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n 	 Resumen: En este trabajo se muestran condiciones para la unicidad 
del equilibrio de Nash-Cournot para un juego de n-firmas. Estas con-
diciones garantizan que las funciones de mejor respuesta para n-firmas 
que compiten en forma oligopólica a la Cournot sean contracciones y 
generalizan las condiciones de concavidad generalmente consideradas 
para este fin.

n 	 Abstract: In this work we obtain new conditions to reach the unique-
ness of Nash equilibrium in a Cournot oligopoly model. These condi-
tions assure that the reaction functions are contractions and they are not 
reduced to the obtained ones by Rosen (1965), in as much as they do 
not demand the strict concavity of the benefit functions

n 	 Palabras clave: mejor respuesta, contracción, equilibrio de Cour-
not, unicidad.
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n 	 Introducción

La teoría de juegos trata situaciones de conflicto y negociación. Una 
situación de conflicto supone una interacción entre dos o más individuos 
(jugadores) que actúan recíprocamente y donde las acciones elegidas 
por cada uno para resolver la situación determinan un resultado final 
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al conflicto, sin que cada uno pueda asegurar por sí mismo el resultado 
final. Cada uno participando como jugador puede controlar la situación 
parcialmente, pero ningún jugador tiene mando completo. Cada jugador 
tiene preferencias sobre los posibles resultados del juego y escoge una 
estrategia con el objetivo de obtener el resultado más beneficioso posi-
ble para él, tomando en cuenta las elecciones estratégicas de los demás 
jugadores. Tales preferencias pueden describirse como una función de 
utilidad esperada (a la von Neumann-Morgenstern), en la cual cada ju-
gador se caracteriza por una función numérica cuyo valor esperado es el 
que intenta incrementar al máximo.

Un equilibrio de Nash (Nash, J., 1951) es una combinación estra-
tégica con la propiedad de que ningún jugador puede ganar o mejorar 
desviándose unilateralmente de tal combinación. El equilibrio de Nash 
puede caracterizarse por ser, para cada jugador, una mejor respuesta, 
dadas las estrategias elegidas por los demás. Un juego puede poseer más 
de un equilibrio de Nash; en este caso, el estudio de las características 
de estos equilibrios es central para poder entender las soluciones posi-
bles (ver por ejemplo Van Damme, 1991). Dada la complejidad de esta 
discusión, obtener condiciones amplias que garantizan la unicidad local 
del equilibrio de Nash no es de menor importancia.

En condiciones muy generales, la existencia del equilibrio de Nash 
está garantizada. Nuestro objetivo es obtener condiciones amplias que 
impliquen la unicidad del equilibrio de Nash. En la literatura es conocido 
que si las reacciones son funciones contractivas, la unicidad del equilibrio 
se sigue (el uso de la propiedad de contracción para asegurar la unicidad 
del equilibrio de Nash, tiene como referencia inicial a Debreu (1952), y 
una aproximación diversa se da con la condición de concavidad de las 
funciones de reacción, en Rosen (1965). El estudio de unicidad del equili-
brio en mercados oligopólicos está ampliamente tratado por Vives (1999), 
considerando el teorema de punto fijo para contracciones. Sin embargo, en 
nuestro trabajo presentaremos condiciones sobre las funciones de utilidad 
que garantizan la unicidad del equilibrio de Nash y que, de alguna manera, 
generalizan las presentadas en Rosen por cuanto, en principio, no exigen 
concavidad de las funciones de utilidad. A diferencia de los trabajos reali-
zados por Kohlstad y Mathiesen (1987) y Long y Soubeyran (2000), nues-
tro desarrollo puede aplicarse a diversos casos, n-firmas oligopólicas, duo-
polios y competencia a la Hotteling (empresas compitiendo vía precios en 
una ciudad lineal, Hotelling, 1929). Así, discutiremos a partir del teorema 
de unicidad por contracción en el caso de competencia oligopólica.� Vere-

�	  Recomendamos Segura (1992) para el estudio de mercados imperfectos.
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mos también que a medida que el número de agentes en el juego aumenta, 
las condiciones que aseguran la unicidad del equilibrio de Nash-Cournot 
se hacen cada vez más restricitivas. No obstante, en las condiciones habi-
tuales para dos jugadores, esta condición se cumple automáticamente.

El presente artículo está constituido de la siguiente manera: la sec-
ción 2 describe las características esenciales del teorema de punto fijo 
para contracciones. La sección 3 formula las condiciones para la uni-
cidad del equilibrio de Nash. La sección 4 es el núcleo del trabajo. Se 
muestra un teorema para la unicidad del equilibrio de Nash-Cournot, 
considerando a la función de mejor respuesta como una contracción; 
además se muestra la unicidad del equilibrio de Nash para la competen-
cia de Hotelling. Mostraremos que los axiomas del teorema de Rosen, 
en determinados casos, aseguran esta propiedad de la función de mejor 
respuesta. Sin embargo, nuestro resultado no se sigue de los obtenidos 
por Rosen. En la sección 5 se presentan los comentarios finales.

n	 El teorema de contracción

Recordemos algunos conceptos básicos relacionados con los espacios 
métricos.

Definición 1. Un espacio métrico es un par (X,d) donde X es un con-
junto no vacío y d es una función real definida en X×X, llamada distan-
cia o métrica, y que satisface los siguientes axiomas: i) d(x,y)≥0 _x,y∈X, 
y d(x,y)=0_x=y, ii) d(x,y)=d(y,x)_x,y_X, y iii) d(x,z)≤d(x,y)+d(y,z) 
_x,y,z_X.

Es decir, i) las distancias son no negativas y el único punto a distan-
cia cero de x es el mismo x; ii) la distancia es una función simétrica; y 
iii) la distancia satisface la desigualdad triangular: la longitud de un lado 
de un triángulo es menor que la suma de las longitudes de los otros dos 
lados.

Para un dado conjunto X es posible definir más de una métrica. Cuan-
do la métrica del espacio se da por sobreentendida, se habla simplemen-
te del espacio métrico X aunque sabemos que realmente éste es un par 
(X,d). Los elementos de X son llamados puntos del espacio métrico.

Definición 2. Supongamos que  . La distancia desde x hasta 
y, representadas bien como d(x,y) o , es d (x, y) = maxi xi − yi .

Definición 3. Sea (X,d) un espacio métrico. Una función f : X _ X es 
una contracción si existe una constante k con 0≤k<1 tal que
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(1)		 d(f(x),f(y))≤kd(x,y) _x,y_X			

Por lo tanto, una contracción acerca los puntos del espacio métrico. 
Dicho de forma simple, una contracción deja las imágenes de dos puntos 
más cerca de lo que lo estaban los puntos originales. De la ecuación (1) 
se deduce que una contracción es uniformemente continua.

Por lo tanto, si f : X _ X, entonces un punto x_X tal que f(x)=x, que 
es llamado un punto fijo de f. El teorema de la contracción dice que una 
contracción en un espacio métrico completo tiene un único punto fijo. Es 
decir, si f : X _ X es una contracción en un espacio métrico completo (X,d), 
entonces existe exactamente una única solución x_X de la ecuación

(2) 		 f(x)= x					   
	

Teorema de punto fijo para contracciones. Sea un  subcon-
junto cerrado y f : X _ X una contracción. Dado cualquier punto x__X, la 
sucesión converge  para un punto x_X que es el único punto 
fijo de f. Una demostración clara se puede ver en Accinelli (2005b) y 
Lima (1981).

n	 Unicidad del equilibrio de Nash

Un juego no cooperativo se caracteriza por:

i.	 Los jugadores no tienen capacidad para llegar a acuerdos vinculan-
tes.

ii.	 Cada jugador sabe lo que el otro sabe y a su vez sabe que su oponente 
sabe lo que él sabe.

iii.	Los jugadores no podrán intercambiar información ni ningún tipo de 
dato en el transcurso del juego.

Definición 4. Un juego n-personal finito en forma normal se defi- 

ne como una terna N , Ai{ }i=1

n
, P 

 
 
 donde: i) N={1,...,n} es un conjunto  

 
finito de jugadores, ii) para cada i_N, Ai es un conjunto de acciones 
posibles de ser elegidas (espacios de estrategias puras) y, iii) , 
donde  es una función de retorno o pagos.

Las siguientes hipótesis garantizan la existencia del equilibrio de 
Nash:
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i.	   es compacto y convexo para cada i_N.
ii.	   está definido, es continuo y acotado para todo .
iii.	  es concavo con respecto a  para todo .

Por consiguiente, un punto de equilibrio es una combinación estra-
tégica, a*, que es factible (es decir, que se halla contenida en A) y para 
el que cada jugador maximiza su beneficio o pago con respecto a su 
propia elección estratégica, dadas las elecciones estratégicas de los otros 
jugadores.

Definición 5. El equilibrio de Nash del juego _ = (N,A,P) es una 
combinacion  de acciones tal que:

(3)		

Es decir, el equilibrio de Nash es un vector estratégico que garantiza 
la no existencia de incentivos para cambiar unilateralmente la estrategia 
a*.

Para cada    definimos el conjunto de mejores acciones del 
jugador i dadas las acciones  elegidas por los otros jugadores, como:

(4)		

Definición 6. La correspondencia de mejor respuesta del jugador i, 
llamado el conjunto de mejores respuestas Bi, satisface que el equilibrio 
de Nash es un vector a* de acciones para las cuales

(5)		 .

Definimos B : A _ A la correspondencia , 
donde    a la que llamaremos corespondencia mejor respuesta.

Como hemos mencionado, una de las primeras contribuciones so-
bre la unicidad del equilibrio de Nash se debe a J. B. Rosen, en 1965, 
quien propone la consideración de características de concavidad para las 
funciones de retorno, se define, entonces, un juego cóncavo. Esto es, se 
tendrá un único punto de equilibrio para cada juego estrictamente cón-
cavo. Esto muestra que, para un juego estrictamente cóncavo, el sistema 
es globalmente y asintóticamente estable con respecto al único punto de 
equilibrio del juego.

El teorema de unicidad del equilibrio de Nash que presentaremos 
es independiente al dado por Rosen y, como veremos, aplica a casos no 
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cóncavos. Como es bien conocido, un equilibrio de Nash es un punto 
fijo de la correspondencia mejor respuesta. El teorema de Kakutani ase-
gura la existencia de al menos un punto fijo para este juego. Presentamos 
a continuación la demostración de que si la correspondencia de mejor 
respuesta es contractiva, entonces existe un único equilibrio de Nash.

Teorema 1. (Unicidad del equilibrio de Nash) Sea _=(N,A,P) un 
juego en forma normal de n jugadores, en las condiciones previamente 
definidas. Si la función de mejor repuesta es una contracción entonces 
existe un único equilibro de Nash.

Demostración: Supongamos que la correspondencia mejor respuesta 
B es una contracción. Sean  dos equilibrios de Nash diferentes, 
(es decir que,  y ). Luego 
por ser B(_) una contracción, se sigue que . 
Siendo k < 1, se sigue que .

n	 Unicidad del equilibrio de Nash-Cournot

En lo que sigue mostraremos, para el caso de competencia oligopólica 
con N-firmas, condiciones que aseguran que la correspondencia mejor 
respuesta sea una contracción. Si exigimos la estricta concavidad de las 
funciones de utilidad, las condiciones de Rosen se cumplen y, por lo 
tanto, la unicidad del equilibrio de Nash se sigue. Obtendremos a conti-
nuación condiciones para la unicidad trabajando directamente a partir de 
las funciones mejor respuesta.

Primeramente analizamos un caso sencillo de 2 competidores. Vere-
mos que, bajo las hipótesis habituales, la correspondencia de mejor res-
puesta es una contracción y luego lo generalizamos a N competidores.

Se considera una industria compuesta por dos empresas con una fun-
ción de costos para cada firma i (produciendo qi unidades) dada por: Con-
sideremos una rama industrial oligopolizada compuesta por dos firmas, 
a las que representaremos por i=1,2. Las respectivas funciones de costos  
serán  donde , representa un subconjun-
to compacto y conexo de R. Por  representamos la  
cantidad del bien que la i-ésima firma elige producir. En defintiva es el 
conjunto de estrategias puras posibles para cada firma.

(6)		

La correspondiente función de demanda inversa es conocida por las 
firmas y la representamos por:
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(7)		

Cada firma elige . La función de retornos de 
cada firma está representada por . El perfil 
estratégico  será un equilibro de Nash-Cournot si:

(a)	dado  entonces  resuelve:
	
(8)		

(b) dado  entonces  resuelve:

(9)		

Así, obtenemos: 

(10)	

De esta forma, un equilibrio de Nash-Cournot queda definido por las 
acciones elegidas por las firmas, de forma tal que ninguna tiene incenti-
vos a desviarse y en conjunto definen el precio unitario:

(11)	

Resolviendo (7), obtenemos qi en función de qj, donde 
. Esto permite definir la función de mejor respuesta 

para la firma i la que representaremos por Bi(qj). Para simplificar consi-
deremos el caso en que . Entonces:

		

		

Veamos ahora que bajo las condiciones habituales, la correspondencia 
de mejor respuesta es una contracción. Consideremos que     es 
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solución de (8) y (9). Una función B : R² _ R² es una contracción si existe 
una constante k 0≤k<1 tal que,  se 
tiene entonces que:

Con , de acuerdo a las hipótesis c≥0 and b>0, implica  

que 2(b+c)>b. Por lo tanto, 0≤k<1. Así, la correspondencia mejor res-
puesta es una contracción.

El caso del oligopolio de Cournot con N firmas
La idea central del modelo generalizado de Cournot está basada en el 
supuesto de que un conjunto de N firmas racionales compiten simul-
táneamente en la provisión de un mismo mercado oligopolístico. Las 
firmas conocen la función de demanda. La cantidad agregada producida 
y vendida determina instantáneamente el equilibrio de mercado.

En este apartado seguiremos el modelo propuesto por Accinelli 
(2005a), donde suponemos un juego en forma estratégica, con N firmas 
que deben elegir simultáneamente la cantidad de un producto que lan-
zarán al mercado. Los productos son substitutos perfectos. Suponemos 
que cada firma i_{1,…,n}, elige la cantidad a producir en el intervalo . 
La función de costos está dada por Ci(qi).

La estructura analítica del modelo responde a una función de inversa 
demanda p : [0,Qi] _ R, donde p es el precio y Q es el total posible de 
producción agregada, .

Representaremos al vector estratégico q como , indicando 
que la i-ésima firma elige su estrategia  como respuesta a la elec-
ción de las otras firmas, la que se representa por .

Los pagos que reciben las firmas se determinan por las funciones 
de beneficios, . Sea , la función inversa de 
demanda. La función de beneficios de la i- ésima firma quedará repre-
sentada por:

(12)	
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Representaremos por Q la producción agregada asociada a la elec-
ción estratégiga , es decir: .

El concepto de equilibrio de Nash-Cournot en este mercado se carac- 

teriza por un vector de producción tal que ninguna firma  

tiene interés en desviarse. Es decir, . 
Por consiguiente, la correspondencia de mejor respuesta para cada firma 
está definida por:

		

A partir de la cuasi-concavidad de las funciones de beneficio para las 
firmas, y la compacidad del espacio de estrategias, el teorema del máxi-
mo asegura que para cada firma su correspondencia de mejor respuesta 
es semicontinua superior y compacta y, por consecuencia, el Teorema de 
Kakutani y Teorema 1 aseguran la existencia del equilibrio de Nash para 
el modelo de Cournot.

El siguiente teorema asegura que la correspondencia de mejor res-
puesta es una contracción. Lo cual implica unicidad del equilibrio de 
Nash-Cournot.

Teorema 2 (De unicidad local). Todo juego de Cournot _=(N,Q,π) 
en las condiciones previamente definidas, si la correspondencia de me-
jor respuesta verifica que

		

		

 tiene unicidad de equilibrio.
Demostración: A partir de las condiciones de primer orden se tiene 

que:

(13)	

Las funciones son diferenciables con con respecto a las  

N variables  Sea  una solución de (13). Supon-
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gamos que las derivadas .   El teorema de la  

función implícita nos dice entonces (ver detalles, ejemplo Após-
tol, 1991), que para cada i existen entornos  
tales que para cada  existe un único  tal que  

 Se obtiene entonces que el  

sistema de ecuaciones funcionales con N variables 

		

puede ser resuelto en el entorno  Se obtie-
nen entonces las correspondencias de reacción: ,  
siendo , las que son diferenciables. 

 Para cada  definimos el gradiente evaluado en  como:

						   
(15)	

donde , es el operador de derivadas 
parciales, en este caso aplicado a π respecto a las variables , de 
esta forma obtenemos el gradiente de la reacción de la firma i para el 
caso considerado como:

(16)	

A partir del teorema del valor medio y la desigualdad de Cauchy-
Schwarz, mostraremos que la correspondencia mejor respuesta es una 
contracción. Sean  dos vectores estratégicos en , enton-
ces:

(17)	
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Con el uso  del teorema del valor medio escribimos:

	   	
(18)
		

donde  con _(0,1). Usando la desigualdad de Cauchy-
Schwarz, obtenemos:

(19)     	
	       
      		        

Sea    entonces, a partir de (19), se tiene:
 					   

(20)	 .

Así, la desigualdad se obtiene:

(21)	 	

donde  . La desigualdad anterior puede escribirse como:

(22)	

Se concluye que la correspondencia mejor respuesta es una contrac- 

ción si se verifica que: , es decir, si para todo i=1,2,...,n se 
tiene:		

		

Es ésta entonces una condición para la unicidad local del equilibrio 
de Nash-Cournot[+].

Obsérvese que el teorema de la función implícita permite definir a 
cada coordenada de la correspondencia mejor respuesta como una fun-
ción derivable, tal que  para todo  solamente en un 
entorno de una solución del sistema (13), por lo que obtenemos sola-
mente condiciones para la unicidad local. No obstante, si asumimos la 
existencia de esta función de mejor respuesta como una función deriva-
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ble, lo que es común a la mayoría de las aplicaciones, entonces podemos 
enunciar un teorema de unicidad global.

Teorema 3 (De unicidad global). Todo juego de Cournot _=(N,Q,π) 
en las condiciones previamente definidas, en el que las coordenadas de la 
correspondencia mejor repuesta son funciones 
definidas como  derivables y verifican

		 max
i=1,K,n

max
∂Bi(q−i)

∂q j
,   j ≠ i

 

 
 
 

 

 
 
 

 
 
 

  
 
 
 

  

 tiene unicidad (global) de equilibrio.
Demostración: Una vez asumida la existencia de una corresponden-

cia de mejor respuesta como una función derivable con respecto a todas 
sus variables, la demostración del teorema sigue como en (2)[+].

Para nuestro caso se concluye que si se verifica:

		

entonces hay unicidad de equilibrio.
Equivalentemente, si -2b-C_(q) > 0 la condición de equilibrio es:

(24)	

y si -2b-C_(q) < 0 dicha condición está dada por:

(25)	

Observe que si C es una función convexa como generalmente ocurre 
en teoría económica, entonces debemos considerar la condición (25). 
Por lo que si el número de participantes crece, entonces la condición de 
unicidad es más restrictiva; no obstante, la condición se obtiene inme-
diatamente para el caso N = 2, lo que afirma la unicidad el equilibrio en 
estos casos.

Competencia de Hotteling
Como aplicación veamos condiciones que garantizan la unicidad de la 
solución del modelo de competencia de Hotteling. Tomemos el ejemplo de 
una ciudad lineal, es decir, supongamos una calle de longitud 1 en la que 
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se encuentran distribuidos uniformemente H consumidores, existen dos 
firmas en lugares extremos de la calle, que producen el mismo bien.

 Supongamos que la distancia entre las firmas es igual a 1. La firma 
1 está ubicada en x = 0, la firma 2 en x = 1. El costo unitario del pro-
ducto para cada firma es c. Los consumidores incurren en un costo de 
transporte igual a t por unidad de distancia recorrida. Sea pi el precio al 
que la firma i = 1,2 ofrece su producto. Los consumidores recurrirán 
para comprar una unidad del producto a la firma 1 o 2, según el costo 
sea menor. El costo unitario para el consumidor está dado por p1 + tx 
donde x es la distancia a la firma 1 si recurre a la firma 1, y p2 + (1 - x)t 
si recurre a la firma 2.

Suponemos que la demanda para la firma i = 1 está represen-
tada por D

1
( p

1
, p

2
) = x  donde  está definida por la igualdad 

. Se sigue entonces que la demanda que enfrenta 
la firma 1 es:

(26)	

 y la demanda correspondiente a la firma 2 es:

(27)	

Supongamos que las firmas eligen precios en forma simultánea, lo 
que permite modelar la situación como un juego normal de una sola 
vez. Consecuentemente, el equilibrio de Nash es un perfil estratégico  

 tal que

(28)	

El problema de maximización que resuelve la firma 1 es:

		

La correspondencia mejor respuesta para esta firma está dada por:

(29)	

Análogamente para la firma 2:
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El equilibrio competitivo para el modelo de Hotelling es enton-
ces un equilibrio de Nash. La correspondencia mejor respuesta es una 
contracción con k = 1/2 pues como fácilmente puede comprobarse 

. Entonces, la  

solución es única. Tal solución es: .

n	 Conclusiones

En definitiva, la unicidad del equilibrio depende de las características 
estructurales del modelo que estamos analizando. Si bien la estricta con-
cavidad de las utilidades asegura en determinadas condiciones la unici-
dad del equilibrio, hemos probado que es posible relajar esta condición 
sin que la unicidad se pierda. Si bien es cierto que, en el modelo que 
presentamos, las condiciones que garantizan que las funciones de re-
acción sean contracciones, y en definitiva la unicidad del equilibrio, no 
dependen de la concavidad de las utilidades, aunque sí dependen del 
número de jugadores, haciéndose cada vez más difíciles de obtener. No 
obstante, esto ofrece una nueva perspectiva. El caso simple presentado 
como modelo de competencia de Hotteling muestra posibilidades de ex-
tender las aplicaciones; asimismo, a partir de esta presentación puede 
pensarse en modelos a la Hotteling generalizados, donde los productos 
ofrecidos sean sustitutos y no el mismo; de esta forma, la reacción ya no 
será lineal en los precios, sino más bien función de los precios y parece 
ser posible encontrar condiciones sobre esta función que aseguren uni-
cidad del equilibrio en situaciones más realistas.

El teorema de unicidad del equilibrio de Nash propuesto por Rosen 
se basa en una extensión de las condiciones de concavidad y hace uso de 
la diferenciabilidad. Sin embargo, el teorema de unicidad por contrac-
ción aquí presentado no requiere la diferenciabilidad de las funciones 
de utilidad, mientras que el teorema de Rosen requiere que las segundas 
derivadas parciales sean continuas. El teorema de unicidad del equilibrio 
de Nash por contracciones, que ha sido desarrollado en este trabajo, es 
aplicable para diferentes casos, es sencillo y no es tan restrictivo en las 
condiciones que se requieren para tener la contractividad de las funcio-
nes de mejor respuesta.
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