑥′) > 𝑥𝑥′. 

            Ahora bien, observe que:  
      𝑓𝑓([0, 𝑥𝑥′]) ⊂ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹]

⟹  𝑓𝑓2([0, 𝑥𝑥′]) ⊂ 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹]) ⊂ [𝑥𝑥𝐹𝐹, 𝑐𝑐)   
⟹   𝑓𝑓3([0, 𝑥𝑥′]) ⊂ 𝑓𝑓([𝑥𝑥𝐹𝐹, 𝑐𝑐)) ⊂ (0, 𝑥𝑥𝐹𝐹]    

 

 
 
Además sabemos que 𝑓𝑓 es una recta creciente en el intervalo (0, 𝑥𝑥′] y es una recta 
decreciente en los intervalos (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹] y [𝑥𝑥𝐹𝐹, 𝑐𝑐) por lo cual 𝑓𝑓3 es una recta creciente en el 
intervalo [0, 𝑥𝑥′], luego 𝑓𝑓 no posee puntos de periodo 3 en [0, 𝑥𝑥′] pues 𝑓𝑓3(0) > 0 y 
𝑓𝑓3(𝑥𝑥′) > 𝑥𝑥′. 

 
Continuando, se tiene que: 

      𝑓𝑓((𝑥𝑥′, 𝑥𝑥𝑐𝑐]) ⊂ (𝑥𝑥𝐹𝐹, 1]
⟹  𝑓𝑓2((𝑥𝑥′, 𝑥𝑥𝑐𝑐]) ⊂ [0, 𝑥𝑥𝐹𝐹]   
⟹   𝑓𝑓3((𝑥𝑥′, 𝑥𝑥𝑐𝑐]) ⊂ (𝑥𝑥𝑐𝑐, 1]    

 

	 Por lo cual 𝑓 no posee puntos de periodo 3 en                  
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(𝑥′, 𝑥𝑐 ]. 

	 Ahora, se observa que 𝑓((𝑥𝑐, 𝑥𝐹))=(𝑥𝐹, 𝑐) y conse-
cuentemente existe un punto 

	 𝑥′′∈(𝑥𝑐, 𝑥𝐹) tal que 𝑓(𝑥′′)=𝑥𝑏, aún más 𝑓3 (𝑥′′)=1.

	 Para el intervalo (𝑥𝑐, 𝑥′′)  tenemos que:

 14 

Por lo cual 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′, 𝑥𝑥𝑐𝑐]. 
 
Ahora, se observa que 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑐𝑐) y consecuentemente existe un punto  
𝑥𝑥′′ ∈ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹) tal que 𝑓𝑓(𝑥𝑥′′) = 𝑥𝑥𝑏𝑏, aún más 𝑓𝑓3(𝑥𝑥′′) = 1. 
 
Para el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) tenemos que: 

 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (𝑥𝑥𝑏𝑏, 𝑐𝑐)
⟹  𝑓𝑓2((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (0, 𝑏𝑏)            

     ⟹   𝑓𝑓3((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) ⊂ (𝑥𝑥𝑐𝑐, 1]               
 

 
Recordando que 𝑓𝑓 es una recta decreciente en los intervalos (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) y (𝑥𝑥𝑏𝑏, 𝑐𝑐), además de 
una recta creciente en el intervalo (0, 𝑏𝑏) entonces 𝑓𝑓 no posee puntos de periodo 3 en 
(𝑥𝑥𝑐𝑐, 𝑥𝑥′′) pues tendremos que 𝑓𝑓3 es una recta creciente en el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) donde 
𝑓𝑓3(𝑥𝑥𝑐𝑐) > 𝑥𝑥𝑐𝑐 y 𝑓𝑓3(𝑥𝑥′′) > 𝑥𝑥′′. 

 
Luego, para el intervalo (𝑥𝑥′′, 𝑥𝑥𝐹𝐹) se cumple: 

       𝑓𝑓((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)  
⟹   𝑓𝑓3((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 1)  

 

 
 Por lo que 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′′, 𝑥𝑥𝐹𝐹). 
  

Prosiguiendo, 𝑓𝑓 tampoco posee puntos de periodo 3 en el intervalo (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏) pues: 
     𝑓𝑓((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)

⟹  𝑓𝑓2((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑥𝑥𝐹𝐹, 1)  
⟹   𝑓𝑓3((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (0, 𝑥𝑥𝐹𝐹)   

 

  
Siguiendo ahora con el intervalo (𝑥𝑥𝑏𝑏, 𝑐𝑐), evaluando en el intervalo se tiene que  
𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (0, 𝑏𝑏) por lo cual 𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (𝑎𝑎, 1) y por tanto existe un  punto 
 𝑥𝑥′′′ ∈ (𝑥𝑥𝑏𝑏, 𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′′) = 𝑐𝑐. 
 
Realizando las evaluaciones para el intervalo (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′) obtenemos: 

     𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑓𝑓(𝑥𝑥′′′), 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑐𝑐, 1)            
⟹   𝑓𝑓3((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) ⊂ (0, 𝑥𝑥𝐹𝐹]          

 

 
Consecuentemente 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′). 
 
Para (𝑥𝑥′′′, 𝑐𝑐) se cumple: 

 𝑓𝑓((𝑥𝑥′′′, 𝑐𝑐)) = (0, 𝑓𝑓(𝑥𝑥′′′)) ⊂ (0, 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (𝑥𝑥𝑐𝑐, 𝑐𝑐)                               

          ⟹  𝑓𝑓3((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (0, 𝑐𝑐)                                           
 

 

	 Recordando que 𝑓 es una recta decreciente en los 
intervalos (𝑥𝑐, 𝑥′′) y (𝑥𝑏, 𝑐), además de una recta 
creciente en el intervalo (0, 𝑏) entonces 𝑓 no posee 
puntos de periodo 3 en (𝑥𝑐, 𝑥′′)  pues tendremos 
que 𝑓3 es una recta creciente en el intervalo (𝑥𝑐, 𝑥′′) 
donde 𝑓3 (𝑥𝑐 )>𝑥𝑐 y 𝑓3 (𝑥′′)>𝑥′′.

	 Luego, para el intervalo (𝑥′′, 𝑥𝐹) se cumple:

 14 

Por lo cual 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′, 𝑥𝑥𝑐𝑐]. 
 
Ahora, se observa que 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑐𝑐) y consecuentemente existe un punto  
𝑥𝑥′′ ∈ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹) tal que 𝑓𝑓(𝑥𝑥′′) = 𝑥𝑥𝑏𝑏, aún más 𝑓𝑓3(𝑥𝑥′′) = 1. 
 
Para el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) tenemos que: 

 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (𝑥𝑥𝑏𝑏, 𝑐𝑐)
⟹  𝑓𝑓2((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (0, 𝑏𝑏)            

     ⟹   𝑓𝑓3((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) ⊂ (𝑥𝑥𝑐𝑐, 1]               
 

 
Recordando que 𝑓𝑓 es una recta decreciente en los intervalos (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) y (𝑥𝑥𝑏𝑏, 𝑐𝑐), además de 
una recta creciente en el intervalo (0, 𝑏𝑏) entonces 𝑓𝑓 no posee puntos de periodo 3 en 
(𝑥𝑥𝑐𝑐, 𝑥𝑥′′) pues tendremos que 𝑓𝑓3 es una recta creciente en el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) donde 
𝑓𝑓3(𝑥𝑥𝑐𝑐) > 𝑥𝑥𝑐𝑐 y 𝑓𝑓3(𝑥𝑥′′) > 𝑥𝑥′′. 

 
Luego, para el intervalo (𝑥𝑥′′, 𝑥𝑥𝐹𝐹) se cumple: 

       𝑓𝑓((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)  
⟹   𝑓𝑓3((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 1)  

 

 
 Por lo que 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′′, 𝑥𝑥𝐹𝐹). 
  

Prosiguiendo, 𝑓𝑓 tampoco posee puntos de periodo 3 en el intervalo (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏) pues: 
     𝑓𝑓((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)

⟹  𝑓𝑓2((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑥𝑥𝐹𝐹, 1)  
⟹   𝑓𝑓3((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (0, 𝑥𝑥𝐹𝐹)   

 

  
Siguiendo ahora con el intervalo (𝑥𝑥𝑏𝑏, 𝑐𝑐), evaluando en el intervalo se tiene que  
𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (0, 𝑏𝑏) por lo cual 𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (𝑎𝑎, 1) y por tanto existe un  punto 
 𝑥𝑥′′′ ∈ (𝑥𝑥𝑏𝑏, 𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′′) = 𝑐𝑐. 
 
Realizando las evaluaciones para el intervalo (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′) obtenemos: 

     𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑓𝑓(𝑥𝑥′′′), 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑐𝑐, 1)            
⟹   𝑓𝑓3((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) ⊂ (0, 𝑥𝑥𝐹𝐹]          

 

 
Consecuentemente 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′). 
 
Para (𝑥𝑥′′′, 𝑐𝑐) se cumple: 

 𝑓𝑓((𝑥𝑥′′′, 𝑐𝑐)) = (0, 𝑓𝑓(𝑥𝑥′′′)) ⊂ (0, 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (𝑥𝑥𝑐𝑐, 𝑐𝑐)                               

          ⟹  𝑓𝑓3((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (0, 𝑐𝑐)                                           
 

 

	 Por lo que 𝑓 no posee puntos de periodo 3 en (𝑥′′, 𝑥𝐹).
	 Prosiguiendo, 𝑓 tampoco posee puntos de periodo 

3 en el intervalo (𝑥𝐹, 𝑥𝑏) pues:

 14 

Por lo cual 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′, 𝑥𝑥𝑐𝑐]. 
 
Ahora, se observa que 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑐𝑐) y consecuentemente existe un punto  
𝑥𝑥′′ ∈ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹) tal que 𝑓𝑓(𝑥𝑥′′) = 𝑥𝑥𝑏𝑏, aún más 𝑓𝑓3(𝑥𝑥′′) = 1. 
 
Para el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) tenemos que: 

 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (𝑥𝑥𝑏𝑏, 𝑐𝑐)
⟹  𝑓𝑓2((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (0, 𝑏𝑏)            

     ⟹   𝑓𝑓3((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) ⊂ (𝑥𝑥𝑐𝑐, 1]               
 

 
Recordando que 𝑓𝑓 es una recta decreciente en los intervalos (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) y (𝑥𝑥𝑏𝑏, 𝑐𝑐), además de 
una recta creciente en el intervalo (0, 𝑏𝑏) entonces 𝑓𝑓 no posee puntos de periodo 3 en 
(𝑥𝑥𝑐𝑐, 𝑥𝑥′′) pues tendremos que 𝑓𝑓3 es una recta creciente en el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) donde 
𝑓𝑓3(𝑥𝑥𝑐𝑐) > 𝑥𝑥𝑐𝑐 y 𝑓𝑓3(𝑥𝑥′′) > 𝑥𝑥′′. 

 
Luego, para el intervalo (𝑥𝑥′′, 𝑥𝑥𝐹𝐹) se cumple: 

       𝑓𝑓((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)  
⟹   𝑓𝑓3((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 1)  

 

 
 Por lo que 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′′, 𝑥𝑥𝐹𝐹). 
  

Prosiguiendo, 𝑓𝑓 tampoco posee puntos de periodo 3 en el intervalo (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏) pues: 
     𝑓𝑓((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)

⟹  𝑓𝑓2((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑥𝑥𝐹𝐹, 1)  
⟹   𝑓𝑓3((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (0, 𝑥𝑥𝐹𝐹)   

 

  
Siguiendo ahora con el intervalo (𝑥𝑥𝑏𝑏, 𝑐𝑐), evaluando en el intervalo se tiene que  
𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (0, 𝑏𝑏) por lo cual 𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (𝑎𝑎, 1) y por tanto existe un  punto 
 𝑥𝑥′′′ ∈ (𝑥𝑥𝑏𝑏, 𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′′) = 𝑐𝑐. 
 
Realizando las evaluaciones para el intervalo (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′) obtenemos: 

     𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑓𝑓(𝑥𝑥′′′), 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑐𝑐, 1)            
⟹   𝑓𝑓3((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) ⊂ (0, 𝑥𝑥𝐹𝐹]          

 

 
Consecuentemente 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′). 
 
Para (𝑥𝑥′′′, 𝑐𝑐) se cumple: 

 𝑓𝑓((𝑥𝑥′′′, 𝑐𝑐)) = (0, 𝑓𝑓(𝑥𝑥′′′)) ⊂ (0, 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (𝑥𝑥𝑐𝑐, 𝑐𝑐)                               

          ⟹  𝑓𝑓3((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (0, 𝑐𝑐)                                           
 

 

	 Siguiendo ahora con el intervalo (𝑥𝑏, 𝑐), evaluando 
en el intervalo se tiene que 𝑓((𝑥𝑏, 𝑐))=(0, 𝑏) por lo 
cual 𝑓2 ((𝑥𝑏, 𝑐))=(𝑎, 1) y por tanto existe un  punto 
𝑥′′′∈(𝑥𝑏, 𝑐) tal que 𝑓2 (𝑥′′′)=𝑐 .

	 Realizando las evaluaciones para el intervalo                
(𝑥𝑏, 𝑥′′′) obtenemos:

	 Consecuentemente 𝑓 no posee puntos de periodo 

 14 

Por lo cual 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′, 𝑥𝑥𝑐𝑐]. 
 
Ahora, se observa que 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑐𝑐) y consecuentemente existe un punto  
𝑥𝑥′′ ∈ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹) tal que 𝑓𝑓(𝑥𝑥′′) = 𝑥𝑥𝑏𝑏, aún más 𝑓𝑓3(𝑥𝑥′′) = 1. 
 
Para el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) tenemos que: 

 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (𝑥𝑥𝑏𝑏, 𝑐𝑐)
⟹  𝑓𝑓2((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (0, 𝑏𝑏)            

     ⟹   𝑓𝑓3((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) ⊂ (𝑥𝑥𝑐𝑐, 1]               
 

 
Recordando que 𝑓𝑓 es una recta decreciente en los intervalos (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) y (𝑥𝑥𝑏𝑏, 𝑐𝑐), además de 
una recta creciente en el intervalo (0, 𝑏𝑏) entonces 𝑓𝑓 no posee puntos de periodo 3 en 
(𝑥𝑥𝑐𝑐, 𝑥𝑥′′) pues tendremos que 𝑓𝑓3 es una recta creciente en el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) donde 
𝑓𝑓3(𝑥𝑥𝑐𝑐) > 𝑥𝑥𝑐𝑐 y 𝑓𝑓3(𝑥𝑥′′) > 𝑥𝑥′′. 

 
Luego, para el intervalo (𝑥𝑥′′, 𝑥𝑥𝐹𝐹) se cumple: 

       𝑓𝑓((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)  
⟹   𝑓𝑓3((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 1)  

 

 
 Por lo que 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′′, 𝑥𝑥𝐹𝐹). 
  

Prosiguiendo, 𝑓𝑓 tampoco posee puntos de periodo 3 en el intervalo (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏) pues: 
     𝑓𝑓((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)

⟹  𝑓𝑓2((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑥𝑥𝐹𝐹, 1)  
⟹   𝑓𝑓3((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (0, 𝑥𝑥𝐹𝐹)   

 

  
Siguiendo ahora con el intervalo (𝑥𝑥𝑏𝑏, 𝑐𝑐), evaluando en el intervalo se tiene que  
𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (0, 𝑏𝑏) por lo cual 𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (𝑎𝑎, 1) y por tanto existe un  punto 
 𝑥𝑥′′′ ∈ (𝑥𝑥𝑏𝑏, 𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′′) = 𝑐𝑐. 
 
Realizando las evaluaciones para el intervalo (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′) obtenemos: 

     𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑓𝑓(𝑥𝑥′′′), 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑐𝑐, 1)            
⟹   𝑓𝑓3((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) ⊂ (0, 𝑥𝑥𝐹𝐹]          

 

 
Consecuentemente 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′). 
 
Para (𝑥𝑥′′′, 𝑐𝑐) se cumple: 

 𝑓𝑓((𝑥𝑥′′′, 𝑐𝑐)) = (0, 𝑓𝑓(𝑥𝑥′′′)) ⊂ (0, 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (𝑥𝑥𝑐𝑐, 𝑐𝑐)                               

          ⟹  𝑓𝑓3((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (0, 𝑐𝑐)                                           
 

 

3 en (𝑥𝑏, 𝑥′′′).

	 Para (𝑥′′′, 𝑐) se cumple:

 14 

Por lo cual 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′, 𝑥𝑥𝑐𝑐]. 
 
Ahora, se observa que 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑐𝑐) y consecuentemente existe un punto  
𝑥𝑥′′ ∈ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹) tal que 𝑓𝑓(𝑥𝑥′′) = 𝑥𝑥𝑏𝑏, aún más 𝑓𝑓3(𝑥𝑥′′) = 1. 
 
Para el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) tenemos que: 

 𝑓𝑓((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (𝑥𝑥𝑏𝑏, 𝑐𝑐)
⟹  𝑓𝑓2((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) = (0, 𝑏𝑏)            

     ⟹   𝑓𝑓3((𝑥𝑥𝑐𝑐, 𝑥𝑥′′)) ⊂ (𝑥𝑥𝑐𝑐, 1]               
 

 
Recordando que 𝑓𝑓 es una recta decreciente en los intervalos (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) y (𝑥𝑥𝑏𝑏, 𝑐𝑐), además de 
una recta creciente en el intervalo (0, 𝑏𝑏) entonces 𝑓𝑓 no posee puntos de periodo 3 en 
(𝑥𝑥𝑐𝑐, 𝑥𝑥′′) pues tendremos que 𝑓𝑓3 es una recta creciente en el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥′′) donde 
𝑓𝑓3(𝑥𝑥𝑐𝑐) > 𝑥𝑥𝑐𝑐 y 𝑓𝑓3(𝑥𝑥′′) > 𝑥𝑥′′. 

 
Luego, para el intervalo (𝑥𝑥′′, 𝑥𝑥𝐹𝐹) se cumple: 

       𝑓𝑓((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)  
⟹   𝑓𝑓3((𝑥𝑥′′, 𝑥𝑥𝐹𝐹)) = (𝑥𝑥𝐹𝐹, 1)  

 

 
 Por lo que 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥′′, 𝑥𝑥𝐹𝐹). 
  

Prosiguiendo, 𝑓𝑓 tampoco posee puntos de periodo 3 en el intervalo (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏) pues: 
     𝑓𝑓((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑏𝑏, 𝑥𝑥𝐹𝐹)

⟹  𝑓𝑓2((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (𝑥𝑥𝐹𝐹, 1)  
⟹   𝑓𝑓3((𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)) = (0, 𝑥𝑥𝐹𝐹)   

 

  
Siguiendo ahora con el intervalo (𝑥𝑥𝑏𝑏, 𝑐𝑐), evaluando en el intervalo se tiene que  
𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (0, 𝑏𝑏) por lo cual 𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑐𝑐)) = (𝑎𝑎, 1) y por tanto existe un  punto 
 𝑥𝑥′′′ ∈ (𝑥𝑥𝑏𝑏, 𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′′) = 𝑐𝑐. 
 
Realizando las evaluaciones para el intervalo (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′) obtenemos: 

     𝑓𝑓((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑓𝑓(𝑥𝑥′′′), 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) = (𝑐𝑐, 1)            
⟹   𝑓𝑓3((𝑥𝑥𝑏𝑏, 𝑥𝑥′′′)) ⊂ (0, 𝑥𝑥𝐹𝐹]          

 

 
Consecuentemente 𝑓𝑓 no posee puntos de periodo 3 en (𝑥𝑥𝑏𝑏, 𝑥𝑥′′′). 
 
Para (𝑥𝑥′′′, 𝑐𝑐) se cumple: 

 𝑓𝑓((𝑥𝑥′′′, 𝑐𝑐)) = (0, 𝑓𝑓(𝑥𝑥′′′)) ⊂ (0, 𝑏𝑏)
⟹  𝑓𝑓2((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (𝑥𝑥𝑐𝑐, 𝑐𝑐)                               

          ⟹  𝑓𝑓3((𝑥𝑥′′′, 𝑐𝑐)) ⊂ (0, 𝑐𝑐)                                           
 

 

	 Cumpliéndose pues que 𝑓3 (𝑥′′′)<𝑥′′′, 𝑓3 (𝑐) < 𝑐  y 
que 𝑓 es una recta decreciente en los intervalos 
(𝑥′′′, 𝑐) y (𝑥𝑐, 𝑐)  además de una recta creciente en el 
intervalo (0,𝑏)  por lo que 𝑓3 es una recta creciente 
en el intervalo (𝑥′′′, 𝑐); luego f no posee puntos de 
periodo 3 en el intervalo (𝑥′′′, 𝑐).

	 Finalmente para el intervalo (𝑐, 1):
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Cumpliéndose pues que 𝑓𝑓3(𝑥𝑥′′′) < 𝑥𝑥′′′, 𝑓𝑓3(𝑐𝑐) < 𝑐𝑐 y que 𝑓𝑓 es una recta decreciente en los 
intervalos (𝑥𝑥′′′, 𝑐𝑐) y (𝑥𝑥𝑐𝑐, 𝑐𝑐) además de una recta creciente en el intervalo (0, 𝑏𝑏) por lo que 
𝑓𝑓3 es una recta creciente en el intervalo (𝑥𝑥′′′, 𝑐𝑐); luego f no posee puntos de periodo 3 en 
el intervalo (𝑥𝑥′′′, 𝑐𝑐). 
 
Finalmente para el intervalo (𝑐𝑐, 1): 

 𝑓𝑓((𝑐𝑐, 1)) ⊂ (0, 𝑥𝑥𝐹𝐹]
⟹  𝑓𝑓2((𝑐𝑐, 1)) ⊂ (𝑥𝑥𝑐𝑐, 1]      
⟹   𝑓𝑓3((𝑐𝑐, 1)) ⊂ (0, 𝑐𝑐)       

 

 
Por lo tanto 𝑓𝑓 no posee puntos de periodo 3 en tal intervalo. 
 

 Caso 3: 𝑎𝑎 ≥ 𝑥𝑥𝐹𝐹  y 𝑥𝑥𝐹𝐹 < 𝑑𝑑 < 𝑥𝑥𝑏𝑏 
 
Comencemos notando que 1 − 𝑥𝑥𝑏𝑏 < 1 − 𝑑𝑑 < 1 − 𝑥𝑥𝐹𝐹 y 1 − 𝑎𝑎 ≤ 1 − 𝑥𝑥𝐹𝐹 donde se sabe 
que 1 − 𝑥𝑥𝐹𝐹 es el punto fijo de 𝑓𝑓∗. 
 
Además, se verifica que 𝑓𝑓∗(1 − 𝑥𝑥𝑏𝑏) = 1 − 𝑓𝑓(𝑥𝑥𝑏𝑏) = 1 − 𝑏𝑏; con lo cual 𝑓𝑓∗ está 
satisfaciendo las condiciones del caso anterior, de esta manera 𝑓𝑓∗ no posee puntos de 
periodo 3 y por la proposición 11 tampoco 𝑓𝑓 tiene puntos de periodo 3. 
 

 Caso 4: 𝑥𝑥𝑐𝑐 < 𝑎𝑎 < 𝑥𝑥𝐹𝐹  y 𝑥𝑥𝐹𝐹 < 𝑑𝑑 < 𝑥𝑥𝑏𝑏 
 
Iniciemos notando que se satisfacen las desigualdades 𝑓𝑓3(𝑏𝑏) > 𝑏𝑏 y 𝑓𝑓3(𝑐𝑐) < 𝑐𝑐. 
 
Además 𝑓𝑓3(0) > 0, esto pues: 

   𝑓𝑓(0) = 𝑎𝑎 ∈ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹)
⟹   𝑓𝑓2(0) = 𝑓𝑓(𝑎𝑎) ∈ (𝑥𝑥𝐹𝐹, 𝑐𝑐)   
⟹   𝑓𝑓3(0) = 𝑓𝑓2(𝑎𝑎) ∈ (0, 𝑥𝑥𝐹𝐹)

 

 
 De manera semejante se tiene que  𝑓𝑓3(1) < 1, esto pues se cumple: 

    𝑓𝑓(1) = 𝑑𝑑 ∈ (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
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Seguidamente 𝑓𝑓(0, 𝑏𝑏) = (𝑎𝑎, 1) por lo que existe 𝑥𝑥′ ∈ (0, 𝑏𝑏) con 𝑓𝑓(𝑥𝑥′) = 𝑥𝑥𝐹𝐹. 
 
De manera análoga al caso 2 se puede mostrar que 𝑓𝑓 no posee puntos de periodo 3 en el 
intervalo (0, 𝑥𝑥′]  y para el intervalo (𝑥𝑥′, 𝑏𝑏) tampoco los hay pues 𝑓𝑓((𝑥𝑥′, 𝑏𝑏)) ⊂ (𝑥𝑥𝐹𝐹, 1) con 
lo cual 𝑓𝑓2((𝑥𝑥′, 𝑏𝑏)) ⊂ (0, 𝑥𝑥𝑏𝑏) y 𝑓𝑓3((𝑥𝑥′, 𝑏𝑏)) ⊂ (𝑏𝑏, 1). 
 
Evaluando el intervalo (𝑏𝑏, 𝑥𝑥𝑐𝑐) obtenemos 𝑓𝑓((𝑏𝑏, 𝑥𝑥𝑐𝑐)) = (𝑐𝑐, 1) y por tanto 𝑓𝑓2((𝑏𝑏, 𝑥𝑥𝑐𝑐)) =
(0, 𝑑𝑑), por lo cual se tiene la existencia de un punto 𝑥𝑥′′ ∈ (𝑏𝑏, 𝑥𝑥𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′) = 𝑏𝑏.  
 
Así, tendremos que: 

	 Por lo tanto 𝑓 no posee puntos de periodo 3 en tal 
intervalo.

•	 Caso 3: 𝑎≥ 𝑥𝐹 y 𝑥𝐹<𝑑<𝑥𝑏 
	
	 Comencemos notando que  1−𝑥𝑏<1−𝑑<1−𝑥𝐹 y 1−

𝑎≤1−𝑥𝐹 donde se sabe que  1−𝑥𝐹 es el punto fijo de 
𝑓*.

	 Además, se verifica que 𝑓∗ (1−𝑥𝑏 )=1−𝑓(𝑥𝑏 )=1−𝑏; 
con lo cual 𝑓* está satisfaciendo las condiciones del 
caso anterior, de esta manera 𝑓* no posee puntos 
de periodo 3 y por la proposición 2 tampoco 𝑓 tiene 
puntos de periodo 3.

•	 Caso 4: 𝑥𝑐<𝑎<𝑥𝐹 y 𝑥𝐹<𝑑<𝑥𝑏 

	 Iniciemos notando que se satisfacen las desigual-
dades 𝑓3 (𝑏) >   𝑏 y 𝑓3 (𝑐)<𝑐.

	 Además 𝑓3 (0)>0, esto pues:

http://10.22201/enesl.20078064e.2018.19.65822
http:10.22201/enesl.20078064e.2018.19.67275
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	 De manera semejante se tiene que 𝑓3 (1)<1 , esto 
pues se cumple:

	 Seguidamente 𝑓(0,𝑏)=(𝑎,1) por lo que existe                       
𝑥′ ∈ (0,𝑏) con 𝑓(𝑥′)=𝑥𝐹.

	 De manera análoga al caso 2 se puede mostrar que  
𝑓 no posee puntos de periodo 3 en el intervalo (0,𝑥′] 
y para el intervalo (𝑥′,𝑏) tampoco los hay pues 
𝑓((𝑥′,𝑏)) ⊂ (𝑥𝐹,1)  con lo cual 𝑓2 ((𝑥′,𝑏)) ⊂  (0,𝑥𝑏) y 
𝑓3 ((𝑥′,𝑏)) ⊂  (𝑏,1).  

	 Evaluando el intervalo (𝑏,𝑥𝑐) obtenemos                         
𝑓((𝑏,𝑥𝑐 ))=(𝑐,1) y por tanto 𝑓2 ((𝑏,𝑥𝑐 ))=(0,𝑑),  por 
lo cual se tiene la existencia de un punto 𝑥′′∈ (𝑏,𝑥𝑐) 
tal que 𝑓2 (𝑥′′)=𝑏. 

	 Así, tendremos que:

	 Y debido a que 𝑓 es una recta decreciente en los 
intervalos (𝑏, 𝑥′′) y (𝑏, 𝑥𝑏) y una recta creciente en 
el intervalo (𝑐, 1) tendremos que 𝑓3 es una recta 
creciente en el intervalo (𝑏, 𝑥′′), lo cual, aunado 
con el hecho de que 𝑓3 (𝑏)>𝑏  y 𝑓3 (𝑥′′ )>𝑥′′, indica 
que 𝑓 no posee puntos de periodo 3 en el intervalo 
(𝑏, 𝑥′′).

	 Para (𝑥′′, 𝑥𝑐) tendremos que 𝑓((𝑥′′, 𝑥𝑐 ))=(𝑐,𝑓(𝑥′′ 
))⊂(𝑐, 1) de lo cual se sigue que 𝑓2 ((𝑥′′, 𝑥𝑐 ))=(0,𝑏)     
y 𝑓3 ((𝑥′′, 𝑐))=(𝑎, 1) ⊂(𝑥𝑐,1) y con lo cual 𝑓 no posee 
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Cumpliéndose pues que 𝑓𝑓3(𝑥𝑥′′′) < 𝑥𝑥′′′, 𝑓𝑓3(𝑐𝑐) < 𝑐𝑐 y que 𝑓𝑓 es una recta decreciente en los 
intervalos (𝑥𝑥′′′, 𝑐𝑐) y (𝑥𝑥𝑐𝑐, 𝑐𝑐) además de una recta creciente en el intervalo (0, 𝑏𝑏) por lo que 
𝑓𝑓3 es una recta creciente en el intervalo (𝑥𝑥′′′, 𝑐𝑐); luego f no posee puntos de periodo 3 en 
el intervalo (𝑥𝑥′′′, 𝑐𝑐). 
 
Finalmente para el intervalo (𝑐𝑐, 1): 

 𝑓𝑓((𝑐𝑐, 1)) ⊂ (0, 𝑥𝑥𝐹𝐹]
⟹  𝑓𝑓2((𝑐𝑐, 1)) ⊂ (𝑥𝑥𝑐𝑐, 1]      
⟹   𝑓𝑓3((𝑐𝑐, 1)) ⊂ (0, 𝑐𝑐)       

 

 
Por lo tanto 𝑓𝑓 no posee puntos de periodo 3 en tal intervalo. 
 

 Caso 3: 𝑎𝑎 ≥ 𝑥𝑥𝐹𝐹  y 𝑥𝑥𝐹𝐹 < 𝑑𝑑 < 𝑥𝑥𝑏𝑏 
 
Comencemos notando que 1 − 𝑥𝑥𝑏𝑏 < 1 − 𝑑𝑑 < 1 − 𝑥𝑥𝐹𝐹 y 1 − 𝑎𝑎 ≤ 1 − 𝑥𝑥𝐹𝐹 donde se sabe 
que 1 − 𝑥𝑥𝐹𝐹 es el punto fijo de 𝑓𝑓∗. 
 
Además, se verifica que 𝑓𝑓∗(1 − 𝑥𝑥𝑏𝑏) = 1 − 𝑓𝑓(𝑥𝑥𝑏𝑏) = 1 − 𝑏𝑏; con lo cual 𝑓𝑓∗ está 
satisfaciendo las condiciones del caso anterior, de esta manera 𝑓𝑓∗ no posee puntos de 
periodo 3 y por la proposición 11 tampoco 𝑓𝑓 tiene puntos de periodo 3. 
 

 Caso 4: 𝑥𝑥𝑐𝑐 < 𝑎𝑎 < 𝑥𝑥𝐹𝐹  y 𝑥𝑥𝐹𝐹 < 𝑑𝑑 < 𝑥𝑥𝑏𝑏 
 
Iniciemos notando que se satisfacen las desigualdades 𝑓𝑓3(𝑏𝑏) > 𝑏𝑏 y 𝑓𝑓3(𝑐𝑐) < 𝑐𝑐. 
 
Además 𝑓𝑓3(0) > 0, esto pues: 

   𝑓𝑓(0) = 𝑎𝑎 ∈ (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹)
⟹   𝑓𝑓2(0) = 𝑓𝑓(𝑎𝑎) ∈ (𝑥𝑥𝐹𝐹, 𝑐𝑐)   
⟹   𝑓𝑓3(0) = 𝑓𝑓2(𝑎𝑎) ∈ (0, 𝑥𝑥𝐹𝐹)

 

 
 De manera semejante se tiene que  𝑓𝑓3(1) < 1, esto pues se cumple: 

    𝑓𝑓(1) = 𝑑𝑑 ∈ (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
⟹   𝑓𝑓2(1) = 𝑓𝑓(𝑑𝑑) ∈ (𝑏𝑏, 𝑥𝑥𝐹𝐹)   
⟹   𝑓𝑓3(1) = 𝑓𝑓2(𝑑𝑑) ∈ (𝑥𝑥𝐹𝐹, 1)

 

 
Seguidamente 𝑓𝑓(0, 𝑏𝑏) = (𝑎𝑎, 1) por lo que existe 𝑥𝑥′ ∈ (0, 𝑏𝑏) con 𝑓𝑓(𝑥𝑥′) = 𝑥𝑥𝐹𝐹. 
 
De manera análoga al caso 2 se puede mostrar que 𝑓𝑓 no posee puntos de periodo 3 en el 
intervalo (0, 𝑥𝑥′]  y para el intervalo (𝑥𝑥′, 𝑏𝑏) tampoco los hay pues 𝑓𝑓((𝑥𝑥′, 𝑏𝑏)) ⊂ (𝑥𝑥𝐹𝐹, 1) con 
lo cual 𝑓𝑓2((𝑥𝑥′, 𝑏𝑏)) ⊂ (0, 𝑥𝑥𝑏𝑏) y 𝑓𝑓3((𝑥𝑥′, 𝑏𝑏)) ⊂ (𝑏𝑏, 1). 
 
Evaluando el intervalo (𝑏𝑏, 𝑥𝑥𝑐𝑐) obtenemos 𝑓𝑓((𝑏𝑏, 𝑥𝑥𝑐𝑐)) = (𝑐𝑐, 1) y por tanto 𝑓𝑓2((𝑏𝑏, 𝑥𝑥𝑐𝑐)) =
(0, 𝑑𝑑), por lo cual se tiene la existencia de un punto 𝑥𝑥′′ ∈ (𝑏𝑏, 𝑥𝑥𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′) = 𝑏𝑏.  
 
Así, tendremos que: 
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Cumpliéndose pues que 𝑓𝑓3(𝑥𝑥′′′) < 𝑥𝑥′′′, 𝑓𝑓3(𝑐𝑐) < 𝑐𝑐 y que 𝑓𝑓 es una recta decreciente en los 
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 Caso 3: 𝑎𝑎 ≥ 𝑥𝑥𝐹𝐹  y 𝑥𝑥𝐹𝐹 < 𝑑𝑑 < 𝑥𝑥𝑏𝑏 
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⟹   𝑓𝑓3(0) = 𝑓𝑓2(𝑎𝑎) ∈ (0, 𝑥𝑥𝐹𝐹)

 

 
 De manera semejante se tiene que  𝑓𝑓3(1) < 1, esto pues se cumple: 

    𝑓𝑓(1) = 𝑑𝑑 ∈ (𝑥𝑥𝐹𝐹, 𝑥𝑥𝑏𝑏)
⟹   𝑓𝑓2(1) = 𝑓𝑓(𝑑𝑑) ∈ (𝑏𝑏, 𝑥𝑥𝐹𝐹)   
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Seguidamente 𝑓𝑓(0, 𝑏𝑏) = (𝑎𝑎, 1) por lo que existe 𝑥𝑥′ ∈ (0, 𝑏𝑏) con 𝑓𝑓(𝑥𝑥′) = 𝑥𝑥𝐹𝐹. 
 
De manera análoga al caso 2 se puede mostrar que 𝑓𝑓 no posee puntos de periodo 3 en el 
intervalo (0, 𝑥𝑥′]  y para el intervalo (𝑥𝑥′, 𝑏𝑏) tampoco los hay pues 𝑓𝑓((𝑥𝑥′, 𝑏𝑏)) ⊂ (𝑥𝑥𝐹𝐹, 1) con 
lo cual 𝑓𝑓2((𝑥𝑥′, 𝑏𝑏)) ⊂ (0, 𝑥𝑥𝑏𝑏) y 𝑓𝑓3((𝑥𝑥′, 𝑏𝑏)) ⊂ (𝑏𝑏, 1). 
 
Evaluando el intervalo (𝑏𝑏, 𝑥𝑥𝑐𝑐) obtenemos 𝑓𝑓((𝑏𝑏, 𝑥𝑥𝑐𝑐)) = (𝑐𝑐, 1) y por tanto 𝑓𝑓2((𝑏𝑏, 𝑥𝑥𝑐𝑐)) =
(0, 𝑑𝑑), por lo cual se tiene la existencia de un punto 𝑥𝑥′′ ∈ (𝑏𝑏, 𝑥𝑥𝑐𝑐) tal que 𝑓𝑓2(𝑥𝑥′′) = 𝑏𝑏.  
 
Así, tendremos que: 
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        𝑓𝑓((𝑏𝑏, 𝑥𝑥′′)) = (𝑓𝑓(𝑥𝑥′′), 1) ⊂ (𝑐𝑐, 1)
⟹  𝑓𝑓2((𝑏𝑏, 𝑥𝑥′′)) = (𝑏𝑏, 𝑑𝑑) ⊂ (𝑏𝑏, 𝑥𝑥𝑏𝑏)   
⟹   𝑓𝑓3((𝑏𝑏, 𝑥𝑥′′)) ⊂ (𝑏𝑏, 1)                     

 

 
Y debido a que 𝑓𝑓 es una recta decreciente en los intervalos (𝑏𝑏, 𝑥𝑥′′) y (𝑏𝑏, 𝑥𝑥𝑏𝑏) y una recta 
creciente en el intervalo (𝑐𝑐, 1) tendremos que 𝑓𝑓3 es una recta creciente en el intervalo 
(𝑏𝑏, 𝑥𝑥′′), lo cual, aunado con el hecho de que 𝑓𝑓3(𝑏𝑏) > 𝑏𝑏 y 𝑓𝑓3(𝑥𝑥′′) > 𝑥𝑥′′ , indica que 𝑓𝑓 no 
posee puntos de periodo 3 en el intervalo (𝑏𝑏, 𝑥𝑥′′). 
 
Para (𝑥𝑥′′, 𝑥𝑥𝑐𝑐) tendremos que 𝑓𝑓((𝑥𝑥′′, 𝑥𝑥𝑐𝑐)) = (𝑐𝑐, 𝑓𝑓(𝑥𝑥′′)) ⊂ (𝑐𝑐, 1) de lo cual se sigue que 
𝑓𝑓2((𝑥𝑥′′, 𝑥𝑥𝑐𝑐)) = (0, 𝑏𝑏) y 𝑓𝑓3((𝑥𝑥′′, 𝑐𝑐)) = (𝑎𝑎, 1) ⊂ (𝑥𝑥𝑐𝑐, 1) y con lo cual 𝑓𝑓 no posee puntos 
de periodo 3 en tal intervalo. 
 
En el intervalo (𝑥𝑥𝑐𝑐, 𝑥𝑥𝐹𝐹) no existen puntos de periodo 3, la demostración es equivalente a 
la mostrada en el caso 2. Hemos mostrado que 𝑓𝑓 no posee puntos de periodo 3 en (0, 𝑥𝑥𝐹𝐹) 
para las condiciones 𝑥𝑥𝑐𝑐 < 𝑎𝑎 < 𝑥𝑥𝐹𝐹  y 𝑥𝑥𝐹𝐹 < 𝑑𝑑 < 𝑥𝑥𝑏𝑏. 
 
Continuando, es claro que 1 − 𝑥𝑥𝑏𝑏 < 1 − 𝑑𝑑 < 1 − 𝑥𝑥𝐹𝐹 1 − 𝑥𝑥𝐹𝐹 < 1 − 𝑎𝑎 < 1 − 𝑥𝑥𝑐𝑐, donde 
1 − 𝑥𝑥𝐹𝐹 es el punto fijo de 𝑓𝑓∗ y se cumplen las igualdades 𝑓𝑓∗(1 − 𝑥𝑥𝑏𝑏) = 1 − 𝑓𝑓(𝑥𝑥𝑏𝑏) = 
1 − 𝑏𝑏 y 𝑓𝑓∗(1 − 𝑥𝑥𝑐𝑐) = 1 − 𝑓𝑓(𝑥𝑥𝑐𝑐) = 1 − 𝑐𝑐. 
 
Es decir 𝑓𝑓∗ no posee puntos de periodo 3 para el intervalo (0,1 − 𝑥𝑥𝐹𝐹) por lo ya 
demostrado anteriormente en este caso para la función 𝑓𝑓, lo cual por la proposición 11 
nos conduce a que 𝑓𝑓 no tiene puntos de periodo 3 en el intervalo (𝑥𝑥𝐹𝐹, 1). 

 
En la figura 6 podemos apreciar dos gráficas, la del lado izquierdo muestra que la gráfica de 
𝑓𝑓3 para una función que cumple las hipótesis de la parte i) del teorema 16 si posee puntos de 
periodo 3 pues hay intersecciones (contando el punto fijo) con la gráfica de la función 
identidad, en cambio la figura del lado derecho muestra que la gráfica de 𝑓𝑓3 de una función 
que cumple las hipótesis de la parte ii) del teorema no presenta intersecciones con la gráfica 
de la función identidad (además del punto fijo) por lo que no posee puntos de periodo 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

puntos de periodo 3 en tal intervalo.

	 En el intervalo (𝑥𝑐, 𝑥𝐹) no existen puntos de perio-
do 3, la demostración es equivalente a la mostra-
da en el caso 2. Hemos mostrado que 𝑓 no posee 
puntos de periodo 3 en (0, 𝑥𝐹) para las condiciones 
𝑥𝑐<𝑎<𝑥𝐹 y 𝑥𝐹<𝑑<𝑥𝑏.

	 Continuando, es claro que, 1−𝑥𝑏<1−𝑑<1−𝑥𝐹 1−
𝑥𝐹<1−𝑎<1−𝑥𝑐, donde 1−𝑥𝐹 es el punto fijo de 𝑓* y 
se cumplen las igualdades 𝑓∗ (1−𝑥𝑏 )=1−𝑓(𝑥𝑏 )= 
1−𝑏 y 𝑓∗ (1−𝑥𝑐 )=1−𝑓(𝑥𝑐 )=1−𝑐.

	 Es decir 𝑓* no posee puntos de periodo 3 para el 
intervalo (0,1−𝑥𝐹) por lo ya demostrado anterior-
mente en este caso para la función 𝑓, lo cual por la 
proposición 2 nos conduce a que 𝑓 no tiene puntos 
de periodo 3 en el intervalo (𝑥𝐹,1).

En la figura 6 podemos apreciar dos gráficas, la del 
lado izquierdo muestra que la gráfica de 𝑓3 para una fun-
ción que cumple las hipótesis de la parte i) del teorema 
2 si posee puntos de periodo 3 pues hay intersecciones 
(contando el punto fijo) con la gráfica de la función iden-
tidad, en cambio la figura del lado derecho muestra que 
la gráfica de 𝑓3 de una función que cumple las hipótesis 
de la parte ii) del teorema no presenta intersecciones con 
la gráfica de la función identidad (además del punto fijo) 
por lo que no posee puntos de periodo 3.

Figura 6. Representación de la presencia o ausencia 
de puntos de periodo tres según las condiciones del 

teorema 2

 
Fuente: elaboración propia.
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Resultados

Para los ejemplos que a continuación mostramos, se 
generó una aplicación computacional que permite la ge-
neración de modelos inéditos de funciones caóticas. Las 
funciones evaluadas están limitadas por la capacidad 
computacional,2 referente a componentes irracionales. 

Funciones tipo Zeta

A continuación, basados en los resultados teóricos obte-
nidos presentamos algunos ejemplos de funciones tipo 
Zeta  —𝑓𝑎,𝑏,𝑐,𝑑  —    con valores particulares en los paráme-
tros cuya dinámica es caótica en el sentido Li-Yorke, y 
de manera computacional pretendemos ilustrar la sen-
sibilidad a condiciones iniciales (correspondiente a la 
definición de Devaney). 

En la figura 7, tenemos en color azul, la gráfica de la 
función 𝑓0.3,0.32,0.76,0.12 — las condiciones del teorema 2 se 
verifican— a su vez, la línea vertical en color rojo ilustra 
la evaluación del punto fijo 19/36. Mientras que en la 
figura 8 evaluamos la función en el punto 19.00001/36, 
pero la órbita es totalmente diferente a la del punto fijo: 
el sistema presenta sensibilidad a condiciones iniciales. 

A su vez, en las figuras 9 y 10 identificamos un punto 
que en la segunda evaluación se obtiene un punto fijo 
—un punto preperiódico—, pero en la figura 11 se observa 
que una pequeña modificación en la condición inicial 
genera órbitas diferentes.

2  Se utilizó una computadora portátil Toshiba con procesador Intel Core i7-
2630QM a 2.0 GHz y para llevar a cabo la programación y los experimentos se 
utilizó MATLAB R2014a y Maple 13.

Figura 7. Primeros 40 elementos de la órbita del punto 

 
Fuente: elaboración propia.
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En la figura 12, tenemos la gráfica de la función 𝑓𝑓 1/5 ,(1/4),(2/3),(4/5) −las condiciones 
del teorema 16 se verifican−   y se ilustra la evaluación de un punto de periodo 3;   
observemos que en la figuras 13 y 14 se ha modificado la condición inicial y por tanto 
la órbita para los primeros puntos parece ser la misma que la figura 12, sin embargo 
cuando se muestran más puntos de la órbita, se aprecia la sensibilidad a condiciones 
iniciales.  
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Fuente: elaboración propia.
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Fuente: elaboración propia.
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Fuente: elaboración propia.
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función en el punto 19.00001/36, pero la órbita es totalmente diferente a la del punto 
fijo: el sistema presenta sensibilidad a condiciones iniciales.  
  
A su vez, en las figuras 9 y 10 identificamos un punto que en la segunda evaluación se 
obtiene un punto fijo —un punto preperiódico—, pero en la figura 11 se observa que 
una pequeña modificación en la condición inicial genera órbitas diferentes. 
  
Figura 7. Primeros 40 elementos de la órbita del punto 19

36 
 
Figura 8. Primeros 100 elementos de la órbita del punto 19.00001

36  

Figura 9.  Evaluación del punto 164 
1575 

 
Figura 10. Primeros 200 elementos de la órbita del punto 164 

1575 
 
Figura 11. Primeros 200 elementos de la órbita del punto  164

1575.0001 
 
En la figura 12, tenemos la gráfica de la función 𝑓𝑓 1/5 ,(1/4),(2/3),(4/5) −las condiciones 
del teorema 16 se verifican−   y se ilustra la evaluación de un punto de periodo 3;   
observemos que en la figuras 13 y 14 se ha modificado la condición inicial y por tanto 
la órbita para los primeros puntos parece ser la misma que la figura 12, sin embargo 
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Fuente: elaboración propia.

En la figura 12, tenemos la gráfica de la función 
𝑓(1/5),(1/4),(2/3),(4/5) −las condiciones del teorema 2 se veri-
fican− y se ilustra la evaluación de un punto de periodo 
3; observemos que en la figuras 13 y 14 se ha modificado 
la condición inicial y por tanto la órbita para los primeros 
puntos parece ser la misma que la figura 12; sin embargo 
cuando se muestran más puntos de la órbita, se aprecia 
la sensibilidad a condiciones iniciales.  
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obtiene un punto fijo —un punto preperiódico—, pero en la figura 11 se observa que 
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En la figura 12, tenemos la gráfica de la función 𝑓𝑓 1/5 ,(1/4),(2/3),(4/5) −las condiciones 
del teorema 16 se verifican−   y se ilustra la evaluación de un punto de periodo 3;   
observemos que en la figuras 13 y 14 se ha modificado la condición inicial y por tanto 
la órbita para los primeros puntos parece ser la misma que la figura 12, sin embargo 
cuando se muestran más puntos de la órbita, se aprecia la sensibilidad a condiciones 
iniciales.  
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Fuente: elaboración propia.
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Figura 13. Primeros 6 elementos de la  órbita de 

Funciones tipo Zeta (Subsección) 
  
A continuación, basados en los resultados teóricos obtenidos presentamos algunos 
ejemplos de funciones tipo Zeta  —𝑓𝑓𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑—   con valores particulares en los 
parámetros cuya dinámica es caótica en el sentido Li-Yorke, y de manera 
computacional pretendemos ilustrar la sensibilidad a condiciones iniciales 
(correspondiente a la definición de Devaney).  
  
En la figura 7, tenemos en color azul, la gráfica de la función 𝑓𝑓0.3,0.32,0.76,0.12  —las 
condiciones del teorema 16 se verifican—   a su vez, la línea vertical en color rojo 
ilustra la evaluación del punto fijo 19/36.   Mientras que en la figura 8 evaluamos la 
función en el punto 19.00001/36, pero la órbita es totalmente diferente a la del punto 
fijo: el sistema presenta sensibilidad a condiciones iniciales.  
  
A su vez, en las figuras 9 y 10 identificamos un punto que en la segunda evaluación se 
obtiene un punto fijo —un punto preperiódico—, pero en la figura 11 se observa que 
una pequeña modificación en la condición inicial genera órbitas diferentes. 
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En la figura 12, tenemos la gráfica de la función 𝑓𝑓 1/5 ,(1/4),(2/3),(4/5) −las condiciones 
del teorema 16 se verifican−   y se ilustra la evaluación de un punto de periodo 3;   
observemos que en la figuras 13 y 14 se ha modificado la condición inicial y por tanto 
la órbita para los primeros puntos parece ser la misma que la figura 12, sin embargo 
cuando se muestran más puntos de la órbita, se aprecia la sensibilidad a condiciones 
iniciales.  
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Fuente: elaboración propia.

Figura 14. Primeros 300 elementos de la  órbita del punto 
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A continuación, basados en los resultados teóricos obtenidos presentamos algunos 
ejemplos de funciones tipo Zeta  —𝑓𝑓𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑—   con valores particulares en los 
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computacional pretendemos ilustrar la sensibilidad a condiciones iniciales 
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En la figura 7, tenemos en color azul, la gráfica de la función 𝑓𝑓0.3,0.32,0.76,0.12  —las 
condiciones del teorema 16 se verifican—   a su vez, la línea vertical en color rojo 
ilustra la evaluación del punto fijo 19/36.   Mientras que en la figura 8 evaluamos la 
función en el punto 19.00001/36, pero la órbita es totalmente diferente a la del punto 
fijo: el sistema presenta sensibilidad a condiciones iniciales.  
  
A su vez, en las figuras 9 y 10 identificamos un punto que en la segunda evaluación se 
obtiene un punto fijo —un punto preperiódico—, pero en la figura 11 se observa que 
una pequeña modificación en la condición inicial genera órbitas diferentes. 
  
Figura 7. Primeros 40 elementos de la órbita del punto 19

36 
 
Figura 8. Primeros 100 elementos de la órbita del punto 19.00001

36  

Figura 9.  Evaluación del punto 164 
1575 

 
Figura 10. Primeros 200 elementos de la órbita del punto 164 

1575 
 
Figura 11. Primeros 200 elementos de la órbita del punto  164

1575.0001 
 
En la figura 12, tenemos la gráfica de la función 𝑓𝑓 1/5 ,(1/4),(2/3),(4/5) −las condiciones 
del teorema 16 se verifican−   y se ilustra la evaluación de un punto de periodo 3;   
observemos que en la figuras 13 y 14 se ha modificado la condición inicial y por tanto 
la órbita para los primeros puntos parece ser la misma que la figura 12, sin embargo 
cuando se muestran más puntos de la órbita, se aprecia la sensibilidad a condiciones 
iniciales.  
 
Figura 12. Primeros 300 elementos de la órbita del punto 136

2179 

Figura 13. Primeros 6 elementos de la  órbita de  136
2179.000001 

 
Figura 14. Primeros 300 elementos de la  órbita del punto 136

2179.000001 
 

 
Fuente: elaboración propia.

Aplicación a generación de números pseudoaleatorios

Consideremos una función tipo Zeta con parámetros

Aplicación a generación de números pseudoaleatorios (Subsección) 
  
Consideremos una función tipo Zeta con parámetros 
 

 𝑎𝑎 = 1
2 , 𝑏𝑏 = 2

5 ; 𝑐𝑐 = 5
8  𝑦𝑦 𝑑𝑑 = 2

3  

 
Los siguientes son puntos de periodo tres: 
 

 3287
3524 , 305

881 , 482
881 , 22975

24871 ,  10375
24871 ,   13210

24871 

  
1

451  

 
CONCLUSIONES (SECCIÓN) 
  
Hemos construido una familia de sistemas caóticos en el sentido Li-Yorke y 
al mismo tiempo estamos sugiriendo un “proceso para generar caos” el 
cuál lo podemos sintetizar en dos instrucciones: 
  
Defina una función continua de la forma 𝑓𝑓: 𝐼𝐼 → 𝐼𝐼  con 𝐼𝐼 un intervalo 
cerrado y acotado. 

Construya la función ℎ = 𝑓𝑓 𝑓𝑓 𝑓𝑓 𝑥𝑥 : 𝐼𝐼 → 𝐼𝐼  y resuelva la ecuación 
ℎ 𝑥𝑥 = 𝑥𝑥 sujeta a 𝑓𝑓 𝑥𝑥 ≠ 𝑥𝑥.  Si existen puntos que verifican la ecuación y 
la restricción entonces 𝑓𝑓 tiene puntos de periodo tres y por lo tanto se 
tiene un sistema dinámico caótico. 
  
La teoría que fundamenta  la validez del proceso son los teoremas de 
Sharkovskii, del punto fijo y el trabajo de Li y Yorke.  Es muy frecuente que 
se vuelva difícil demostrar directamente con la definición que un sistema 
dinámico es caótico; sin embargo, el encontrar puntos de periodo tres, 
tendríamos la respuesta si lo que buscamos es caos. 
  
Generar la órbita de tamaño conveniente; por ejemplo, 𝐿𝐿 (𝐿𝐿  sería la 
cantidad de números deseados para la lista) 
 

Los siguientes son puntos de periodo tres: 

Si consideramos como punto inicial al número 
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, se 
obtiene la secuencia que aparece en la tabla 1.

Tabla 1. Secuencia generada por el punto inicial 1/451

 
Fuente: elaboración propia.

Cabe señalar que los números presentados aquí han 
sido truncados, no redondeados, para facilitar la lectura.

La gráfica de la secuencia generada se presenta en 
la figura 15.

Figura 15. Secuencia asociada al punto inicial 1/451

 
Fuente: elaboración poropia.

En la tabla 2 se presentan los resultados de las pruebas 
de aleatoriedad (Coss Bu, 2003)  a la secuencia.
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0.00221 0.50277 0.54323 0.36338 0.95423 0.58531 0.17639 
0.72049 0.16976 0.71220 0.15503 0.69379 0.12230 0.65288 
0.04956 0.56195 0.28017 0.85022 0.40039 0.99822 0.66351 
0.06847 0.58559 0.17513 0.71892 0.16697 0.70871 0.14883 
0.68603 0.10851 0.63563 0.01891 0.52364 0.45047 0.77566 
0.26785 0.83481 0.37300 0.96625 0.60667 0.08143 0.60179 
0.10313 0.62891 0.00696 0.50871 0.51684 0.48069 0.64134 
0.02906 0.53633 0.39408 0.99260 0.65352 0.05070 0.56338 
0.27385 0.84231 0.38634 0.98293 0.63632 0.02013 0.52516 
0.44369 0.80579 0.32141 0.90176 0.49202 0.59097 0.15120 
0.68900 0.11379 0.64224 0.03065 0.53831 0.38525 0.98157 
0.63390 0.01582 0.51978 0.46762 0.69944 0.13235 0.66543 
0.07189 0.58986 0.15616 0.69520 0.12480 0.65600 0.05512 
0.56890 0.24931 0.81164 0.33182 0.91477 0.51515 0.48818 
0.60807 0.07522      
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Tabla 2. Resultados de las pruebas de aleatoriedad para 
la secuencia 1

 
Fuente: elaboración propia.

Conclusiones

Hemos construido una familia de sistemas caóticos en 
el sentido Li-Yorke y al mismo tiempo estamos sugirien-
do un “proceso para generar caos” el cual lo podemos 
sintetizar en dos instrucciones:

1)	 Defina una función continua de la forma 𝑓:𝐼→𝐼  con 
𝐼 un intervalo cerrado y acotado.

2)	 Construya la función ℎ=𝑓(𝑓(𝑓(𝑥))):𝐼→𝐼  y resuel-
va la ecuación ℎ(𝑥)=𝑥 sujeta a 𝑓(𝑥)≠𝑥. Si existen 
puntos que verifican la ecuación y la restricción 
entonces 𝑓 tiene puntos de periodo tres y por lo 
tanto se tiene un sistema dinámico caótico.

La teoría que fundamenta  la validez del proceso son 
los teoremas de Sharkovskii, del punto fijo y el trabajo 
de Li y Yorke.  Es muy frecuente que se vuelva difícil de-
mostrar directamente con la definición que un sistema 
dinámico es caótico; sin embargo, el encontrar puntos 
de periodo tres, tendríamos la respuesta si lo que bus-
camos es caos.

En este trabajo se mostró analíticamente las condicio-
nes que deben verificar los parámetros para las funcio-
nes tipo Zeta que garantizan la existencia de caos en el 
sentido de Li-Yorke. En particular mostramos una familia 
de Z´s  con  puntos de periodo tres  - y por tanto caóticas 
en el sentido mencionado-.

Si existe interés en una aplicación de los modelos cons-
truidos, se sugiere como primera opción la construcción 
de listas de números “pseudoaleatorios”. A continuación 
se enumera el procedimiento básico a seguir: 

Pruebas de aleatoriedad 
Promedios SI 

Frecuencias  NO 
Kolmogorov-Smirnov SI 

Varianza  NO 
Distancias SI 

Series  NO 
Póker SI 

Corridas  NO 

1)	 Iniciar con un número arbitrario en el intervalo 
unitario.

2)	 Elegir una de las funciones tipo Zeta que satisfaga 
las condiciones de periodo tres (el teorema de Li-
Yorke garantiza que el sistema inducido es caótico).

3)	 Generar la órbita de tamaño conveniente; por ejem-
plo, 𝐿 (𝐿 sería la cantidad de números deseados 
para la lista).

4)	 Con un procesador comparar si hay una repetición 
en la lista de tamaño L, en caso de existir repetición 
se desecha la lista (en este caso se tiene un punto 
de periodo L o preperiódico); en caso contrario se 
continua con el paso 5.

5)	 Aplicar las pruebas estadísticas para validar “la 
aleatoriedad” de la lista.

Este trabajo fue una propuesta adicional a las exis-
tentes en la literatura relativa a los sistemas dinámicos 
caóticos unidimensionales, así como para identificar 
la generación de números pseudoaleatorios como una 
primera aplicación.
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