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Ajuste recursivo con transformaciones
invariantes y bootstrapping:
El caso de una caminata aleatoria
con intercepto
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= Resumen: Usamos simulaciones de Monte Carlo para estudiar el
desempefio de la prueba de raiz unitaria de Shin-So (DFSS) bajo los
enfoques de transformaciones invariantes y el bootstrapping. Si la
hipétesis alternativa es un proceso estacionario alrededor de una ten-
dencia lineal, entonces la prueba bootstrap paramétrica es la mejor
en términos de la potencia estadistica. Sin embargo, si transforma-
mos las observaciones para construir una prueba invariante, entonces
la prueba DFSS es la mejor. Por consiguiente, la recomendacion es
usar transformaciones invariantes de la prueba de raiz unitaria de
Shin-So debido a que su ejecucion es directa y de menor coste.

= Abstract: We use Monte Carlo simulations to study the performance
of Shin-So unit root test (DFSS) under invariant transformation ap-
proaches and bootstrapping. If the alternative hypothesis is a station-
ary process around a linear trend, then the parametric bootstrap test
is the best in terms of statistical power. However, if we transform the
observations to build an invariant test, then the DF'SS test is the best.
Therefore, the recommendation is to use transformations of the in-
variant Shin-So unit root test because its implementation is straight-
forward and less costly.
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= [Introduccion

La prueba de Dickey-Fuller (DF) sirve para probar si una serie provie-
ne de un proceso estocdstico raiz unitaria. El desempefio de la prueba
depende de supuestos sobre la especificacion de la hipdtesis nula. Estos
supuestos son: 1) la presencia de un intercepto en la caminata aleatoria,
2) la distribucién de probabilidad del término de error y 3) la condicién
inicial del proceso estocdstico. El estadistico DF experimenta proble-
mas en la potencia y tamafio de la prueba. La potencia baja se manifiesta
sobre todo cuando el proceso es cuasi-raiz unitaria (débilmente estacio-
nario), mientras que la distorsién en el tamafio de la prueba surge debido
a cambios estructurales en la hipétesis nula. Hay progresos en torno a
la metodologia Dickey-Fuller, los cuales incluyen regresiones forward-
reverse, estimadores simétricos ponderados y variables instrumentales,
asi como estadisticos especificos, por ejemplo, las pruebas Kwiatkowki-
Phillips-Schmith-Shin, Leybourne-McCabe, Phillps-Perron y otras mas.

El método de ajuste recursivo propuesto por Shin-So (2001, 2002) y
So-Shin (1999) reduce el sesgo en la estimacién de la ecuacién autorre-
gresiva, con lo que mejora la potencia de la prueba DF. Dada la reduc-
cién del sesgo, Cook (2002, 2003), Kim, et al. (2002, 2004) y Leybour-
ne, et al. (1998, 2000) proporcionan evidencia de robustez de la prueba
Shin-So (DFSS) cuando la caminata aleatoria es pura y experimenta
cambios estructurales en su media. Por su parte, Lizarazu-Villasefior
(2007) muestran la robustez de la prueba DFSS a la coexistencia de
rompimientos en la media y la varianza del proceso estocéstico.

La prueba DF'SS para una caminata aleatoria pura no representa difi-
cultades. No es el caso si la caminata aleatoria tiene una deriva, ya que
la distribucidn de probabilidad del estadistico DFSS es compleja (o bien,
desconocida). La dificultad de aplicar la prueba de Shin-So, sin embar-
go, se evita al implementar las siguientes acciones: 1) Usar transforma-
ciones para construir una prueba invariante a los pardmetros bajo la hi-
potesis nula y 2) emplear la técnica boostrap paramétrica, cuya ventaja
es la estimacion del intercepto de la caminata aleatoria. Esta cuestién
es precisamente el meollo del problema de una prueba no-invariante al
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intercepto de la caminata aleatoria, puesto que es necesario calcular los
cuantiles de la distribucién del estadistico.

En este articulo evaluamos el desempefio de estos dos enfoques
mediante simulaciones de Monte Carlo. Los problemas asociados a la
prueba de raiz unitaria DF son vastos, por lo que es importante sefialar
que nuestro andlisis concierne a la metodologia de Bhargava (1986). La
préctica de la prueba de raiz unitaria se exterioriza mediante la ecua-
cién de estimacién de los pardmetros. La metodologia Dickey-Fuller
(1979, 1981) implica estimar la ecuacién y, = o+ B¢ +py,  +u, , donde
u, ~ iidN(0,07). Por lo tanto, la implementacion de la técnica bootstrap
sera distinta dependiendo de la metodologia Dickey-Fuller o Bhargava.

El procedimiento de anidamiento de las hipédtesis en el enfoque
Barghava conlleva una estimacion secuencial de los pardmetros. Pre-
viamente es necesario estimar o y 3 a partir de la regresién de la ecua-
cion y, =o+P¢+v,,y después hay que estimar ¢ mediante la ecuacién
v, =¢v_ +¢,, donde & ~ iidN(0,0%). Las ecuaciones de Bhargava
implican: y, = oc(l - (1)) +¢y,_, +¢€,, por lo que si H :0=1entonces
el proceso es una caminata aleatoria con intercepto, y si H, :|¢| <1,
el proceso es estacionario alrededor de una tendencia lineal. En ambas
metodologias se tiene la misma hipdtesis nula, pero en la metodologia
Dickey-Fuller la ecuacién a estimar es ex professo. Por tal motivo, el
alcance de los resultados depende no sélo del proceso generador de los
datos simulados, sino sobre todo de la ecuacién utilizada en la estima-
cion de los pardmetros.

Si bien no es un caso general, el estudio de este articulo es un avance
en tal direccion. Es decir, es conveniente examinar casos particulares y
después ir a casos mds generales. Por lo tanto, en este tenor, el articulo
estd organizado de la siguiente manera: en la segunda seccion se presen-
tan algunas cuestiones tedricas de la prueba DFSS para el caso de una
caminata aleatoria pura. En la tercera seccidon se muestran las dificulta-
des tedricas de la prueba DFSS en el caso de una caminata aleatoria con
intercepto. En la cuarta seccién se explica en qué consiste una prueba
estadistica invariante al pardmetro de la hip6tesis nula. En la quinta sec-
cién se explica el método bootstrap paramétrico. En la sexta seccidn se
analizan los resultados de las simulaciones de Monte Carlo. Por tltimo,
en la séptima seccidn, incluimos algunos comentarios de conclusién.

w La prueba DF de Shin-So para una caminata aleatoria pura

Consideremos el horizonte de tiempo ¢=1,---,T en las siguientes espe-
cificaciones.
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(D Y, =0+,
) v = (])v,_1 +eg,

Donde & ~ iid(0,0?). La estructura anterior de ecuaciones da lugar a
un proceso estacionario, donde el pardmetro o es la media de y,, mien-
tras que 0 < ¢ <1 es el coeficiente de la ecuacion autorregresiva de las
desviaciones de y, en relacion a o.2 Lo anterior es evidente, pues al
insertar [2] en [1] se arriba a la siguiente ecuacion:

(3) y=o(1-0)+0y,  +¢,

Alternativamente:

) v —o=0(y,, —a)+e,

Sila hipGtesis nulaes H, :0=1 entonces la ecuacion [4] se convier-
te en una caminata aleatoria pura: y, =y,

La prueba de Dickey-Fuller (DF) se basa en el siguiente estadistico
DF =T (¢ - 1) Se rechaza la hipétesis nula cuando el estadistico es me-
nor a la constante critica asociada al nivel de significancia. El estimador
¢ es obtenido por el método de minimos cuadrados ordinarios (MCO).

) Z( ~6)(y,, -]
>(,.-6)

1=

Bajo la hipétesis nula, el estadistico DF sigue una distribucién teé-
rica asintética conocida como la distribucion Dickey-Fuller, la cual es
representada por la siguiente distribucién de probabilidad:

(©6) _;{[W(l)]z_l}_W(l);[W(r)dr
J[ ]dr—{jW dr:|2

donde W() es un proceso de Weiner o Browniano.

2 Laestructura de ecuaciones [3] y [4] es conocida como la metodologia Bhargava, la cual
es diferente a la metodologia Dickey-Fuller. Véase Maddala-Kim (1998, pp. 37-39).
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El estimador & es necesario en la construccion de ¢, y el mismo es
el resultado de una sucesién de cédlculos. En primer lugar, se estima el
pardmetro o de la ecuacién [1] mediante MCO, lo que da lugar a:

A 1 <
(7) a=—>,
T4

En seguida se extrae el valor de & de las observaciones de y, para
construir ¢ (véase la ecuacién [5]).

En la regresion de la ecuacion [4] estd latente un problema correla-
cion del regresor ( Y- (3() y el término de error &,. La siguiente férmu-
la proporciona una idea de la magnitud de la correlacion inmersa.

o g ge s

El problema desaparece si utiliza otro estimador para o.. Siguiendo
a Shin-So (2001, 2002) y So-Shin (1999), el estimador que elimina el
sesgo viene definido por la siguiente ecuacion:

o IN
©) 6 =2,
i=1

Este es conocido como el ““estimador de ajuste recursivo” debido
a que la media muestral se calcula secuencialmente para los distintos
periodos y tamafios de muestras concebidas desde ¢ hasta las T obser-
vaciones.

Al utilizarse d;‘_l en la extraccion de la media estimada de las ob-
servaciones de y, desaparece la correlacion, por lo que el estimador de
ajuste recursivo de ¢ viene a ser:

(10) i(y,—oc,;,)(y,fl —01,;.)
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El estadistico DFSS=T ((f)r - 1) sigue una distribucion tedrica no

estandar conocida como la distribucion Dickey-Fuller-Shin-So, la cual
es representada por la siguiente expresion:

%[W(l)z - 1} —rw (1) ! W (s)ds
j.{W(r)— r"le(s) ds} dr

0 0

(11) DFSS =

donde r € (0,1) y W() es un proceso de Weiner o Browniano. En este
caso, también se rechaza la hipdtesis nula si el estadistico DFSS es me-
nor a la constante critica del cuantil apropiado.

La ecuacién [11] es diferente de [6] y siguiendo a Shin-So (2001,
2002), la potencia de la prueba DFSS es mejor en relacién con la
prueba DF, donde la hipdtesis alternativa es estacionariedad. La
explicacién no sélo descansa en la propiedad EZ;( Vo= df) € =0,
sino también en la reduccién del sesgo de estimacién de FE ((f)r - q)) al
utilizar el estimador ¢’, lo que lleva consigo valores criticos de T ((T)' - 1)
mds cargados a la derecha que los correspondientes a T (q3 - 1) . Por lo
tanto, la tasa de aceptacién de H, en el caso de valores |¢| <1 serd for

zosamente mayor en la prueba DFSS.

» La prueba DF de Shin-So para una caminata aleatoria
con intercepto

Consideremos el tiempo ¢ =1,---,T en el siguiente conjunto de ecuacio-
nes:

(12) y,=o+Br+v

(13) v, =(|)v,_1+£[
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La primera ecuacion incluye a la constante o y a la tendencia li-
neal B (coeficiente del tiempo) mds una variable aleatoria v,. La segunda
ecuacion es una ecuacién autorregresiva de primer orden de la variable
aleatoria v,, donde se incluye un término de error ruido blanco denotado
por & ~ iid(0,0%).

Si la hip6tesis nula es H :¢ =1, entonces de las ecuaciones [12] y
[13] implican una caminata aleatoria con intercepto deriva:

(14) y,=B+y_ +g,

La ecuacidén anterior también se puede expresar en términos de su
primera diferencia:

(15) Ay =y -y  =B+eg,

En tal caso, Ay, no depende de «, pero si del valor de . La presencia
de este parametro desempefia un papel importante en la construccion de
una prueba estadistica, tal como se muestra mas adelante.

La hipdtesis alternativa H, :0<¢ <1 corresponde a un proceso es-
tocdstico estacionario alrededor de una tendencia lineal:

(16) Y, =0y, +e,
donde y =y —a-Bty y_ =y —o- B(z - 1) son las observaciones
después de descontar la componente determinista.

En este caso, la construccién del estadistico de la prueba DF exige
la estimacion de los pardmetros de la ecuacion [12], la cual puede rees-
cribirse como:

(17 yl=°‘+Bf+V,=Z:Y+V,
donde Z, E(l,t) y v E(OL,B) .

El estimador MCO de 7 se calcula de la siguiente manera:

(18) 7=(6.B)= (iZIZ,]_I [ZZyJ

En la prueba DF ET((I)— 1) el estimador ¢ es:



102 m Suplemento/Supplement Vol. 7. NUm. 1

(19) C Xn-2)(n.-2.9)
b=

T
1

donde Z E(l,t—l).

En analogia a la seccién anterior, la prueba DF exhibe una potencia
mayor si la componente determinista de [12] se estima secuencialmente
para cada posible muestra de tamaflo d (2, T) . En tal caso, el estadis-
tico de ajuste recursivo es DFSS = T((I)’ — 1), donde T es el tamafio de
la muestray ¢ es el estimador de ajuste recursivo.

T

(20) A Z (yz - Zt'—l'?r)(yr—l - Zt'—l’?r)

r_ =l
i (yr—l N Z;fl?r )

=1

donde Z | E(l,t— 1) . El estimador y" es igual a:
. A ‘ , -
(21) Y,r E(a:’B:)':(szZk] zzkyk
k=1 k=1

donde Z, E(l, k) )

La regla de rechazo de la hip6tesis nula de ambas pruebas es que los
estadisticos de prueba DF y DFSS sean respectivamente menores a las
constantes criticas pertinentes. Sin embargo, es imposible calcular las
constantes criticas, ya que se desconocen las distribuciones de probabi-
lidad de ambos estadisticos.

Ademds, otro inconveniente es que la componente determinista con-
lleva la presencia de B. ;Por qué? Consideremos las transformaciones
para los periodos ty t—1:

22) W=7, =y-06,-B(t-1)

(23) )7:71 =Va~ Zt—l’?zr—l =V~ dzrfl - Btr—l (t - 1)
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donde Z['f1 E(l,t - 1) . El estimador ?,r_l es equivalente a [21] con la sal-
vedad de que el indice del operador sumatoria llegaa ¢t —1.

-1 1
24) ?;—1 = [szZL] szyk
s k=1

Se puede mostrar que los estimadores de ajuste recursivo dan lugar
a la siguiente expresion:

-1 -1 4t -2 -1 6 -1

t-1 ik 2 (1-1)(r-2) y"_(t—l)(t—z) w,

k k=1
r

25 4 =

=1

- 6 il 12 <
Zk k Zk)ﬁ _(t—l)(t—2) y"+[( —1)( —2) kzlkyk

k=1 k=1 k=1

Al premultiplicar Z_ y 7/, se tiene:

o /-1 v 1 2 6 =l
(26) Z,lv;'l{ZZkaj 2Ly =Tt ERRE
k=1 k=1

t

De esta manera, se llevan a cabo las siguientes operaciones:

(27) _— 2 1—1 B 6 1—1
i y’+t—l,§{yk t(t—l)kz:{kyk

2 1—1 6 1—1
(28) Sro= = -

Si las transformaciones involucradas toman en cuenta la condicion

inicial Y, =0 del proceso estocdstico, entonces la iteracion hacia atrés
de la ecuacién [14] para los periodos ¢ y k implica:

(29) v, =y, +1B+S
(30) Y =y0+kB+Sk
donde S, Ez;lsj y S, EZ ;8;‘ De esta manera, transformaciones

[27] y [28] dan lugar a las siguientes ecuaciones:
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2 -1 6 -1
(31) jr=8 = S, ———— D kS, +P
. 2 -1 6 -1
(32) FLa=Sat NS, ———= D kS

donde S, EZ €, . Es evidente que tanto A como )’, , son una fun-
cion de las sumas S, (i=k,t,t-1). Ademas sibien V. no depende del
pardmetro 3, no sucede lo mismo con ¥, . En efecto, la primera diferen-
cia de y, es igual al pardmetro [ mds la variable aleatoria ruido blanco:
AV, =3y -, =Be,.

Por consiguiente, la prueba DFSS no es invariante al pardmetro de
tendencia .3 La existencia de este problema exige una solucién. Al res-
pecto, existen dos posibles enfoques: el primero consiste en transforma-
ciones adecuadas de las observaciones. El segundo enfoque es incorpo-
rar estimaciones del pardmetro B con el método bootstrap paramétrico.
En este dltimo caso se cuantifican los cuantiles de la distribucién de
probabilidad del estadistico. En la seccion siguiente abordamos el enfo-
que de las transformaciones invariantes y dejamos para la seccién sub-
siguiente el boostrap.

» Transformaciones invariantes de las variables

En relacion con el ajuste recursivo existen al menos tres alternativas de
transformaciones para construir una prueba invariante al pardmetro [3.
La primera es la transformacion de Taylor (2002), la cual consiste en
descontar la componente determinista estimada de los periodos ty ¢ —1.
La segunda transformacién se debe a Chang (2002), la cual esencial-
mente consiste en incorporar a la construccién de la prueba invariante el
estimador del parametro de estorbo. Por dltimo, la tercera transforma-
cién es un artificio ad-hoc de eliminacién algebraica del pardmetro f3.

3 Rodrigues (2006) sefiala que la presencia del pardmetro 8 en AJ’ es un estorbo para el
tamafio de la prueba. Este mismo autor reporta resultados de un estudio de simulacién
Monte Carlo, segtin la cual, la potencia de la prueba estadistica es sensiblemente deficien-
te para la hipétesis alternativa [¢|<1 con valores de ¢ cercanos a la unidad. Sin embargo, el
estudio de Rodrigues no explica si existen otras alternativas de resolucién del problema.
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» La Transformacion de Taylor

Segtn las ecuaciones [31] y [32], la primera diferencia de la variable
aleatoria yt "depende del parametro B, por lo cual es natural proceder
con los estimadores ¥, y ¥, , para transformar respectivamente a las
variables ¥, y V,_,. En tal caso, la ecuacién [22] permanece intacta y
solo se afecta [23], la cual se sustituye por:

(33) Y=y Ly =y, -6 B

donde Z, E(l,t) .Elcilculo de ¥, se realiza de la siguiente manera:

(34) Y=

‘ ! 6/ 12 !
YLD YL U 2L B B ey D Y ey ey DL

La modificacién de Taylor es la transformacion ideal y las variables
Vi, y V., seran calculadas de la siguiente manera:

(35) Zyk (t+1 ;ky"
(36) o iz—l B 6 -1
V=Yt t_lg;yk t(t-1) S i

En seguida se muestra que estas transformaciones son independien-
tes del pardametro de estorbo . En efecto, al iterar hacia atrds y apoyados
en ciertos supuestos particulares se llega a las siguientes ecuaciones:4

(37) Ir = g t - 6 t kS
y1,1 St+tk2:14Sk t(t+1)k2:1‘ ¢
(38) _ _ i 1-1 B 6 1—1
yl,,71 Sr—l + -1 o Sk t(l‘ - 1) k=1 kSk

4 Estos supuestos especificos son la condicion inicial del proceso estocastico y la validez de
la hipétesis nula.
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Por lo tanto, la primera diferencia de 7, esun proceso estocdstico
independiente del pardmetro [3: Aj;]rt = j/lr, - j;er =€, .

» La Transformacion de Chang

El estimador MCO de B bajo la ecuacién [14], es decir, la hipdtesis nula,
es igual a:

T
(39) B=—

El estimador MCO de B se incorpora en la ecuacién [23] con signo
negativo. De esta manera, la transformacion buscada es igual a:

(40) % 2§ )
Vi, =, +:kz:l,yk _t(t——l)kz:fkyk _

(4D) Vs =V

De la ecuacion [40] no es dificil arribar a la siguiente ecuacion:

i— t—1

A
(42) -)751 z Z (f— )stk+B_%

k k=1
Si bien, en muestreo repetido tenemos E{B} =, lo que interesa

crucialmente es darse cuenta que Ay, / T=B+ Z / T, por lo que la

transformacién yz, implica:

tlt

T

1
kSk +?§8t

2 -1 1—1
(43) =8t S -
Yas -1t (f—l k=1

Si T — oo entonces Z / T — 0, por lo que esta transformacién

=1 t
da lugar a un estadistico independiente del pardmetro [3.

» La transformacion ad-hoc

Supongamos de nuevo la condicién inicial del proceso estocdstico
¥, =0, entonces bajo la hipdtesis nula el proceso generador de datos es:

(44) v, =13+
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A partir de la ecuacion [44], obsérvese que Z;zl Y / kesigual a:

“3) Y=X

k=1 k=1

(kB+Sk)=[3+§%Sk

| —

De esta manera, la transformacion ideal es el resultado de las si-
guientes operaciones:

111
(46) )Njg,t_ t__szt E%yk

=1
47) UGNE S e
k=1

Cuando las ecuaciones anteriores son iteradas hacia atrds entonces
obtenemos una prueba estadistica independiente de B, ya que se cum-
plen las siguientes ecuaciones:

(48) =5 Ze Z

ANI—‘

- 1
(49) Vi = SH - sz

1

=
Il

Por consiguiente, las tres clases de transformaciones se pueden utilizar
para construir una prueba estadistica invariante con la seguridad de que el
valor del parametro 3 no influird en el tamafio y la potencia de la prueba.

» El bootstrap paramétrico para la prueba de DFSS de Shin-So

El método bootstrap facilita el estudio de las propiedades de un estadis-
tico cuando no se conoce su distribucién tedrica (finita y/o asintética).
Tal como en la inferencia paramétrica, la técnica bootstrap pretende
describir los estados verdaderos de la naturaleza. La idea es generar una
cantidad grande de muestras bootstrap con el propdsito de calcular los
constantes criticas del cuantil de la distribucion de probabilidad del esta-
distico bootstrap. Cuando la distribuciéon empirica del estadistico boots-
trap es una buena aproximacion de la distribucion tedrica del estadistico
corriente, entonces la prueba bootstrap conduce a inferencias correctas.
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La inferencia paramétrica procede en términos de (1) los errores es-
tandares de los estimadores, (2) los intervalos de confianza de los esti-
madores de los pardmetros desconocidos y (3) los valores p del estadis-
tico de prueba. Supongamos un conjunto de distribuciones P, donde P,
es una distribucion particular, entonces (1)-(3) se cuantifican a través de
Juncionales del tipo Q( R)) donde Q(Bjes la estimacion bootstrap y
P, es el estimador bootstrap de F,. S1 F, se indexa mediante el para-
metro 0, entonces el bootstrap se dice que es paramétrico y Q(PO;G es
denominado bootstrap pardmetrico. En estos casos, el proceso gene-
rador de datos bootstrap esta caracterizado por el pardmetro estimado.

En algunas situaciones es imposible hallar el proceso generador de
datos bootstrap, por lo que el estadistico bootstrap no tendra la misma
distribucion del estadistico corriente. Si el estadistico no es pivotal,’ es
deseable obtener una buena estimacién del proceso generador de datos
verdadero. Por tal motivo, el bootstrap paramétrico exige tanto como
sea posible la estimacion de los parametros desconocidos del proceso
generador de datos verdadero. La razén es que estas estimaciones son
utilizadas en la construccion del proceso generador de datos bootstrap,
asi como en las muestras bootstrap.

La distribucién de probabilidad del estadistico DFSS se basa en el
proceso generador de datos de la hipdtesis nula. Diversos valores de oL y
B satisfacen las ecuaciones [12] y [13] incluso si ¢ =1. Sin embargo, el
pardmetro o no aparece en el proceso generador de datos de la hipdtesis
nula. Por ende, en la generacién de las muestras corrientes interesa solo
la estimacién del pardmetro B, el que debe ser estimado consistentemen-
te para que sea posible construir las muestras bootstrap y computar el
estadistico bootstrap.

El método bootstrap en el caso de la prueba DFSS se lleva a cabo a
términos de las siguientes etapas:

Se generan |S| muestras para un valor fijo de  bajo el proceso gene-
rador de datos de la hip6tesis nula. Por supuesto, el valor del pardmetro
B se fija previamente y de forma arbitraria.

Se estima consistentemente el pardmetro 3 mediante el ajuste recur-
sivo de Shin-So y se construyen |B| muestras bootstrap bajo el proceso
generador de datos de la hipétesis nula.

En cada muestra bootstrap se calcula el estadistico DFSS y dadas las
repeticiones entonces se calcula la distribucién empirica del estadis-
tico bootstrap.

5 De acuerdo con MacKinnon (2006), se dice que un estadistico es pivotal para la hipétesis
nula si y s6lo si para cada tamaio de muestra, la distribucién del estadistico de prueba es
la misma para todos los procesos de datos que satisfacen la hip6tesis nula.
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Se elige un cuantil apropiado de la distribucién empirica (asociado
al error tipo I) del estadistico bootstrap con el que se realiza la prueba
de raiz unitaria bajo la misma regla de rechazo de la hipétesis nula del
estadistico corriente.

Por dltimo es necesario sefialar dos cuestiones. La primera es re-
calcar que no interesa el valor del pardimetro o cuando se construye la
muestra bootstrap debido a que este pardmetro se elimina para cualquier
periodo #=1,---,T del proceso generador de datos bajo la hipdtesis nu-
la.6 La segunda cuestion es que el procedimiento (1)-(4) permite calcu-
lar no sélo el tamafio de la prueba DFSS, sino también la potencia de
la prueba. En cualquier caso se utilizan los cuantiles de la distribucién
empirica del estadistico bootstrap.

»  Simulaciones Monte Carlo con la prueba DFSS de Shin-So

El primer andlisis concierne a la prueba DFSS de tendencia recursiva,
cuyos valores criticos se reportan en el cuadro 2 con los resultados para
10,000 replicaciones Monte Carlo. Los datos fueron generados en R para
ndmeros aleatorios de la distribucién normal estdndar de acuerdo a la
ecuacion [14] y diferentes valores de 3 y distintos tamafios de muestra 7.
Por supuesto, los valores criticos de muestra finita corresponden a B =0
con ¢ =1.La componente de tendencia lineal es estimada por minimos
cuadrados ordinarios recursivos. El andlisis de la prueba DFSS procede
en los términos de los datos transformados como se indican las ecuacio-
nes [22] y [23], los cuales dependen del pardmetro J.

Cuadro 1
Probabilidad de rechazo de la prueba DFFS
a un nivel de significancia del 5%

B =25 T=50 T=100 T =200 T =300
0 0.047 0.053 0.053 0.048 0.052
0.25 0.059 0.072 0.084 0.109 0.147
0.50 0.088 0.131 0.161 0.235 0.298
0.75 0.137 0.194 0.255 0.342 0.387
1 0.190 0.269 0.332 0.376 0.414
5 0.456 0.458 0.471 0.481 0.486

Nota: 10,000 simulaciones Monte Carlo para la prueba DFSS =T (- 1)
Fuente: Elaboracién propia, son resultado de las simulaciones.

6  Ademads, cuando ¢ = 0, la condicién inicial del proceso es que y, = 0, lo que implica que
vo =0y o sea cero.
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Del anélisis del Cuadro 1, nuestra conclusién es que valores del pa-
rdmetro B més grandes pero positivos estdn asociados con un error tipo
I mas grande. El problema persiste cuando aumenta el tamafio de la
muestra; por ende, el pardmetro B influye en la prueba DFSS porque
distorsiona el tamafio de la prueba. Dicho de otra manera, la distribucién
de probabilidad del estadistico DFSS es sensible a la presencia de 3, lo
que significa que no es adecuada para llevar a cabo la prueba de raiz
unitaria para una caminata aleatoria con intercepto debido a que a tiende
a rechazar la hip6tesis nula mas de lo previsto.

Cuadro 2
Valores criticos para la prueba DFSS de tendencia recursiva

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975 0.990
25 -19.24 -15.54 -12.54 -9.48 4.08 5.24 6.25 7.24
50 -18.65 -14.84 -11.76 -8.81 3.59 4.55 5.51 6.62
100 -17,81 -14.81 -11.84 -8.64 3.37 4.32 5.15 6.05
200 -18.51 -14.76 -11.96 -8.89 3.25 4.16 4.93 5.77
300 -18.06 -14.51 -11.38 -8.52 3.15 4.07 4.78 5.59

Nota: 10,000 simulaciones Monte Carlo con =0 de la ecuacion [14] para la prueba Drss =1($-1)

Fuente: Elaboracién propia, son resultado de las simulaciones.

(Qué pasa si realizamos la prueba DFSS con las transformaciones
invariantes? Los valores criticos para estas pruebas se reportan en los
cuadros 3, 4 y 5. Los estadisticos de prueba asociados a los distintos
tipos de transformaciones son denotados por DF, , DF, y DF] , res-
pectivamente. En el cuadro 6 se presentan los resultados en relacion con
el tamafio y la potencia de la prueba de raiz unitaria. A este respecto se
debe indicar que estos resultados corresponden a datos generados bajo
la hipétesis nula en el caso de una caminata aleatoria pura. Las trans-
formaciones invariantes funcionan relativamente bien y, como es de es-
perar, el tamario de la prueba se preserva para todos los estadisticos de
prueba. En particular, el estadistico DF, pricticamente resulta ser el
mejor estadistico en relacién a la potencia estadistica. Si bien la poten-
cia es relativamente alta sobre todo para tamafios de muestra 7' > 200,
empero, en el caso de muestras pequefias 7' <50, la potencia de todos
los estadisticos es demasiado baja. Algo similar se encuentra cuando el
proceso estocdstico es débilmente estacionario 0.95 < <1 y el tamafio
de muestraes 7 <100.
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Cuadro 3
Valores criticos para la prueba DF"

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975  0.990
25 -20.39  -17.57 -15.24 -12.73 -1.48 -0.49 0.36 1.26
50 -22.88  -19.52 -16.83 -13.88 -2.07 -1.11 -0.31 0.55
100 -24.07  -21.07 -18.21 -15.09 -2.46 -1.51  -0.76 0.04
200 -25.84  -2246  -19.28 -16.04 -2.63 -1.68  -0.88 -0.05
300 -26.05  -22.32  -19.39 -16.10 -2.76 -1.81  -1.01 -0.15

Nota: 10,000 simulaciones Monte Carlo con B=0de la ecuacién [3] para la prueba
DFi=T1(¢:1 - 1).

Fuente: Elaboracién propia, son resultado de las simulaciones.

Cuadro 4
Valores criticos para la prueba DF;

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975  0.990

25 -18.66  -14.92 -11.91 -8.97 3.35 4.21 5.05 6.26
50 -18.05  -14.31 -11.34 -8.37 2.95 3.73 4.43 5.47
100 -17.41  -14.27 -11.40 -8.24 2.85 3.53 4.16 5.02
200 -17.88  -14.19 -11.56 -8.47 2.78 3.44 4.02 4.89
300 17.63 -13.89 -11.11 -8.13 2.69 3.37 4.00 4.83

Nota: 10,000 simulaciones Monte Carlo con B=0 de la ecuacién [14] para la prueba
DFs=T(¢o—1).
Fuente: Elaboracién propia, son resultado de las simulaciones.

Cuadro 5
Valores criticos para la prueba DF3

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975 0.990
25 -11.59 -8.77 -6.73 -4.70 0.74 1.25 1.81 2.53
50 -11.38 -8.55 -6.62 -4.39 0.67 1.15 1.65 26
100 -11.52 -8.74 -6.50 -4.36 0.68 1.08 1.53 2.08
200 -11.55 -8.76 -6.21 -4.13 0.66 1.10 1.56 221
300 -10.90 -8.22 -6.10 4.05 0.68 1.10 1.53 2.13

Nota: 10,000 simulaciones Monte Carlo con =0 de la ecuacién [3] para la prueba
DFs=T(¢s— 1).

Fuente: Elaboracién propia, son resultado de las simulaciones.
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Cuadro 6
Tamafio y potencia de las pruebas de raiz unitaria
con transformaciones invariantes

T=25 T=50
o DFSS  DF} DF) DF} DFSS DF DF;  DFj
100  0.047 0048 0050 0051 | 0053 0051 0052 0051
095 0051 0056 0058 0056 | 0062 0067 0.069 0.065
090 0056 0064 0065 0074 | 0.101 0.111  0.111  0.104
085 0073 0081 0084 0087 | 0163 0175 0179 0.162
080 0096 0.107 0.110 0111 | 0255 0271 0272 0248
075 0123 0138  0.139  0.144 | 0391 0414 0413 0327
070 0158 0.177 0178 0175 | 0529 0556  0.556  0.419
T=100 T =200
o DFSS  DF} DF) DF} DFSS DF DF;  DFj
100 0053 0054 0053  0.050 | 0.048 0.048 0048  0.052
095 0096 0106 0107  0.097 | 0218 0244 0236 0223
090 0235 0263 0255 0230 | 0.708 0.754 0734 0.500
0.85 0493 0533 0520 039 | 0972 0984 0977  0.666
080 0737 0782 0761 0524 | 0.999 1.000  1.000  0.767
075 0911 0934 0921 0613 | 1.000 1.000  1.000  0.839
070 0982 0990 098  0.691 | 1.000 1.000  1.000  0.888
T =300

o DFSS  DF! DF) DF’;

100 0.052  0.049 0.049 0.052

095 0486 0515 0.504 0.377

090 0975 0990 0979 0.653

0.85 1.000  1.000  1.000 0.787

0.80 1.000 1000  1.000 0.869

0.75 1.000  1.000  1.000 0.919

0.70 1.000 1000  1.000 0.958

Nota: 10,000 simulaciones Monte Carlo a un nivel de 5% de significancia y B = 0.

Fuente: Elaboracién propia, son resultado de las simulaciones.

Los resultados no son diferentes cuando los datos se generan bajo la
hipétesis nula para un valor de 3 diferente de cero. De hecho, las simu-
laciones muestran resultados practicamente idénticos en relacién con la
potencia estadistica. En este caso, los valores criticos a un 5% de nivel
de significancia se reportan en el cuadro 7. Los datos generados para
la distribuciéon normal estdndar de una caminata aleatoria con intercep-
to incluyen valores de e {0.25,0.50,0.75,1.00,1.50}. Evidentemente
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persiste la dependencia de la prueba DFSS a este pardmetro pues, a me-
dida que su valor crece, los valores criticos decrecen independientemen-
te del tamafio de la muestra.

Cuadro 7
Valores criticos al 5% de significancia

DFSS DF}

B/T 025 050 0.75 1.00 5.00 025 050 0.75 1.00  5.00

25 -13.6 -157 -18.6 -21.7 -829 | -152 -154 -156 -153 -150
50 -134 -17.0 -208 -251 -1023 | -168 -17.0 -169 -16.7 -17.0
100 -139 -18.8 -258 -31.7 -1362 | -183 -183 -182 -18.1 -183
200 -15.8 -237 -32.1 -41.1 -1854 [ -19.1 -19.2 -19.1 -188 -19.0

DF% DF’

B/T 025 050 0.75 1.00 5.00 025 050 0.75 1.00  5.00

25 -121 -122  -123  -121  -125 -6.9 -6.9 -6.9 -6.7 -7.1
50 -11.6 -11.7 -11.6 -11.3 -119 -6.5 -6.4 -6.6 -6.4 -6.8
100 -11.5 -11.5 -11.4 -113  -115 -6.4 -6.3 -6.2 -6.0 -6.4
200 -11.3  -11.5  -113  -11.1  -11.3 -6.2 -6.2 -6.2 -6.3 -6.2

Nota: 10,000 simulaciones Monte Carlo.

Fuente: Elaboracién propia, son resultado de las simulaciones.

Ahora bien, el problema con la prueba bootstrap DFB es que las si-
mulaciones demandan un costo de tiempo elevado, especialmente si el
tamafio de muestra es mayor a 100 datos. Por tal motivo, el estudio de
simulacién se realiza para muestras de tamafio 7 = {50,100} y un valor
especifico de p=1. Consecuentemente se contemplan 999 muestras
bootstrap y 1000 réplicas para cada una de ellas. El tamafio y la potencia
de todas las pruebas se reportan en el cuadro 8, incluyendo al estadistico
DFSS, el cual sabemos tiene el inconveniente de depender del valor de .
En tal situacion, la prueba DFB toma en cuenta la estimacién del pardme-
tro B y considera dicha estimacion para calcular las constantes criticas de
los cuantiles de la distribucién empirica del estadistico bootstrap.

Dado que el interés es averiguar sobre las ventajas de la técnica
bootstrap se tienen las siguientes consideraciones:

La prueba DFB es la mejor en potencia respecto a la prueba DFSS
con independencia del tamafio de la muestra.

Hay una ligera distorsién en el tamafio de la prueba de todos los
estadisticos cuando el tamafio de la muestra es relativamente pequefia
(T =25). El problema desaparece cuando el nimero de datos de la
muestra es grande, excepto en el caso de la prueba DFB.
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Cuadro 8
Tamafio y potencia de las pruebas de raiz unitaria
T=50,B=1
) DFB DFSS DF' DF) DF’
1.00 0.059 0.064 0.060 0.059 0.042
0.95 0.072 0.041 0.059 0.076 0.060
0.90 0.087 0.059 0.085 0.076 0.112
0.80 0.127 0.103 0.295 0.296 0.279
0.70 0.204 0.167 0.503 0.520 0.377
T=100,p=1
o DFB DFSS DF' DF) DF’
1.00 0.072 0.035 0.041 0.043 0.054
0.95 0.105 0.077 0.098 0.102 0.089
0.90 0.124 0.071 0.235 0.228 0.225
0.80 0.254 0.222 0.809 0.754 0.531
0.70 0.446 0.405 0.997 0.992 0.700

Nota: 999 muestras bootstrap y 1000 simulaciones Monte Carlo. Region critica al 5% de sig-
nificancia.

Fuente: Elaboracién propia, son resultado de las simulaciones.

Cuando el tamafio de la muestra es mediano (7 = 50), el estadistico
de prueba DF, de Chang es la mejor en términos de su potencia, pero
cuando el tamafio de la muestra aumenta (7'= 100), la prueba DF " es la
mejor respecto a la hipétesis de estacionariedad. Esto ratifica y confirma
los resultados de la simulacién para [3 igual a cero.

En el rango 0.8 < ¢ <1, la potencia de todas las pruebas es baja, no
obstante en el caso de 0< ¢ <0.7,1a prueba DF;" es la de mejor poten-
cia especialmente cuando el tamafio de la muestra es 7 = 100.

Por tltimo, es necesario indicar dos cuestiones. En primer lugar,
en relacién con el punto (d), como indican Madala-Kim (1998), todas
las pruebas de raiz unitaria de la clase univariada experimentan una
potencia baja para los procesos estacionarios cercanos a una raiz uni-
taria. Por lo tanto, los resultados de las simulaciones encajan bien con
la evidencia reportada por otras investigaciones. En segundo lugar,
tocante al punto (c), si bien la prueba DFB no es mejor que las pruebas
DF, DF]y DF], es ilustrador saber que el método boostrap puede
mejorar la potencia de la prueba de raiz unitaria DFSS cuando la hi-
pétesis nula es una caminata aleatoria con intercepto. No obstante, es
recomendable utilizar cualquiera de las pruebas con transformacion
invariantes.
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n  Conclusiones

Muchas series histdricas se parecen a una caminata aleatoria con intercep-
to. Nelson-Plosser (1982) dan evidencia de que la mayoria de las variables
macroeconémicas basicas como el PIB, el nivel de precios y otras mds
tienen raices unitarias. En muchos estudios se corrobora dicho resultado
y, sin embargo, no se cuestiona si la prueba arroja una conclusion siste-
méticamente diferente. Es imperioso percibir que el ajuste de la tendencia
lineal por minimos cuadrados ordinarios induce a un sesgo en la estima-
cién del coeficiente de la ecuacion autorregresiva de la variable estudiada
debido a la correlacion del regresor con el término de error.

Shin-So (2001, 2002) y So-Shin (1999) remedian el sesgo al cons-
truir el estadistico DFSS con base en la estimacion recursiva de la com-
ponente determinista, pero la prueba no se puede implementar en el caso
de una caminata aleatoria con una deriva. ;Por qué? La distribucion de
probabilidad del estadistico se puede obtener por métodos conocidos y
la distribucion asintética del estadistico tiene validez estrictamente si el
tamafio de la muestra es “grande”. En otros casos, la distribucion de pro-
babilidad del estadistico depende de supuestos fuertes o bien su cons-
truccién es complicada. Este es el caso de la prueba DFSS de Shin-So.
(,Qué se puede hacer entonces si no puede implantar al caso de una ca-
minata aleatoria con deriva? Se debe proceder en términos de las trans-
formaciones al pardmetro de tendencia lineal o bien bajo la técnica del
bootstrap pardmetrica. ;Cudl es el mejor procedimiento? Cuando la hi-
potesis alternativa es un proceso estacionario alrededor de una tendencia
lineal y se trabaja con las observaciones originales, la evidencia estd del
lado del bootstrap paramétrico, es el mejor en términos de la potencia
estadistica. Sin embargo, si los datos se transforman apropiadamente,
entonces la prueba DFSS invariante de ajuste recursivo es la mejor. Por
lo tanto, la recomendacion es utilizar transformaciones invariantes de
las observaciones debido a que su ejecucion es directa y de menor coste.

En el futuro serd necesario valorar el papel del pardmetro de la cami-
nata aleatoria en relacion con la distorsion del tamaiio de la prueba. La
prueba DFSS no necesariamente es robusta, por ejemplo, a la presencia
de “puntos de quiebre” examinadas por Perron (1989). Dicho de otra
manera, cuando el valor del pardmetro de tendencia cambia a lo largo
del tiempo, la tasa de rechazo de la hipétesis nula podria aumentar, aun
cuando el verdadero proceso es una caminata aleatoria, por lo que ten-
driamos un fenémeno “inverso de Perron” (Leybourne 1998, 2000). La
prueba de bootstrap por construccidn es robusta a rompimientos de los
pardmetros bajo la hipétesis nula, tal como lo sugiere el disefio de simu-
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lacién Monte Carlo. Sin embargo, se desconoce si tal propiedad es una
caracteristica recurrente de la prueba DFSS invariante por lo que ésta es
una tarea para una investigacion futura.
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