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n 	 Resumen: Usamos simulaciones de Monte Carlo para estudiar el 
desempeño de la prueba de raíz unitaria de Shin-So (DFSS) bajo los 
enfoques de transformaciones invariantes y el bootstrapping. Si la 
hipótesis alternativa es un proceso estacionario alrededor de una ten-
dencia lineal, entonces la prueba bootstrap paramétrica es la mejor 
en términos de la potencia estadística. Sin embargo, si transforma-
mos las observaciones para construir una prueba invariante, entonces 
la prueba DFSS es la mejor. Por consiguiente, la recomendación es 
usar transformaciones invariantes de la prueba de raíz unitaria de 
Shin-So debido a que su ejecución es directa y de menor coste.

n 	 Abstract: We use Monte Carlo simulations to study the performance 
of Shin-So unit root test (DFSS) under invariant transformation ap-
proaches and bootstrapping. If the alternative hypothesis is a station-
ary process around a linear trend, then the parametric bootstrap test 
is the best in terms of statistical power. However, if we transform the 
observations to build an invariant test, then the DFSS test is the best. 
Therefore, the recommendation is to use transformations of the in-
variant Shin-So unit root test because its implementation is straight-
forward and less costly.
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n 	 Introducción

La prueba de Dickey-Fuller (DF) sirve para probar si una serie provie-
ne de un proceso estocástico raíz unitaria. El desempeño de la prueba 
depende de supuestos sobre la especificación de la hipótesis nula. Estos 
supuestos son: 1) la presencia de un intercepto en la caminata aleatoria, 
2) la distribución de probabilidad del término de error y 3) la condición 
inicial del proceso estocástico. El estadístico DF experimenta proble-
mas en la potencia y tamaño de la prueba. La potencia baja se manifiesta 
sobre todo cuando el proceso es cuasi-raíz unitaria (débilmente estacio-
nario), mientras que la distorsión en el tamaño de la prueba surge debido 
a cambios estructurales en la hipótesis nula. Hay progresos en torno a 
la metodología Dickey-Fuller, los cuales incluyen regresiones forward-
reverse, estimadores simétricos ponderados y variables instrumentales, 
así como estadísticos específicos, por ejemplo, las pruebas Kwiatkowki-
Phillips-Schmith-Shin, Leybourne-McCabe, Phillps-Perron y otras más. 

El método de ajuste recursivo propuesto por Shin-So (2001, 2002) y 
So-Shin (1999) reduce el sesgo en la estimación de la ecuación autorre-
gresiva, con lo que mejora la potencia de la prueba DF. Dada la reduc-
ción del sesgo, Cook (2002, 2003), Kim, et al. (2002, 2004) y Leybour-
ne, et al. (1998, 2000) proporcionan evidencia de robustez de la prueba 
Shin-So (DFSS) cuando la caminata aleatoria es pura y experimenta 
cambios estructurales en su media. Por su parte, Lizarazu-Villaseñor 
(2007)  muestran la robustez de la prueba DFSS a la coexistencia de 
rompimientos en la media y la varianza del proceso estocástico.

La prueba DFSS para una caminata aleatoria pura no representa difi-
cultades. No es el caso si la caminata aleatoria tiene una deriva, ya que 
la distribución de probabilidad del estadístico DFSS es compleja (o bien, 
desconocida). La dificultad de aplicar la prueba de Shin-So, sin embar-
go, se evita al implementar las siguientes acciones: 1) Usar transforma-
ciones para construir una prueba invariante a los parámetros bajo la hi-
pótesis nula y 2) emplear la técnica boostrap paramétrica, cuya ventaja 
es la estimación del intercepto de la caminata aleatoria. Esta cuestión 
es precisamente el meollo del problema de una prueba no-invariante al 
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intercepto de la caminata aleatoria, puesto que es necesario calcular los 
cuantiles de la distribución del estadístico. 

En este artículo evaluamos el desempeño de estos dos enfoques 
mediante simulaciones de Monte Carlo. Los problemas asociados a la 
prueba de raíz unitaria DF son vastos, por lo que es importante señalar 
que nuestro análisis concierne a la metodología de Bhargava (1986). La 
práctica de la prueba de raíz unitaria se exterioriza mediante la ecua-
ción de estimación de los parámetros. La metodología Dickey-Fuller 
(1979, 1981) implica estimar la ecuación y t y ut t t= + + +−α β ρ 1 , donde 

,u iidN 0t u
2+ v^ h. Por lo tanto, la implementación de la técnica bootstrap 

será distinta dependiendo de la metodología Dickey-Fuller o Bhargava. 
El procedimiento de anidamiento de las hipótesis en el enfoque 

Barghava conlleva una estimación secuencial de los parámetros. Pre-
viamente es necesario estimar α y β a partir de la regresión de la ecua-
ción y t vt t= + +α β , y después hay que estimar φ mediante la ecuación 
v vt t t= +−φ ε1 , donde ,iidN 0t

2+f vf^ h. Las ecuaciones de Bhargava 
implican: y yt t t= −( ) + +−α φ φ ε1 1 , por lo que si H

0
1: φ = entonces 

el proceso es una caminata aleatoria con intercepto, y si H
1

1: φ < , 
el proceso es estacionario alrededor de una tendencia lineal. En ambas 
metodologías se tiene la misma hipótesis nula, pero en la metodología 
Dickey-Fuller la ecuación a estimar es ex professo. Por tal motivo, el 
alcance de los resultados depende no sólo del proceso generador de los 
datos simulados, sino sobre todo de la ecuación utilizada en la estima-
ción de los parámetros. 

Si bien no es un caso general, el estudio de este artículo es un avance 
en tal dirección. Es decir, es conveniente examinar casos particulares y 
después ir a casos más generales. Por lo tanto, en este tenor, el artículo 
está organizado de la siguiente manera: en la segunda sección se presen-
tan algunas cuestiones teóricas de la prueba DFSS para el caso de una 
caminata aleatoria pura. En la tercera sección se muestran las dificulta-
des teóricas de la prueba DFSS en el caso de una caminata aleatoria con 
intercepto. En la cuarta sección se explica en qué consiste una prueba 
estadística invariante al parámetro de la hipótesis nula. En la quinta sec-
ción se explica el método bootstrap paramétrico. En la sexta sección se 
analizan los resultados de las simulaciones de Monte Carlo. Por último, 
en la séptima sección, incluimos algunos comentarios de conclusión. 

n 	 La prueba DF de Shin-So para una caminata aleatoria pura

Consideremos el horizonte de tiempo t T= 1, , en las siguientes espe-
cificaciones. 
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(1)			 y vt t= +α

(2)			 v vt t t= +−φ ε1

Donde ,iid 0t
2+f v^ h. La estructura anterior de ecuaciones da lugar a 

un proceso estacionario, donde el parámetro α es la media de yt, mien-
tras que 0 1< <φ  es el coeficiente de la ecuación autorregresiva de las 
desviaciones de yt en relación a α.2� Lo anterior es evidente, pues al 
insertar [2] en [1] se arriba a la siguiente ecuación:

(3)			 y yt t t= −( ) + +−α φ φ ε1 1

Alternativamente:

(4)			 y yt t t− = −( ) +−α φ α ε1

Si la hipótesis nula es H
0

1: φ =  entonces la ecuación [4] se convier-
te en una caminata aleatoria pura: y yt t t= +−1 ε . 

La prueba de Dickey-Fuller (DF) se basa en el siguiente estadístico 
DF T≡ −( )φ̂ 1 . Se rechaza la hipótesis nula cuando el estadístico es me-
nor a la constante crítica asociada al nivel de significancia. El estimador  
zt  es obtenido por el método de mínimos cuadrados ordinarios (MCO).
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ˆ

ˆ ˆ
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φ
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Bajo la hipótesis nula, el estadístico DF sigue una distribución teó-
rica asintótica conocida como la distribución Dickey-Fuller, la cual es 
representada por la siguiente distribución de probabilidad:

(6) 		 DF
W W W r dr

W r dr

≡
( )  −{ } − ( ) ( )

( )  −

∫
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
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
∫

0
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2

donde W ⋅( ) es un proceso de Weiner o Browniano. 

2	 La estructura de ecuaciones [3] y [4] es conocida como la metodología Bhargava, la cual 
es diferente a la metodología Dickey-Fuller. Véase Maddala-Kim (1998, pp. 37-39).
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El estimador at  es necesario en la construcción de zt , y el mismo es 
el resultado de una sucesión de cálculos. En primer lugar, se estima el 
parámetro α de la ecuación [1] mediante MCO, lo que da lugar a:

(7)			 α̂ =
=

∑1

1T
yt

t

T

En seguida se extrae el valor de at  de las observaciones de yt para 
construir zt  (véase la ecuación [5]). 

En la regresión de la ecuación [4] está latente un problema correla-
ción del regresor yt− −( )1

α̂  y el término de error tf . La siguiente fórmu-
la proporciona una idea de la magnitud de la correlación inmersa.
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El problema desaparece si utiliza otro estimador para α. Siguiendo 
a Shin-So (2001, 2002) y So-Shin (1999), el estimador que elimina el 
sesgo viene definido por la siguiente ecuación:

(9)			 α̂t
r

i
i

t

t
y=

=
∑1

1

Éste es conocido como el ‘”estimador de ajuste recursivo” debido 
a que la media muestral se calcula secuencialmente para los distintos 
períodos y tamaños de muestras concebidas desde t hasta las T obser-
vaciones.

Al utilizarse α̂t
r
−1

 en la extracción de la media estimada de las ob-
servaciones de yt desaparece la correlación, por lo que el estimador de 
ajuste recursivo de φ viene a ser:
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El estadístico DFSS T r= −( )φ̂ 1  sigue una distribución teórica no 

estándar conocida como la distribución Dickey-Fuller-Shin-So, la cual 
es representada por la siguiente expresión:

(11)	 DFSS
W r W W s ds

W r r W s

r
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( ) −
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donde r ∈( )0 1,  y W ⋅( )  es un proceso de Weiner o Browniano. En este 
caso, también se rechaza la hipótesis nula si el estadístico DFSS es me-
nor a la constante crítica del cuantil apropiado.

La ecuación [11] es diferente de [6] y siguiendo a Shin-So (2001, 
2002), la potencia de la prueba DFSS es mejor en relación con la 
prueba DF, donde la hipótesis alternativa es estacionariedad. La 

explicación no sólo descansa en la propiedad E yt t
r

t

T

t−=
−( ) =∑ 12

0ˆ  ˆα ε ,
 
sino también en la reducción del sesgo de estimación de E rφ̂ φ−( ) al 

utilizar el estimador rzt , lo que lleva consigo valores críticos de T rφ̂ −( )1

más cargados a la derecha que los correspondientes a T φ̂ −( )1 . Por lo 

tanto, la tasa de aceptación de H1 en el caso de valores φ < 1  será for

zosamente mayor en la prueba DFSS.

n 	 La prueba DF de Shin-So para una caminata aleatoria 
	 con intercepto

Consideremos el tiempo t T= 1, , en el siguiente conjunto de ecuacio-
nes:

(12)	 y t vt t= + +α β

(13)	 v vt t t= +−φ ε1
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La primera ecuación incluye a la constante α y a la tendencia li-
neal β (coeficiente del tiempo) más una variable aleatoria vt. La segunda 
ecuación es una ecuación autorregresiva de primer orden de la variable 
aleatoria vt, donde se incluye un término de error ruido blanco denotado 
por ,iid 0t

2+f v^ h. 
Si la hipótesis nula es H

0
1: φ = , entonces de las ecuaciones [12] y 

[13] implican una caminata aleatoria con intercepto deriva:

(14)	 y yt t t= + +−β ε1

La ecuación anterior también se puede expresar en términos de su 
primera diferencia:

(15)	 ∆ ≡ − = +−y y yt t t t1 β ε

En tal caso, ytD  no depende de α, pero sí del valor de β. La presencia 
de este parámetro desempeña un papel importante en la construcción de 
una prueba estadística, tal como se  muestra más adelante.

La hipótesis alternativa H
1

0 1: < <φ  corresponde a un proceso es-
tocástico estacionario alrededor de una tendencia lineal:

(16)	  y yt t t= +−φ ε1

donde y y tt t≡ − −α β  y y y tt t− −≡ − − −( )1 1 1α β  son las observaciones 
después de descontar la componente determinista.

En este caso, la construcción del estadístico de la prueba DF exige 
la estimación de los parámetros de la ecuación [12], la cual puede rees-
cribirse como:

(17)	 y t v Z vt t t t= + + = +α β γ'

donde Z tt
'

,≡( )1  y  γ α β≡( ),
'
.

El estimador MCO de γ se calcula de la siguiente manera:

(18)	 ˆ ˆ , ˆ ' 'γ α β ( ) =







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=
∑ ∑Z Z Z yt t
t

T

t t
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1

En la prueba DF T≡ −( )φ̂ 1  el estimador zt  es:
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(19)	
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donde Z tt− ≡ −( )1
1 1, .

En analogía a la sección anterior, la prueba DF exhibe una potencia 
mayor si la componente determinista de [12] se estima secuencialmente 
para cada posible muestra de tamaño d T∈( )2, . En tal caso, el estadís-
tico de ajuste recursivo es DFSS T 1r/ z -t^ h, donde T es el tamaño de 
la muestra y rzt  es el estimador de ajuste recursivo.
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donde Z tt− ≡ −( )1
1 1, . El estimador rct  es igual a:

(21)	 ˆ ˆ , ˆ ' 'γ α βt
r

t
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t
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k k
k
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k

t

Z Z Z y≡( ) =
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∑ ∑
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1

1

donde Z kk
' ,≡( )1 . 

La regla de rechazo de la hipótesis nula de ambas pruebas es que los 
estadísticos de prueba DF y DFSS sean respectivamente menores a las 
constantes críticas pertinentes. Sin embargo, es imposible calcular las 
constantes críticas, ya que se desconocen las distribuciones de probabi-
lidad de ambos estadísticos. 

Además, otro inconveniente es que la componente determinista con-
lleva la presencia de β. ¿Por qué? Consideremos las transformaciones 
para los períodos t y t − 1: 

(22)	 y y Z y tt
r

t t t
r

t t
r

t
r= − = − − −( )− − − −1 1 1 1

1' ˆ ˆ ˆγ α β

(23)	 y y Z y tt
r

t t t
r

t t
r

t
r

− − − − − − −= − = − − −( )1 1 1 1 1 1 1
1' ˆ ˆ ˆγ α β
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donde Z tt− ≡ −( )1
1 1'  , . El estimador γ̂ t

r
−1  es equivalente a [21] con la sal-

vedad de que el índice del operador sumatoria llega a t − 1.

(24)	 ˆ 'γ tr k k
k

t

k k
k

t
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1

Se puede mostrar que los estimadores de ajuste recursivo dan lugar 
a la siguiente expresión:
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Al premultiplicar Zt−1
'  y γ̂ tr−1  se tiene:
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De esta manera, se llevan a cabo las siguientes operaciones:
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Si las transformaciones involucradas toman en cuenta la condición 
inicial y0 0=  del proceso estocástico, entonces la iteración hacia atrás 
de la ecuación [14] para los períodos t y k implica:

(29)	 y y t St t= + +0 β

(30)	 y y k Sk k= + +0 β

donde St jj

t
≡

=∑ ε
1

 y Sk ii

k
≡

=∑ ε
1

. De esta manera, transformaciones 

[27] y [28] dan lugar a las siguientes ecuaciones:
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donde St ii

t

− =

−
≡∑1 1

1
ε . Es evidente que tanto yt

r
 como yt

r
−1  son una fun-

ción de las sumas Si ( i k t t= −, , 1 ). Además, si bien yt
r
−1  no depende del 

parámetro β, no sucede lo mismo con yt
r
. En efecto, la primera diferen-

cia de yt es igual al parámetro β más la variable aleatoria ruido blanco: 
∆ ≡ − = +−  y y yt

r
t
r

t
r

t1 β ε . 
Por consiguiente, la prueba DFSS no es invariante al parámetro de 

tendencia β.3� La existencia de este problema exige una solución. Al res-
pecto, existen dos posibles enfoques: el primero consiste en transforma-
ciones adecuadas de las observaciones. El segundo enfoque es incorpo-
rar estimaciones del parámetro β con el método bootstrap paramétrico. 
En este último caso se cuantifican los cuantiles de la distribución de 
probabilidad del estadístico. En la sección siguiente abordamos el enfo-
que de las transformaciones invariantes y dejamos para la sección sub-
siguiente el boostrap.

n 	 Transformaciones invariantes de las variables

En relación con el ajuste recursivo existen al menos tres alternativas de 
transformaciones para construir una prueba invariante al parámetro β. 
La primera es la transformación de Taylor (2002), la cual consiste en 
descontar la componente determinista estimada de los períodos t y t − 1.
La segunda transformación se debe a Chang (2002), la cual esencial-
mente consiste en incorporar a la construcción de la prueba invariante el 
estimador del parámetro de estorbo. Por último, la tercera transforma-
ción es un artificio ad-hoc de eliminación algebraica del parámetro β.

3	 Rodrigues (2006) señala que la presencia del parámetro β en ∆ytr es un estorbo para el 
tamaño de la prueba. Este mismo autor reporta resultados de un estudio de simulación 
Monte Carlo, según la cual, la potencia de la prueba estadística es sensiblemente deficien-
te para la hipótesis alternativa φ < 1  con valores de φ cercanos a la unidad. Sin embargo, el 
estudio de Rodrigues no explica si existen otras alternativas de resolución del problema.
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n 	 La Transformación de Taylor

Según las ecuaciones [31] y [32], la primera diferencia de la variable 
aleatoria yt

r
depende del parámetro β, por lo cual es natural proceder 

con los estimadores γ̂ t
r  y γ̂ t

r
−1  para transformar respectivamente a las 

variables yt  y yt−1 .  En tal caso, la ecuación [22] permanece intacta y 
sólo se afecta [23], la cual se sustituye por:

(33)	 y y Z y tt
r

t t t
r

t t
r

t
r= − = − −' ˆ ˆ ˆγ α β

donde Z tt ≡( ) ,1 . El cálculo de γ̂ t
r

 se realiza de la siguiente manera:
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La modificación de Taylor es la transformación ideal y las variables 
y t
r
1,  y y t

r
1 1, −  serán calculadas de la siguiente manera:
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En seguida se muestra que estas transformaciones son independien-
tes del parámetro de estorbo β. En efecto, al iterar hacia atrás y apoyados 
en ciertos supuestos particulares se llega a las siguientes ecuaciones:4
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4	 Estos supuestos específicos son la condición inicial del proceso estocástico y la validez de 
la hipótesis nula.



Vol. 7. Núm. 1106 n Suplemento/Supplement

Por lo tanto, la primera diferencia de yt
r
 es un proceso estocástico 

independiente del parámetro β: ∆ ≡ − =−  y y yt
r

t
r

t
r

t1 1 1 1, , ,
ε .

n 	 La Transformación de Chang

El estimador MCO de β bajo la ecuación [14], es decir, la hipótesis nula, 
es igual a:

(39)	 β̂ =
∆y
T
t

El estimador MCO de β se incorpora en la ecuación [23] con signo 
negativo. De esta manera, la transformación buscada es igual a:
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De la ecuación [40] no es difícil arribar a la siguiente ecuación:
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Si bien, en muestreo repetido tenemos E β̂ β{ } = , lo que interesa 

crucialmente es darse cuenta que ∆ = + =∑y T Tt t
T

tβ ε1 , por lo que la 
transformación y t

r
2,  implica:
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Si T " 3  entonces t
T

t T=∑ →
1

0ε , por lo que esta transformación 

da lugar a un estadístico independiente del parámetro β.

n 	 La transformación ad-hoc

Supongamos de nuevo la condición inicial del proceso estocástico 
y0 0= , entonces bajo la hipótesis nula el proceso generador de datos es:

(44)	 y t St t= +β
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A partir de la ecuación [44], obsérvese que y kkk

t

=∑ 1
es igual a:
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De esta manera, la transformación ideal es el resultado de las si-
guientes operaciones:
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Cuando las ecuaciones anteriores son iteradas hacia atrás entonces 
obtenemos una prueba estadística independiente de β, ya que se cum-
plen las siguientes ecuaciones:
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Por consiguiente, las tres clases de transformaciones se pueden utilizar 
para construir una prueba estadística invariante con la seguridad de que el 
valor del parámetro β no influirá en el tamaño y la potencia de la prueba.

n 	 El bootstrap paramétrico para la prueba de DFSS  de Shin-So

El método bootstrap facilita el estudio de las propiedades de un estadís-
tico cuando no se conoce su distribución teórica (finita y/o asintótica). 
Tal como en la inferencia paramétrica, la técnica bootstrap pretende 
describir los estados verdaderos de la naturaleza. La idea es generar una 
cantidad grande de muestras bootstrap con el propósito de calcular los 
constantes críticas del cuantil de la distribución de probabilidad del esta-
dístico bootstrap. Cuando la distribución empírica del estadístico boots-
trap es una buena aproximación de la distribución teórica del estadístico 
corriente, entonces la prueba bootstrap conduce a inferencias correctas.



Vol. 7. Núm. 1108 n Suplemento/Supplement

La inferencia paramétrica procede en términos de (1) los errores es-
tándares de los estimadores, (2) los intervalos de confianza de los esti-
madores de los parámetros desconocidos y (3) los valores p del estadís-
tico de prueba. Supongamos un conjunto de distribuciones P, donde P0 
es una distribución particular, entonces (1)-(3) se cuantifican a través de 
funcionales del tipo Q P0( ) , donde Q P̂

0( ) es la estimación bootstrap y 
P̂

0
 es el estimador bootstrap de P0 . Si P0  se indexa mediante el pará-

metro θ, entonces el bootstrap se dice que es paramétrico y Q P̂ ;
0

θ( )  es 
denominado bootstrap parámetrico. En estos casos, el proceso gene-
rador de datos bootstrap está caracterizado por el parámetro estimado. 

En algunas situaciones es imposible hallar el proceso generador de 
datos bootstrap, por lo que el estadístico bootstrap no tendrá la misma 
distribución del estadístico corriente. Si el estadístico no es pivotal,5� es 
deseable obtener una buena estimación del proceso generador de datos 
verdadero. Por tal motivo, el bootstrap paramétrico exige tanto como 
sea posible la estimación de los parámetros desconocidos del proceso 
generador de datos verdadero. La razón es que estas estimaciones son 
utilizadas en la construcción del proceso generador de datos bootstrap, 
así como en las muestras bootstrap.

La distribución de probabilidad del estadístico DFSS se basa en el 
proceso generador de datos de la hipótesis nula. Diversos valores de α y 
β satisfacen las ecuaciones [12] y [13] incluso si φ = 1 . Sin embargo, el 
parámetro α no aparece en el proceso generador de datos de la hipótesis 
nula. Por ende, en la generación de las muestras corrientes interesa sólo 
la estimación del parámetro β, el que debe ser estimado consistentemen-
te para que sea posible construir las muestras bootstrap y computar el 
estadístico bootstrap. 

El método bootstrap en el caso de la prueba DFSS se lleva a cabo a 
términos de las siguientes etapas:

Se generan S  muestras  para un valor fijo de β bajo el proceso gene-
rador de datos de la hipótesis nula. Por supuesto, el valor del parámetro 
β se fija previamente y de forma arbitraria.

Se estima consistentemente el parámetro β mediante el ajuste recur-
sivo de Shin-So y se construyen B  muestras bootstrap bajo el proceso 
generador de datos de la hipótesis nula. 

En cada muestra bootstrap se calcula el estadístico DFSS y dadas las 
B  repeticiones entonces se calcula la distribución empírica del estadís-

tico bootstrap. 

5	 De acuerdo con MacKinnon (2006), se dice que un estadístico es pivotal para la hipótesis 
nula si y sólo si para cada tamaño de muestra, la distribución del estadístico de prueba es 
la misma para todos los procesos de datos que satisfacen la hipótesis nula.
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Se elige un cuantil apropiado de la distribución empírica (asociado 
al error tipo I) del estadístico bootstrap con el que se realiza la prueba 
de raíz unitaria bajo la misma regla de rechazo de la hipótesis nula del 
estadístico corriente.

Por último es necesario señalar dos cuestiones. La primera es re-
calcar que no interesa el valor del parámetro α cuando se construye la 
muestra bootstrap debido a que este parámetro se elimina para cualquier 
período t T= 1, ,  del proceso generador de datos bajo la hipótesis nu-
la.6� La segunda cuestión es que el procedimiento (1)-(4) permite calcu-
lar no sólo el tamaño de la prueba DFSS, sino también la potencia de 
la prueba. En cualquier caso se utilizan los cuantiles de la distribución 
empírica del estadístico bootstrap.

n 	 Simulaciones Monte Carlo con la prueba DFSS de Shin-So

El primer análisis concierne a la prueba DFSS de tendencia recursiva, 
cuyos valores críticos se reportan en el cuadro 2 con los resultados para 
10,000 replicaciones Monte Carlo. Los datos fueron generados en R para 
números aleatorios de la distribución normal estándar de acuerdo a la 
ecuación [14] y diferentes valores de β y distintos tamaños de muestra T. 
Por supuesto, los valores críticos de muestra finita corresponden a β = 0  
con φ = 1 . La componente de tendencia lineal es estimada por mínimos 
cuadrados ordinarios recursivos. El análisis de la prueba DFSS  procede 
en los términos de los datos transformados como se indican las ecuacio-
nes [22] y [23], los cuales dependen del parámetro β.

6 	 Además, cuando t = 0, la condición inicial del proceso es que y0 = 0, lo que implica que 
v0 = 0 y α sea cero.	

Cuadro 1
Probabilidad de rechazo de la prueba DFFS

a un nivel de significancia del 5%

β T = 25 T = 50 T = 100 T = 200 T = 300

0 0.047 0.053 0.053 0.048 0.052

0.25 0.059 0.072 0.084 0.109 0.147

0.50 0.088 0.131 0.161 0.235 0.298

0.75 0.137 0.194 0.255 0.342 0.387

1 0.190 0.269 0.332 0.376 0.414

5 0.456 0.458 0.471 0.481 0.486

Nota: 10,000 simulaciones Monte Carlo para la prueba DFSS T≡ −( )φ̂ 1  

Fuente: Elaboración propia, son resultado de las simulaciones.
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Del análisis del Cuadro 1, nuestra conclusión es que valores del pa-
rámetro β más grandes pero positivos están asociados con un error tipo 
I más grande. El problema persiste cuando aumenta el tamaño de la 
muestra; por ende, el parámetro β influye en la prueba DFSS porque 
distorsiona el tamaño de la prueba. Dicho de otra manera, la distribución 
de probabilidad del estadístico DFSS es sensible a la presencia de β, lo 
que significa que no es adecuada para llevar a cabo la prueba de raíz 
unitaria para una caminata aleatoria con intercepto debido a que  a tiende 
a rechazar la hipótesis nula más de lo previsto.

Cuadro 2
Valores críticos para la prueba DFSS de tendencia recursiva

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975 0.990

25 -19.24 -15.54 -12.54 -9.48 4.08 5.24 6.25 7.24

50 -18.65 -14.84 -11.76 -8.81 3.59 4.55 5.51 6.62

100 -17,81 -14.81 -11.84 -8.64 3.37 4.32 5.15 6.05

200 -18.51 -14.76 -11.96 -8.89 3.25 4.16 4.93 5.77

300 -18.06 -14.51 -11.38 -8.52 3.15 4.07 4.78 5.59

Nota: 10,000 simulaciones Monte Carlo con β=0 de la ecuación [14] para la prueba DFSS T≡ −( )φ̂ 1

Fuente: Elaboración propia, son resultado de las simulaciones.

¿Qué pasa si realizamos la prueba DFSS con las transformaciones 
invariantes? Los valores críticos para estas pruebas se reportan en los 
cuadros 3, 4 y 5. Los estadísticos de prueba asociados a los distintos 
tipos de transformaciones son denotados por DFr1 , DFr2  y DFr3 , res-
pectivamente. En el cuadro 6 se presentan los resultados en relación con 
el tamaño y la potencia de la prueba de raíz unitaria. A este respecto se 
debe indicar que estos resultados corresponden a datos generados bajo 
la hipótesis nula en el caso de una caminata aleatoria pura. Las trans-
formaciones invariantes funcionan relativamente bien y, como es de es-
perar, el tamaño de la prueba se preserva para todos los estadísticos de 
prueba. En particular, el estadístico DFr1 prácticamente resulta ser el 
mejor estadístico en relación a la potencia estadística. Si bien la poten-
cia es relativamente alta sobre todo para tamaños de muestra T ≥ 200 , 
empero, en el caso de  muestras pequeñas T ≤ 50 , la potencia de todos 
los estadísticos es demasiado baja. Algo similar se encuentra cuando el 
proceso estocástico es débilmente estacionario 0 95 1. < <β  y el tamaño 
de muestra es T < 100 .
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Cuadro 3
Valores críticos para la prueba DFr1  

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975 0.990

25 -20.39 -17.57 -15.24 -12.73 -1.48 -0.49 0.36 1.26

50 -22.88 -19.52 -16.83 -13.88 -2.07 -1.11 -0.31 0.55

100 -24.07 -21.07 -18.21 -15.09 -2.46 -1.51 -0.76 0.04

200 -25.84 -22.46 -19.28 -16.04 -2.63 -1.68 -0.88 -0.05

300 -26.05 -22.32 -19.39 -16.10 -2.76 -1.81 -1.01 -0.15

Nota: 10,000 simulaciones Monte Carlo con β = 0 de la ecuación [3] para la prueba 

DF T 1r
1 1/ z -t` j.

Fuente: Elaboración propia, son resultado de las simulaciones.

Cuadro 4
Valores críticos para la prueba DFr2

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975 0.990

25 -18.66 -14.92 -11.91 -8.97 3.35 4.21 5.05 6.26

50 -18.05 -14.31 -11.34 -8.37 2.95 3.73 4.43 5.47

100 -17.41 -14.27 -11.40 -8.24 2.85 3.53 4.16 5.02

200 -17.88 -14.19 -11.56 -8.47 2.78 3.44 4.02 4.89

300 17.63 -13.89 -11.11 -8.13 2.69 3.37 4.00 4.83

Nota: 10,000 simulaciones Monte Carlo con β = 0  de la ecuación [14] para la prueba 

DF T 1r
2 2/ z -t` j.

Fuente: Elaboración propia, son resultado de las simulaciones.

Cuadro 5
Valores críticos para la prueba DFr3

T 0.010 0.025 0.050 0.100 0.90 0.95 0.975 0.990

25 -11.59 -8.77 -6.73 -4.70 0.74 1.25 1.81 2.53

50 -11.38 -8.55 -6.62 -4.39 0.67 1.15 1.65 26

100 -11.52 -8.74 -6.50 -4.36 0.68 1.08 1.53 2.08

200 -11.55 -8.76 -6.21 -4.13 0.66 1.10 1.56 2.21

300 -10.90 -8.22 -6.10 4.05 0.68 1.10 1.53 2.13

Nota: 10,000 simulaciones Monte Carlo con β = 0  de la ecuación [3] para la prueba 

DF T 1r
3 3/ z -t` j.

Fuente: Elaboración propia, son resultado de las simulaciones.
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Cuadro 6
Tamaño y potencia de las pruebas de raíz unitaria 

con transformaciones invariantes

T = 25 T = 50

φ DFSS DF
r
1 DF

r
2 DF

r
3 DFSS DF

r
1 DF

r
2 DF

r
3

1.00 0.047 0.048 0.050 0.051 0.053 0.051 0.052 0.051

0.95 0.051 0.056 0.058 0.056 0.062 0.067 0.069 0.065

0.90 0.056 0.064 0.065 0.074 0.101 0.111 0.111 0.104

0.85 0.073 0.081 0.084 0.087 0.163 0.175 0.179 0.162

0.80 0.096 0.107 0.110 0.111 0.255 0.271 0.272 0.248

0.75 0.123 0.138 0.139 0.144 0.391 0.414 0.413 0.327

0.70 0.158 0.177 0.178 0.175 0.529 0.556 0.556 0.419

T = 100 T = 200

φ DFSS DF
r
1 DF

r
2 DF

r
3 DFSS DF

r
1 DF

r
2 DF

r
3

1.00 0.053 0.054 0.053 0.050 0.048 0.048 0.048 0.052

0.95 0.096 0.106 0.107 0.097 0.218 0.244 0.236 0.223

0.90 0.235 0.263 0.255 0.230 0.708 0.754 0.734 0.500

0.85 0.493 0.533 0.520 0.394 0.972 0.984 0.977 0.666

0.80 0.737 0.782 0.761 0.524 0.999 1.000 1.000 0.767

0.75 0.911 0.934 0.921 0.613 1.000 1.000 1.000 0.839

0.70 0.982 0.990 0.986 0.691 1.000 1.000 1.000 0.888

T = 300

φ DFSS DF
r
1 DF

r
2 DF

r
3

1.00 0.052 0.049 0.049 0.052

0.95 0.486 0.515 0.504 0.377

0.90 0.975 0.990 0.979 0.653

0.85 1.000 1.000 1.000 0.787

0.80 1.000 1.000 1.000 0.869

0.75 1.000 1.000 1.000 0.919

0.70 1.000 1.000 1.000 0.958

Nota: 10,000 simulaciones Monte Carlo a un nivel de 5% de significancia y β = 0.

Fuente: Elaboración propia, son resultado de las simulaciones.

Los resultados no son diferentes cuando los datos se generan bajo la 
hipótesis nula para un valor de β diferente de cero. De hecho, las simu-
laciones muestran resultados prácticamente idénticos en relación con la 
potencia estadística. En este caso, los valores críticos a un 5% de nivel 
de significancia se reportan en el cuadro 7. Los datos generados para 
la distribución normal estándar de una caminata aleatoria con intercep-
to incluyen valores de β ∈{ }0 25 0 50 0 75 1 00 1 50. , . , . , . , . . Evidentemente 
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persiste la dependencia de la prueba DFSS a este parámetro pues, a me-
dida que su valor crece, los valores críticos decrecen independientemen-
te del tamaño de la muestra. 

Cuadro 7
Valores críticos al 5% de significancia

DFSS DF
r
1

β/T 0.25 0.50 0.75 1.00 5.00 0.25 0.50 0.75 1.00 5.00

25 -13.6 -15.7 -18.6 -21.7 -82.9 -15.2 -15.4 -15.6 -15.3 -15.0

50 -13.4 -17.0 -20.8 -25.1 -102.3 -16.8 -17.0 -16.9 -16.7 -17.0

100 -13.9 -18.8 -25.8 -31.7 -136.2 -18.3 -18.3 -18.2 -18.1 -18.3

200 -15.8 -23.7 -32.1 -41.1 -185.4 -19.1 -19.2 -19.1 -18.8 -19.0

DF
r
2 DF

r
3

β/T 0.25 0.50 0.75 1.00 5.00 0.25 0.50 0.75 1.00 5.00

25 -12.1 -12.2 -12.3 -12.1 -12.5 -6.9 -6.9 -6.9 -6.7 -7.1

50 -11.6 -11.7 -11.6 -11.3 -11.9 -6.5 -6.4 -6.6 -6.4 -6.8

100 -11.5 -11.5 -11.4 -11.3 -11.5 -6.4 -6.3 -6.2 -6.0 -6.4

200 -11.3 -11.5 -11.3 -11.1 -11.3 -6.2 -6.2 -6.2 -6.3 -6.2

Nota: 10,000 simulaciones Monte Carlo.

Fuente: Elaboración propia, son resultado de las simulaciones.

Ahora bien, el problema con la prueba bootstrap DFB es que las si-
mulaciones demandan un costo de tiempo elevado, especialmente si el 
tamaño de muestra es mayor a 100 datos. Por tal motivo, el estudio de 
simulación se realiza para muestras de tamaño T = { }50 100,  y un valor 
específico de β = 1 . Consecuentemente se contemplan  999 muestras 
bootstrap y 1000 réplicas para cada una de ellas. El tamaño y la potencia 
de todas las pruebas se reportan en el cuadro 8, incluyendo al estadístico 
DFSS, el cual sabemos tiene el inconveniente de depender del valor de β. 
En tal situación, la prueba DFB toma en cuenta la estimación del paráme-
tro β y considera dicha estimación para calcular las constantes críticas de 
los cuantiles de la distribución empírica del estadístico bootstrap.

Dado que el interés es averiguar sobre las ventajas de la técnica 
bootstrap se tienen las siguientes consideraciones: 

La prueba DFB es la mejor en potencia respecto a la prueba DFSS 
con independencia del tamaño de la muestra.

Hay una ligera distorsión en el tamaño de la prueba de todos los 
estadísticos cuando el tamaño de la muestra es relativamente pequeña  
( T = 25 ). El problema desaparece cuando el número de datos de la 
muestra es grande, excepto en el caso de la prueba DFB.



Vol. 7. Núm. 1114 n Suplemento/Supplement

Cuando el tamaño de la muestra es mediano (T = 50), el estadístico 
de prueba DFr2 de Chang es la mejor en términos de su potencia, pero 
cuando el tamaño de la muestra aumenta (T = 100), la prueba DFr1 es la 
mejor respecto a la hipótesis de estacionariedad. Esto ratifica y confirma 
los resultados de la simulación para β igual a cero.

En el rango 0 8 1. < <φ , la potencia de todas las pruebas es baja, no 
obstante en el caso de 0 0 7< ≤φ . , la prueba DFr1 es la de mejor poten-
cia especialmente cuando el tamaño de la muestra es T = 100.

Por último, es necesario indicar dos cuestiones. En primer lugar, 
en relación con el punto (d), como indican Madala-Kim (1998), todas 
las pruebas de raíz unitaria de la clase univariada experimentan una 
potencia baja para los procesos estacionarios cercanos a una raíz uni-
taria. Por lo tanto, los resultados de las simulaciones encajan bien con 
la evidencia reportada por otras investigaciones. En segundo lugar, 
tocante al punto (c), si bien la prueba DFB no es mejor que las pruebas 
DFr1 , DFr2 y DFr3 , es ilustrador saber que el método boostrap puede 
mejorar la potencia de la prueba de raíz unitaria DFSS cuando la hi-
pótesis nula es una caminata aleatoria con intercepto. No obstante, es 
recomendable utilizar cualquiera de las pruebas con transformación 
invariantes.

T = 50, β = 1

φ DFB DFSS DF
r
1 DF

r
2 DF

r
3

1.00 0.059 0.064 0.060 0.059 0.042

0.95 0.072 0.041 0.059 0.076 0.060

0.90 0.087 0.059 0.085 0.076 0.112

0.80 0.127 0.103 0.295 0.296 0.279

0.70 0.204 0.167 0.503 0.520 0.377

T = 100, β = 1

φ DFB DFSS DF
r
1 DF

r
2 DF

r
3

1.00 0.072 0.035 0.041 0.043 0.054

0.95 0.105 0.077 0.098 0.102 0.089

0.90 0.124 0.071 0.235 0.228 0.225

0.80 0.254 0.222 0.809 0.754 0.531

0.70 0.446 0.405 0.997 0.992 0.700

Nota: 999 muestras bootstrap y 1000 simulaciones Monte Carlo. Región crítica al 5% de sig-

nificancia.

Fuente: Elaboración propia, son resultado de las simulaciones.

Cuadro 8
Tamaño y potencia de las pruebas de raíz unitaria
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n 	 Conclusiones

Muchas series históricas se parecen a una caminata aleatoria con intercep-
to. Nelson-Plosser (1982) dan evidencia de que la mayoría de las variables 
macroeconómicas básicas como el PIB, el nivel de precios y otras más 
tienen raíces unitarias. En muchos estudios se corrobora dicho resultado 
y, sin embargo, no se cuestiona si la prueba arroja una conclusión siste-
máticamente diferente. Es imperioso percibir que el ajuste de la tendencia 
lineal por mínimos cuadrados ordinarios induce a un sesgo en la estima-
ción del coeficiente de la ecuación autorregresiva de la variable estudiada 
debido a la correlación del regresor con el término de error. 

Shin-So (2001, 2002) y So-Shin (1999) remedian el sesgo al cons-
truir el estadístico DFSS con base en la estimación recursiva de la com-
ponente determinista, pero la prueba no se puede implementar en el caso 
de una caminata aleatoria con una deriva. ¿Por qué? La distribución de 
probabilidad del estadístico se puede obtener por métodos conocidos y 
la distribución asintótica del estadístico tiene validez estrictamente si el 
tamaño de la muestra es “grande”. En otros casos, la distribución de pro-
babilidad del estadístico depende de supuestos fuertes o bien su cons-
trucción es complicada. Éste es el caso de la prueba DFSS de Shin-So. 
¿Qué se puede hacer entonces si no puede implantar al caso de una ca-
minata aleatoria con deriva? Se debe proceder en términos de las trans-
formaciones al parámetro de tendencia lineal o bien bajo la técnica del 
bootstrap parámetrica. ¿Cuál es el mejor procedimiento? Cuando la hi-
pótesis alternativa es un proceso estacionario alrededor de una tendencia 
lineal y se trabaja con las observaciones originales, la evidencia está del 
lado del bootstrap paramétrico, es el mejor en términos de la potencia 
estadística. Sin embargo, si los datos se transforman apropiadamente, 
entonces la prueba DFSS invariante de ajuste recursivo es la mejor. Por 
lo tanto, la recomendación es utilizar transformaciones invariantes de 
las observaciones  debido a que su ejecución es directa y de menor coste.

En el futuro será necesario valorar el papel del parámetro de la cami-
nata aleatoria en relación con la distorsión del tamaño de la prueba. La 
prueba DFSS no necesariamente es robusta, por ejemplo, a la presencia 
de “puntos de quiebre” examinadas por  Perron (1989). Dicho de otra 
manera, cuando el valor del parámetro de tendencia cambia a lo largo 
del tiempo, la tasa de rechazo de la hipótesis nula podría aumentar, aun 
cuando el verdadero proceso es una caminata aleatoria, por lo que ten-
dríamos un fenómeno “inverso de Perron” (Leybourne 1998, 2000). La 
prueba de bootstrap por construcción es robusta a rompimientos de los 
parámetros bajo la hipótesis nula, tal como lo sugiere el diseño de simu-
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lación Monte Carlo. Sin embargo, se desconoce si tal propiedad es una 
característica recurrente de la prueba DFSS invariante por lo que ésta es 
una tarea para una investigación futura.
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