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Resumen: En este articulo se examina la manera en que Hilbert elabora su
primer formalismo al investigar los fundamentos de la geometria. El interés
se centra en la forma en que elabora una nueva concepcién de las teorias
matemadticas. Se contrasta la postura de Hilbert con el constructivismo de
Kant, el cual perdurd en la filosofia de las matematicas durante mucho tiem-
po. Para ello, en la primera parte se examina la manera en que Kant explica
la demostracion geométrica y se muestra el vinculo entre su explicacion y la
teoria de esquemas que €l mismo sostiene. También se expone la concepcién
subyacente a los Grundlagen der Geometrie de Hilbert, y se busca reconstruir
el camino que siguio hasta alcanzar esa concepcion. En particular se examina
el lugar que ocupan la geometria proyectiva y el principio de dualidad en sus
reflexiones. Por ultimo, se apunta a la idea de que el primer formalismo de
Hilbert constituye una generalizacién necesaria de la filosofia matematica
de Kant.

Palabras clave: dualidad, fundamentos de la geometria, elementos ideales,
método axiomatico

Abstract: This essay examines the manner in which Hilbert worked out his
first formalism in his investigations on the foundations of geometry. To elu-
cidate these views, Hilbert’s position is compared with that of Kant, who set
forth a constructive notion of “geometrical objects” which endured in the Phi-
losophy of mathematics for a long time. In the first part, the author explores
the way in which Kant explains the notion of proof in classical geometry and
clarifies how his account relates to his theory of schematism. Next, the con-
ception underlying Hilbert’s Grundlagen der Geometrie is presented and an
attempt is made to recreate the path he followed until he reached his point
of view. In particular this article explores the role that projective geometry
and the principle of duality played in his reflections. Finally, Kant’s ideas are
contrasted with those of Hilbert in his first formalism, pointing toward the
view that the latter constitutes a necessary generalization of Kant’s mathe-

matical philosophy.
Key words: duality, foundations of geometry, ideal elements, axiomatic
method

Cuando se habla de la concepcién formalista de David Hilbert suele
pasarse por alto que ésta se desarrollé basicamente en dos etapas. En
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38 CARLOS TORRES ALCARAZ

la primera de ellas —o etapa geométrica—, Hilbert se enfocé en los fun-
damentos de la geometria adoptando la siguiente postura: en su forma
axiomatica, las teorias matematicas no expresan un conjunto de verda-
des acerca de un dominio especifico de objetos; mas bien, constituyen
una red o entramado de relaciones ldgicas entre conceptos definidos
implicitamente por los axiomas. Tales entramados pueden ser compar-
tidos por sistemas de objetos de muy diversa indole. En particular, la
geometria es un sistema hipotético deductivo, el cual sélo depende de
relaciones entre objetos espaciales determinadas por los axiomas.!

En una segunda etapa, que aqui llamaremos aritmética, Hilbert fue
mads alla del punto de vista anterior hasta llegar a la siguiente conclu-
sion: toda teorfa axiomadtica se puede refinar al punto de ya ni siquie-
ra proponer un entramado de relaciones légicas entre conceptos, sino
simples esquemas de relacién entre simbolos. Esta idea, concebida en
la década de 1920 como una extensién de su punto de vista inicial, exi-
ge la estricta formalizacién (mecanizacién) de los métodos deductivos
de las matematicas, al punto en que los aspectos semanticos ceden su
lugar a una mera sintaxis que convierte la inferencia ldgica en un juego
combinatorio de férmulas sujeto a reglas precisas.

Trataremos bdsicamente con la primera de estas dos etapas. El texto
se inicia con una exposicidn de las principales ideas de Kant acerca de
la geometria, brindando especial atencién a su teoria de esquemas. A
continuacién se examina la manera en que esta teoria entrd en conflicto
con el desarrollo de las matematicas en el siglo XIX y la manera en que
Hilbert reelabord la nocién de objeto matemdtico en general.

Si alguna utilidad ha de tener este estudio, espero que sea, por una
parte, ofrecer una valoracién distinta de la escuela de Hilbert mostran-
do que sus preocupaciones fueron mas alla de la inquietud por la cer-
teza matemdtica;? y por la otra, destacar la importancia de la teoria

L A esta etapa pertenece la presentacién axiomdtica de la geometria que hace
Hilbert en los Grundlagen der Geometrie de 1899, la cual significéd un giro en las
investigaciones. No todas las axiomatizaciones de la geometria son de esta indole;
por ejemplo, la de Euclides no lo es. Hilbert y Bernays califican las teorias axio-
maticas como la de Euclides con el adjetivo “inhaltliche” (“material”, en el sentido
de que poseen un contenido) para indicar que éstas se elaboran considerando las
propiedades y relaciones de un sistema de objetos prestablecidos (véase Hilbert y
Bernays 1934, p. 2). Como veremos, tal interpretacién de los términos de la teoria
suele desempefiar un papel en las pruebas. Esto se hace patente no sélo en el uso
de diagramas, sino en las definiciones, donde en ocasiones Euclides dirige nuestra
atencién a ideas que jamas utiliza en las demostraciones; v.gr., “Punto es aquello
que ya no tiene partes (D.I.1)”.

2 Al respecto, espero aportar suficientes elementos como para desterrar la pobre

Didnoia, vol. LIV, no. 63 (noviembre 2009).
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kantiana de esquemas para la filosofia de las matematicas, la cual, creo,
no ha sido debidamente valorada.

1. El punto de vista de Kant

Comenzaremos con algunas ideas de Kant acerca de la geometria, las
cuales subyacian en casi todos los debates en torno a esta disciplina
durante el siglo XIX y principios del xX.

En la Critica de la razdn pura, Kant establece una filosofia constructi-
va de las matematicas en la que ofrece un fundamento epistemolégico
para el conocimiento matematico en general. Su teoria tiene dos pun-
tos de apoyo: por una parte, la idea de que tanto la aritmética como
la geometria tienen como base las formas puras de la intuicién, siendo
ésta una de las razones por las que califica sus juicios de sintéticos a
priori; por la otra, una nocioén constructiva de los objetos matematicos
basada en su teoria de esquemas para los conceptos del entendimiento.
En particular, con estas herramientas Kant pretende justificar y dar fun-
damento al tipo de razonamiento que encontramos en los Elementos de
geometria de Euclides, paradigma de la demostracion matematica hasta
el siglo x1X.

Veamos a través de un ejemplo cémo entiende Kant la demostra-
cién euclidiana (y, por ende, la demostracién geométrica en general), y
como articula su teoria de esquemas con dicha interpretacion. Se trata
de la proposicién 32 del libro I de los Elementos de Euclides, a la que
Kant hace abierta referencia en la Critica de la razén pura (v.gr., en
B 743-45):

imagen que algunos autores ofrecen del formalismo de Hilbert, al describirlo como
una corriente seguin la cual la matematica es una colecciéon de sistemas formales
en que los términos son meros simbolos y los enunciados son férmulas que nada
significan (véanse, por ejemplo, Eves 1976, p. 481; Kline 1994, pp. 1593-1594, y
Hersh 1979, autores éstos que presentan una palida imagen de esta corriente). Asi-
mismo, quiero combatir la idea que algunos autores como Reuben Hersh, Thomas
Tymoczko, William Aspray y Philip Kitcher parecen sostener, segin la cual el obje-
tivo central de las investigaciones en torno a los fundamentos de las matematicas
de Hilbert (al igual que las de Frege, Russell y Brouwer) era responder a ciertas
interrogantes, como ¢en qué radica la certeza del conocimiento matematico? Asi,
por ejemplo, el programa de Hilbert se ha interpretado como la biisqueda de una
prueba finitista de consistencia para las matemadticas cldsicas a través de la for-
malizacion (véanse Hersh 1979, y las introducciones de Aspray y Kitcher 1988 y
Tymoczko 1986). Por el contrario, yo creo que el interés de Hilbert iba mas alla
de tales preocupaciones —las cuales si se hallaban presentes— hasta abarcar la
naturaleza misma de las matematicas y el desarrollo de nuevas herramientas de
trabajo e investigacién para esta disciplina.
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PROPOSICION 1.32. Si en un tridngulo se prolonga uno de los lados, el
dngulo externo es igual a los dos internos y opuestos, ¥ los tres dngulos
internos del tridngulo son iguales a dos dngulos rectos.

A E

B c D

Sea ABC el triangulo y prolénguese el lado BC hasta D.

Digo que el dngulo externo ACD es igual a los dos internos y
opuestos CAB y ABC y que los tres angulos internos del tridngu-
lo ABC, BCA y CAB son iguales a dos rectos.

DEMOSTRACION. Por el punto C tracese la recta CE paralela a la AB.
[1.31]

Puesto que AB es paralela a CE, y AC es incidente con las dos, los
angulos alternos internos BAC y ACE son iguales entre si. [1.29]

Por otra parte, puesto que AB es paralela a CE, y BC es inciden-
te con las dos, el angulo externo ECD es igual al interno y opues-
to ABC. [1.29]

Mas se demostrd que el d&ngulo ACE es igual al angulo BAC.

Luego el angulo entero ACD es igual a los internos y opuestos BAC
y ABC.

Afiddase el angulo comtn ACB.

Segtn esto seran los angulos ABC, BCA y CAB iguales a los angu-
los ACD y ACB.

Mas los angulos ACD y ACB son iguales a dos rectos. [1.13]

Luego los angulos ABC, BCA y CAB son iguales a dos rectos.

Por lo tanto: en todo tridngulo, si se prolonga uno de los lados,
el angulo externo es igual a los dos internos y opuestos, y los tres
angulos internos del tridngulo son iguales a dos rectos. QED.S

Como se ve, Euclides utiliza un diagrama en torno al cual organiza
el argumento. Esto no es algo circunstancial, sino una practica usual
entre los gedmetras que Kant quiere explicar. La figura o diagrama en
el ejemplo anterior corresponde a lo que Kant denomina “construccion
de conceptos”, un rasgo distintivo de las ciencias matematicas. Dice

% Esta prueba aparece ampliamente comentada en Friedman 1992, y un caso
similar en Torres 2005.
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Kant: “El conocimiento filosdfico es un conocimiento racional derivado
de conceptos; el conocimiento matematico es un conocimiento obtenido
por la construccion de los conceptos” (B 741), y afiade: “el conocimiento
filosofico sdlo considera lo particular en lo universal; las matematicas,
lo universal en lo particular, e incluso en lo singular, pero sélo a priori
y por medio de la razén” (B 742).

El diagrama de la proposicién 1.32 es, en el sentido recién indicado,
una construccién de los conceptos de tridngulo, linea recta, etc., con-
forme a cierto disefio que Euclides adopta por conveniencia.* Y sobre
la figura asi construida desarrolla el razonamiento ulterior, el cual ya
no es general: nos habla del dangulo ABC, de la recta CD, etc., en vez
de “cualquier angulo interior de cualquier tridngulo” o de “cualquier
extension de cualquiera de los lados de ese triangulo cualquiera”. Con-
sidera, pues, lo universal en lo singular.”

La importancia del diagrama se manifiesta desde la formulacién de
la proposicidon, donde Euclides habla de dngulos internos y dngulos ex-
ternos sin que haya en los Elementos una definicién de estas nociones.
De hecho, el significado de tales términos sélo se entiende con la figu-
ra (digamos que “interior” y “exterior” son nociones definidas implici-
tamente a través de ella). Asi, el diagrama expone ciertos objetos en
consonancia con los conceptos aludidos en la proposicién, un tridngu-
lo ABC y una extensién CD de uno de sus lados, pero en €l se muestran
muchas cosas mas; por ejemplo, la interioridad o la exterioridad de los
angulos. Todavia mas, en el texto Euclides nos pide trazar una recta CE
paralela a AB sin indicar el sentido en que se debe dibujar. Esto sélo se
aclara recurriendo al diagrama, donde dicha linea aparece hacia arriba,
dividiendo el d&ngulo ACD en dos angulos ACE y ECD, un hecho esen-
cial para el argumento posterior. Esta propiedad de la linea CE sélo se

4 En palabras de Kant, “construir un concepto” consiste en “presentar la intuicién
a priori que le corresponde [al concepto]”. En A 713 y B 741 da claras indicaciones
de céomo se debe entender esta caracterizacién.

® Kant podria presentar el siguiente argumento como justificacién de la validez
de la proposicidn: “Si bien la construccion se realiza en la intuicién sensible, en la
investigacion no se toma en cuenta ninguin rasgo empirico del objeto asi construido
(como, por ejemplo, la longitud de sus lados o la medida de sus angulos); y si bien
el diagrama es empirico (un objeto sensible), en la demostracién sélo se considera
la accién de construir sus elementos (un triangulo, una recta, etc.) sin hacer uso
de ninguna particularidad propia de los objetos especificos que resultan de la cons-
truccién. Por tanto, las propiedades establecidas son validas para todas las figuras
que se pueden obtener de esa manera.” Como veremos, Euclides suele contravenir
sutilmente esta exigencia en muchas demostraciones.
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puede reconocer en el diagrama, el cual se convierte de esta manera en
una parte importante de la demostracién.®

Podemos decir, siguiendo a Lisa Shabel (2003), que en los Elementos
muchos pasos cruciales en la demostracién se dan en virtud de obser-
vaciones hechas en el diagrama; por eso, a este tipo de razonamientos
se les suele llamar diagramdticos.

Lejos de ver un defecto en lo anterior, Kant lo considera un rasgo
esencial de la demostracion matematica, un recurso sin el cual no seria
posible el conocimiento matemadtico en general. Para destacar su papel
e importancia nos pide imaginar qué pasaria si, por ejemplo, pregunta-
ramos a un filésofo la misma cuestion (¢a qué son iguales los angulos
internos de un tridngulo?) y lo dejaramos hallar la respuesta a su mane-
ra. El punto es que nunca daria con algo parecido a la proposicién 1.32:
sélo contaria con los conceptos de recta, angulo, etc., y por mucho que
reflexionara sobre éstos no alcanzaria ninguna conclusiéon nueva. El fi-
l6sofo no podria seguir el camino de Euclides, pues s6lo conoce por
conceptos, no por construcciéon de conceptos. Trazar un triangulo seria
considerar lo universal en lo particular, pero él “sélo considera lo par-
ticular en lo universal”. El podrfa analizar y clarificar tales conceptos,
pero nunca llegaria a propiedades no contenidas en ellos. En el otro ex-
tremo tenemos al geémetra, quien lo primero que hace es representar
los conceptos mediante una o mas construcciones, para después razo-
nar sobre los diagramas resultantes; al hacerlo, descubre propiedades
de los objetos que no estan contenidas en los conceptos mismos (es de-
cir, que no se pueden extraer de los conceptos considerados de manera
aislada y al margen de toda intuicién).” Podemos decir, entonces, que
el diagrama no es una mera ilustracién de la proposicién 1.32, sino un
elemento central de la prueba que orienta nuestros razonamientos. En
las propias palabras de Kant: “A través de una cadena de inferencias y

6 En la proposicién 1.32, cuando Euclides habla de trazar por el punto C la rec-
ta CE paralela a la AB, se refiere al trazo de lo que hoy denominamos el segmen-
to CE. Es por esto que Euclides deberia indicar en qué sentido se ha de realizar
la construccion, pues hay dos sentidos posibles y s6lo uno de ellos conduce al fin
propuesto. Obviamente, si la recta utilizada fuera de suyo ilimitada en ambas di-
recciones, nuestra critica se vendria abajo; no obstante, lo hecho por Euclides no
corresponde a lo anterior, pues lo que €l hace es trazar una linea de un punto C a
otro punto E (los extremos de la linea, segtin reza la definicién DI.3). Aqui, Eucli-
des se conduce con estricto apego al espiritu griego, segun el cual lo positivo es el
estado de finitud; asi, considerar una linea recta infinita y sin extremos seria tanto
como considerar un objeto en estado de imperfeccion.

7 Esta observacién de Kant alude a la actividad de un geémetra anterior al si-
glo x1X, y s6lo es aplicable en forma limitada a la matematica contemporanea.
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guiado siempre por la intuicion, el gedmetra consigue asi una solucién
evidente y, a la vez, universal del problema” (B 745) (las cursivas son
mias). Tal uso de los conceptos in concreto es, para Kant, un rasgo dis-
tintivo del método matemadtico y en él apoya la idea de que los juicios
de la matematica son sintéticos a priori.

Este es el argumento de Kant: la geometria es sintética porque sus
resultados se obtienen realizando construcciones.® La geometria es a
priori porque de los objetos construidos sélo considera aquello que se
sigue de las condiciones universales de la construccion; es por ello que
el gedmetra puede afirmar la validez del resultado para todas las in-
tuiciones correspondientes al concepto (al respecto, véase B 44). Como
veremos, estas afirmaciones tienen hoy en dia un valor limitado.

2. La teoria kantiana de esquemas

Una prueba como la de la proposicién .32 es realizable cuando se tiene
la posibilidad de producir objetos de la intuicién que sean imagen de los
conceptos implicados. Segin Kant, esto se logra mediante la aplicacion
de esquemas, es decir, por razén de ciertos procedimientos o reglas que
indican en general cémo construir tales objetos.’

Refiramos esto al ejemplo anterior. Veamos, por ejemplo, la defini-
cion de tridngulo que se halla en los Elementos: tridangulo es cualquier
figura rectilinea comprendida por tres rectas. El cometido de esta defi-
nicién, como el de tantas otras, es delimitar el concepto correspondien-
te, es decir, sefialar las condiciones que una figura ha de cumplir para
ser un tridngulo. Para poderla aplicar (i.e., para poder decir “iesto es
un tridangulo!”) debemos tener un objeto, cuya produccién no resulta
de la definicién misma. Al respecto, la definicién es inerte, pues nada
dice acerca de la produccién o el manejo de los tridngulos. Lo mismo

8 Es mds, la sinteticidad también se debe a que muchas propiedades de los obje-
tos geomeétricos resultan de su construccion, donde se tornan evidentes, sin que las
mismas resulten de las definiciones, axiomas y postulados. La construccion es, en
este sentido, indispensable.

° Conforme a lo que afirma Kant, entre un concepto y las cosas particulares
que se subsumen bajo €l se halla una instancia mediadora, un término que hace
posible la aplicacién del primero a las segundas. Esta instancia tiene un pie de cada
lado; por una parte, es una representacion pura (libre de todo elemento empirico);
por la otra, es intelectual y sensible a la vez (Véase, CRP, A 138/B 177). Kant
denomina esquemas trascendentales a tales representaciones. En cada caso se trata
de la representacién de un procedimiento general por el cual la imaginacion ofrece
su imagen a un concepto. Kant dirfa al respecto que, sin esquemas, los conceptos
son vacios, pues no les podemos dar ningtin objeto.
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puede decirse de otras definiciones, como la de circulo. Por lo tanto, sin
la posibilidad de construir tridngulos, el concepto resulta inoperante. Y
es precisamente esta posibilidad lo que, segin Kant, separa al geémetra
del fildsofo: el primero cuenta con un esquema que le permite producir
tridngulos. Actda, por decirlo de alguna manera, sirviéndose de un pro-
cedimiento que los trae a la representacién, ya sea mediante imagenes
mentales, ya sea mediante construcciones sensibles.

La prueba de la proposicién 1.32 se apoya decididamente en la po-
sibilidad anterior. En ella, Euclides traza un tridngulo ABC, prolonga
el lado BC hasta D, etc., preparando de este modo el escenario para
la demostracién. Estas construcciones las realiza con base en ciertos
esquemas, que en este caso corresponden al uso, real o imaginario, de
la regla y el compéds; v.gr., la figura ABC es un “tridangulo” porque su
elaboracién se puede llevar a cabo con tales instrumentos. Tales usos
de la regla y el compas estan sugeridos en los tres primeros postulados,
a los que dan vida:

Postulado I. Trazar una linea desde un punto cualquiera a otro punto
cualquiera;

Postulado II. Prolongar por continuidad en linea recta una recta de-
limitada;

Postulado III. Para cada centro y radio describir su circulo.

El uso de la regla y el compés estd claramente presupuesto en lo an-
terior. De hecho, estos instrumentos han sido parte del bagaje del geé-
metra desde la antigua Grecia hasta nuestros dias, al punto de colmar
la geometria elemental con estas figuras. Esto es particularmente cier-
to de los Elementos, donde con base en ellos se construyen todos los
diagramas. Dice Kant:

lo que en matematicas se llama postulado es una proposicion practica que
no contiene mds que la sintesis a través de la cual nos damos un objeto y
producimos su concepto. Por ejemplo, describir un circulo con una linea
dada, partiendo de un punto dado, en un plano. Semejante proposicion
no puede demostrarse, ya que el procedimiento que exige es precisamente
el procedimiento a través del cual producimos el concepto de esa figura.
(B 287)

Veamos la pertinencia de lo anterior con relacién al tercer postulado
de Euclides; éste: (i) sintetiza los conceptos de punto y linea; (ii) para
cada punto y linea dados, determina un objeto: el circulo con centro en
el punto dado y radio la linea dada; y (iii) alude a un procedimiento
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(a un esquema fundamental) que se halla en la base del concepto de
circulo.

En resumen: segtin Kant, es con base en ciertos esquemas como el
geometra realiza la construccién de conceptos; y es examinando los
objetos construidos como descubre sus propiedades. Los esquemas co-
nectan de manera confiable los conceptos con sus representaciones, y
como en la indagacién el geémetra no se sirve de nada empirico, sino
solo de lo que es comtn a todas las figuras del género propuesto, la
conclusion alcanzada la puede afirmar para todas ellas. De ahi el salto
de lo singular a lo general. Por ello, la dltima linea de la proposicién
1.32: “Por lo tanto: en todo tridngulo, si se prolonga uno de los lados, el
angulo externo es igual a los dos internos y opuestos, y los tres angulos
internos del tridangulo son iguales a dos rectos.”

Finalizaré esta seccion con un breve comentario acerca del problema
que significé el uso de diagramas en el siglo XIX. Esto tendera un puente
hacia las discusiones venideras.

Al tratar de probar el teorema de que toda magnitud que crece con-
tinuamente, pero no mas alld de toda medida, se aproxima a un valor
limite, Dedekind se vio obligado a recurrir a evidencias geométricas.
Su respuesta fue buscar un riguroso fundamento, puramente aritmé-
tico, para los principios del andlisis infinitesimal. El resultado al que
llegé (1872) es bien conocido: se trata del concepto de niimero real
definido a través de las llamadas cortaduras, las cuales son centrales en
la construccion genética de los niimeros reales. Un problema con las
cortaduras es que no son esquematizables. En la secciéon 9 volveremos
a este punto.

Poco tiempo antes, en 1861, Weierstrass habia presentado un ejem-
plo de funcién continua que no es diferenciable en ningin punto, es
decir, una “curva” que, siendo continua, no tiene tangente en ninguna
parte. Esto contradijo la idea intuitiva de que toda funcién continua es
diferenciable excepto en puntos especiales, algo claramente sugerido
por los diagramas.!® Surgieron muchas preguntas: ¢cémo tratar con
esta clase de “curvas”, para las que no se tienen esquemas de produc-
cién?, éen qué sentido se puede decir que estas entidades son objetos
matematicos?!!

10 Histéricamente, la curva de Weierstrass es el primer fractal conocido. Lo nota-
ble en este caso es que disponemos de una férmula para ella:
3

W(x) = > a"cos(b"rx), donde 0 < a < 1, b es un entero impary ab > 1 + 3
n=0

1 Aqui podemos anticipar la respuesta de Hilbert, quien en una nota escrita hacia
1893 dice lo siguiente: “Cualquier cosa que sea objeto del pensamiento es por lo
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Los anteriores no fueron casos aislados, sino parte del acontecer
matemadtico durante la segunda mitad del siglo xi1X, cuando hubo una
fuerte oposicion al uso de diagramas en las pruebas matematicas. Por
ejemplo, en 1882, Pasch establecié como norma apoyar los argumen-
tos matematicos exclusivamente en los axiomas y en la légica. Dice al
respecto:

Sila geometria ha de ser realmente deductiva, entonces la deduccién ha de
liberarse por completo de cualquier referencia al significado de los concep-
tos geométricos, al igual que de las figuras. Asi, sélo reconocemos aquellas
pruebas en las que cada paso se apoya en las proposiciones precedentes y
las definiciones.!?

Al examinar con espiritu rigorista los argumentos de Euclides, el mis-
mo Pasch descubrid algunas suposiciones que nadie habia notado con
anterioridad; por ejemplo, las relacionadas con el orden de los puntos
en una linea. Todos pueden trazar un diagrama y notar que si en una
linea recta un punto B esta entre un punto A y un punto C, entonces
ni C esta entre A y B, ni A estd entre B y C. No obstante, nadie antes
de Pasch habia sentado las bases para tratar légicamente con esta clase
de observaciones, quiza porque se las consideraba demasiado obvias.
La consecuencia de tal desatencion fue, precisamente, la necesidad de
recurrir a la intuicién, de manera que la forma l6gica de lo que se hacia
era poco clara. A diferencia de Kant, Pasch vio en el método deductivo
el método de las matemadticas y no sdlo una parte de él, lo cual exigi6
acentuar el rigor.

3. Algunas cuestiones relacionadas con el apriorismo
en la matemdtica después de Kant

En el siglo x1X, los matematicos no s6lo cuestionaron la legitimidad del
razonamiento diagramadtico en las demostraciones: también expresaron
sus dudas respecto de la validez del punto de vista de Kant acerca de
la naturaleza a priori de las matematicas. Por ejemplo, en 1817, en una
carta dirigida a Olbers, Gauss expresa abiertamente su recelo respecto
del caracter necesario de la geometria con las siguientes palabras:

mismo objeto de las matematicas. La matematica no es el arte de la computacion,
sino el arte de la no computacién” [Alles was Gegenstand des Denkens ist, ist daher
Gegenstand der Mathematik. Die Mathematik ist nicht die Kunst des Rechnens,
sondern die Kunst des Nichtrechnens]. Al respecto, véase Hayashi 2007.

12 Citado en “Nineteenth Century Geometry”, Stanford Ecyclopedia of Philosophy,
disponible en linea en: <http://plato.stanford.edu>.
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Cada vez me convenzo mds de que la necesidad de nuestra geometria
no se puede probar, al menos no mediante la comprensién humana ni
para la comprensién humana [Gauss se refiere a los intentos por probar
el quinto postulado de Euclides]. Quiza en otra vida alcanzaremos otros
puntos de vista acerca de la naturaleza del espacio que por ahora nos
son inasequibles. Hasta entonces, no se debera poner a la geometria en el
mismo rango que la aritmética, que se yergue a priori, sino en la misma
situacién que, digamos, la mecénica.!®

Asi, donde Kant establece una similitud epistemolégica entre la geome-
tria y la aritmética, Gauss vislumbra una asimetria. Tiempo después, la
llegada de las geometrias no euclidianas y las pruebas de su respecti-
va posibilidad alimentaron esta sospecha: la aritmética y la geometria
parecian no compartir una misma naturaleza epistemoldgica. Dilucidar
esta cuestion se convirtiéo en un tema central de la filosofia de las ma-
temadticas y orient6 en gran medida el estudio de sus fundamentos. Es
mas, fue esta cuestidén, y no la preocupaciéon por asegurar un funda-
mento, la causa primordial de las investigaciones de Frege, Dedekind,
Poincaré, Hilbert, Bernays, Brouwer y Weyl, entre otros.

A grandes rasgos, hubo tres formas de resolver el problema, segin el
modo de disponer del a priori. Estas formas guardan un estrecho vincu-
lo con las escuelas clasicas conocidas hoy en dia como logicismo, intui-
cionismo y formalismo. Por ejemplo, Brouwer y Weyl, en conformidad
con Gauss, optaron por retener la concepcion kantiana de la aritmética
(esto es, basada en la intuicién a priori del tiempo), adoptando a la vez
una concepcion no kantiana de la geometria (es decir, viendo en ella
algo cuya fuente no es una forma a priori de la intuicién). La de Frege
fue la contraria: retuvo la concepcion kantiana del espacio (como algo
basado en una intuicién a priori), y desechd la concepcion kantiana de
la aritmética. La de Hilbert fue un poco mas compleja: mantuvo cierto
apriorismo en ambos casos, aunque en forma limitada.

4. El formalismo de Hilbert en los Grundlagen der Geometrie

En los Grundlagen der Geometrie de 1899, Hilbert exhibe el formalismo
de su primera etapa. El tratamiento que da a la geometria en esta
obra difiere radicalmente del que le otorga Euclides en los Elementos.
En particular, evita en todo momento hacer referencia a la intuicién
espacial, no sélo en las pruebas, sino en los axiomas y las definiciones.
Esta es una cuestién esencial. Una consecuencia de lo anterior es que

13 Tomado de Burris 2003, p. 8.
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la demostracion se ve forzada a marchar dentro de los canones de la
16gica, sin recurrir al sefialado razonamiento diagramatico.

En cuanto a Kant, una diferencia es que Hilbert desdefia la exigencia
de que los axiomas sean proposiciones practicas que contengan la sinte-
sis a través de la cual nos damos un objeto y producimos su concepto.'*
En los Grundlagen los axiomas no presuponen ni se sustentan en nin-
guna clase de hechos preestablecidos, aunque tales hechos se hayan
tenido en mente al elaborarlos. Esto lo expresa en una carta dirigida a
Frege en 1899 con las siguientes palabras:

No quiero asumir nada como algo conocido por anticipado; considero mi
explicacion de la seccién 1 [de los Grundlagen] como una definicion de los
conceptos punto, linea, plano —si se afladen nuevamente todos los axio-
mas de los grupos I al V como marcas caracteristicas. Si se buscan otras
definiciones de “punto”, v.gr., mediante parafrasis en términos de inexten-
sion, etc., entonces me debo oponer a tales intentos en forma decisiva; se
busca algo que nunca se encontrara porque no hay nada alli. (Frege 1980,
p- 39)

Aqui se hace presente la teoria de las definiciones implicitas de Hilbert.
Ahora bien, lo que de momento nos interesa es aclarar el espiritu con
el cual Hilbert elabora los Grundlagen der Geometrie y recorrer parcial-
mente el camino que lo llevd a adoptar este punto de vista.

Para Hilbert, la axiomatizacién es un modo de ordenar los hechos
que conforman una esfera del conocimiento. En sus propias palabras,
esto se logra

recurriendo a una trama de conceptos relacionados entre si, de tal manera
que a cada objeto y a cada hecho del campo del conocimiento de que se
trata le corresponda, respectivamente, un concepto de esa trama y una
relacién l6gica entre conceptos del mismo. La trama de conceptos no es
otra cosa que la teoria de esa esfera del saber. (Hilbert 1993, p. 23)

14 Comparemos el axioma 1 del grupo I de Hilbert con el primer postulado de
Euclides:

Ax10MA I.1. Dos puntos distintos A y B siempre determinan por completo una linea
recta a. Escribimos AB = a 0 BA = a.

Este axioma no trata ni con construcciones ni con esquemas de ninguna clase; no
dice, como el de Euclides, “Trazar una linea recta desde un punto cualquiera a otro
punto cualquiera”. Més bien, establece una relacion de determinacion entre ciertos
objetos (la de una “recta” que depende de dos “puntos”), los cuales, por lo demas,
permanecen indefinidos.
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En el caso de la geometria, la esfera en cuestién es la de los hechos
geomeétricos; los conceptos son los de punto, linea, tridngulo, etc.; los
hechos relevantes son los de incidencia, congruencia, paralelismo, etc.,
entre puntos, lineas y otras figuras. Para referirnos a tales hechos utili-
zamos expresiones como “A estd en a”, “A esta entre By C”, “a y b son
paralelas”, “AB es congruente con CD”, etc., las cuales corresponden en
el orden 14gico a relaciones entre conceptos, como lo sefiala Hilbert.'®

En una conferencia pronunciada en 1930,° Hilbert expone con cier-
to detenimiento su punto de vista con relacién al conocimiento geo-
métrico. Sostiene que, ademas de la experiencia y la deduccién 16gica,
disponemos de cierto discernimiento a priori necesario para la construc-
cién de un marco tedrico para la realidad. Tal discernimiento subyace
en la génesis de nuestro conocimiento. No obstante, traza la frontera
de este a priori de manera diferente de como lo hace Kant, tanto para
la aritmética como para la geometria. En su opinion, Kant sobreestimé
el papel y el alcance del a priori en ambos casos. Dice al respecto:

En los dias de Kant se podia pensar que las representaciones [Vorstellun-
gen] que uno tenia del espacio y del tiempo eran aplicables de un modo
tan inmediato y general a la realidad como, por ejemplo, nuestras repre-
sentaciones de numero, sucesiéon y cantidad, las cuales se utilizan cons-
tantemente en la manera que nos es familiar en la teoria matematica y
fisica. Pero, entonces, la teoria del espacio y el tiempo (y en particular
la geometria) precederia, como la aritmética, nuestro conocimiento de la
naturaleza. No obstante, el punto de vista de Kant fue abandonado por
Riemann y Helmholtz incluso antes de que la teoria fisica obligara a ha-
cerlo, y con toda razén, pues la geometria no es otra cosa que esa parte
del marco de los conceptos fisicos que modela las posibles relaciones de
posicién entre los cuerpos rigidos en el mundo de las cosas reales.!”

Es asi como Hilbert despoja a la geometria elemental del poder de de-
terminar las propiedades del espacio sintéticamente y a priori. Lejos de
lo anterior, ve en ella una ciencia cuyo cometido es describir la forma
externa de las cosas que se nos manifiestan al observar la naturaleza.
Esta postura la subraya con las siguientes palabras: “hay principios que

15 yéase Hilbert 1899, § 1.

16 Hilbert 1930.

17 Hilbert 1930; cita tomada de Ewald 1996, p. 1162. En cuanto a las “relaciones
de posicién”, éstas sélo se plantean como posibilidades, debiendo ser confirmadas o
refutadas en la experiencia. Vgr., el que haya cuerpos rigidos méviles y cudles sean
sus relaciones de posicién es una cuestién de experiencia, no algo determinado a
priori.
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Kant considera a priori y que nosotros asignamos a la experiencia; por
ejemplo, la totalidad de los hechos fundamentales de la geometria, asi
como las propiedades elementales del espacio y la materia” (Hilbert
1993, p. 124). De lo anterior se sigue la imposibilidad de establecer las
propiedades del espacio por pura reflexién, ya que es en la contempla-
cién intuitiva de los hechos geométricos donde nace la geometria. El
punto de partida es doble: por un lado, la experiencia u observacion;
por el otro, nuestra percepcion de las relaciones espaciales (es decir, la
manera como percibimos tales relaciones).

En el caso de la geometria, la observacién de las configuraciones
espaciales se da en el marco de lo que Hilbert refiere en alemdn con el
vocablo Anschauung, que podemos explicar como “intuiciéon o contem-
placién intuitiva con una fuerte carga de evidencia”. Esta es la fuente
de muchos axiomas; es también la fuente de muchos teoremas como,
por ejemplo, el relativo a la igualdad entre los angulos de la base de
un tridngulo isdsceles. La aceptacion inmediata de tales hechos geomé-
tricos resulta de la consideracion intuitiva de las figuras y es lo mas
cercano que tenemos al apriorismo en geometria.

Al respecto, Hilbert parece admitir que la forma en que percibimos
las relaciones espaciales es la descrita por la geometria euclidiana. Esto
no obliga a nada con relacion a los fenémenos, pues nuestra percepciéon
es inexacta. Al axiomatizar, idealizamos tales observaciones dandoles
un cardcter de absoluta exactitud y generalidad. Asi, aunque partimos
de observaciones que son validas dentro de ciertos limites de exactitud,
en los axiomas sustituimos los resultados de ellas por aseveraciones de
total precisidon y universalidad. Pero, entonces, la teoria axiomatica es
acerca de relaciones ideales entre objetos ideales. En otras palabras,
la validacién intuitiva de los axiomas deja de ser un fundamento para
la teoria; es mds, tal validacién escapa a las matemdticas.'® Al mismo
tiempo, el matematico queda en libertad de interpretar los términos
geométricos y sus relaciones como le plazca. Asi, frente a la idea de
una teoria que trata con un fuerte nucleo de “realidad geométrica”
o “intuicién intersubjetiva”, Hilbert coloca, independientemente de su
origen, una teoria abstracta que trata con términos susceptibles de dis-
tintas interpretaciones. Ergo, el significado intuitivo que tales términos
pudieran tener no debe intervenir en las demostraciones, donde ya no

18 En efecto, para determinar la correccién o no de la teoria geométrica respecto
del espacio fisico debemos recurrir a la experiencia, donde se le ha de poner a
prueba junto con ciertas convenciones; por ejemplo, que en el espacio fisico las
“lineas rectas” son las trayectorias de los rayos de luz. Esa cuestion ya no compete
a las matematicas.
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hay lugar para los razonamientos diagramaticos. Esta es la postura que
da sustento a los Grundlagen der Geometrie de 1899.

Llegar a estas ideas no fue cosa de un dia, sino el resultado de largas
reflexiones en las que Hilbert hubo de ponderar el caracter de la nueva
matematica. En particular, las geometrias no euclidianas y la geometria
proyectiva aportaron suficientes elementos como para poner en tela
de juicio la visién tradicional. Un hecho particularmente notable fue
la aparicién del principio de dualidad en la geometria proyectiva, el
cual hizo ostensible como ciertos teoremas geométricos siguen siendo
véalidos cuando sus términos se reemplazan por otros con un signifi-
cado distinto. Esto permitié ver que el modo en que los conceptos se
entrelazan en la teoria puede muy bien corresponder a otros 6rdenes
de objetos; es decir, que nuestra descripcion tedrica puede convenir por
igual a otros sistemas. Esto apremid al método axiomatico a que diera
cuenta de su condicion.

5. El principio de dualidad en la geometria proyectiva

En la matemadtica actual, el término “dualidad” tiene varios significados,
los cuales se relacionan entre si por una sola idea: la de una conversion
de conceptos, teoremas y estructuras matemadticas en otros conceptos,
teoremas o estructuras mediante una transformacion especifica. El caso
mas conocido (y el primero en la historia) es el llamado principio de
dualidad de la geometria proyectiva:

PRINCIPIO DE DUALIDAD. Dado cualquier teorema de la geometria pro-
yectiva plana, al intercambiar en él los términos “punto” y “linea” (in-
tercambiando, de ser necesario, las frases “estar en” y “pasar por”), lo
que resulta es otro teorema igualmente vdlido.

Veamos, a través de un ejemplo, como trabaja la dualidad, para después
ver de qué manera su surgimiento afecto la vision clasica de las teorias
geométricas. Consideremos el teorema de Pappus, un importante resul-
tado de la geometria proyectiva.

TEOREMA DEL HEXAGONO DE PAPPUS Si los puntos A, By C estdn en una
recta, y los puntos A’, B’ y C' estdn en otra recta, entonces los puntos
de interseccion P = AB'NA'B,Q = BCNBCyR = CANCA
estdn alineados. (En otras palabras: Si los vértices de un hexdgono se
hallan alternados en dos rectas, entonces los puntos de interseccién
de los lados opuestos estan alineados).
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A/
FIGURA 1. Ilustracion del teorema de Pappus en el plano euclidiano

El dual de este teorema es el siguiente:

DUAL DEL TEOREMA DE PAPPUS. Si las rectas a,b y ¢ concurren en un
punto, y las rectas a’,b’ y ¢’ concurren en otro punto, entonces las
lineas p, qy r definidas por las parejas de intersecciones (a N'b’,a’ N'b),
(bnd,b’Nec)y(cna,c Na)son concurrentes.®

FIGURA 2. Ilustracion del teorema dual de Pappus
12 Obviamente, la nocién dual de “puntos en una recta” es la nocién de “lineas

concurrentes”. Es importante notar que cada enunciado geométrico tiene la misma
forma légica que su dual.
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Aqui la dualidad se presenta con un par de teoremas, cada uno de
los cuales se puede obtener del otro mediante un esquema simple y uni-
forme de sustitucién de términos: punto < linea, puntos alineados «
lineas concurrentes, punto de interseccién de lineas « linea por los
puntos.

El valor de la dualidad es que con ella disponemos de un procedi-
miento que duplica nuestra capacidad para demostrar teoremas, pues
nos ofrece dos resultados por el costo de uno, una ganancia del cien
por ciento.?? Esta cuestién, sumamente valorada por Hilbert, seria mo-
tivo de un amplio comentario a no ser porque nuestro interés es otro
por el momento: dilucidar la lectura que hiciera Hilbert del principio
de dualidad. Para ello, conviene contrastar su punto de vista con el de
Pasch.

Pasch fue un matemadtico que trabajé laboriosamente en los funda-
mentos de la geometria proyectiva durante el siglo XIX; en particular,
fue uno de los primeros en ofrecer una presentacién axiomatica de esta
teoria en la que el principio de dualidad se halla presente. Al respecto,
Pasch no s6lo vio en este principio una herramienta de gran utilidad,
sino algo contrario a nuestra comprension intuitiva de las nociones de
punto y linea, pues no consideraba creible que estos términos se pu-
dieran intercambiar.?! Esta simple observacién muestra que, para él,
como para otros gedmetras del siglo XiX, la geometria seguia siendo
una ciencia con una clara semdntica para sus términos.

En contraste, hay una segunda lectura del principio de dualidad que
toca la esencia del primer formalismo de Hilbert: no sélo se trata de
algo contrapuesto a nuestras ideas acerca de lo que son los puntos y
las lineas, sino de una sefial. En efecto, la posibilidad de intercambiar
los términos “punto” y “linea” se debe a que, en el interior de la teoria,

20 Otra famosa pareja de teoremas duales es la formada por el teorema del hexa-
gono de Pascal y el teorema de Brianchoén:

TEOREMA DEL HEXAGONO DE PASCAL (1640): Si los vértices de un hexdgono se hallan
sobre una cénica, entonces los puntos de interseccion de los lados opuestos estdn
alineados.

TEOREMA DE BRIANCHON (1806): Si los vértices de un hexdgono se hallan sobre una
conica, entonces las lineas que pasan por los vértices opuestos son concurrentes.

Un caso de teorema autodual es el siguiente:

TEOREMA DE DESARGUES (1636): Dos tridngulos estdn en perspectiva desde un punto,
siy solo si estdn en perspectiva desde una linea.

21 yéase al respecto la nota biogréfica sobre Moritz Pasch de J.J. O’Connor y E.E
Robertson que aparece en The MacTutor History of Mathematics Archive: <http:/
www-history.mcs.st-andrews.ac.uk/Biographies/Pasch.html>.

Didnoia, vol. LIV, no. 63 (noviembre 2009).



54 CARLOS TORRES ALCARAZ

estas nociones son simétricas. Por lo tanto, podemos permutar su in-
terpretacion sin caer en incorrecciones; es decir, sin que los enunciados
de la teoria dejen de ser una descripcidon objetiva de ciertos hechos
geométricos.

Aclaremos lo dicho en el parrafo anterior. Si proporciondramos los
axiomas de la geometria proyectiva a dos individuos que ignoraran el
significado intuitivo que les damos a las palabras “punto” y “linea”, y
les pidiéramos que ilustraran el teorema de Pappus con un diagrama,
bien podria suceder que el primero de ellos diera como respuesta la
figura 1 y el segundo la figura 2 anteriores: uno llamaria punto a lo
que el otro denomina recta, y viceversa. Simplemente, cada uno de
ellos habria escogido una interpretacion diferente para estos términos,
ambas validas.??

Esta posibilidad ampli6 considerablemente el horizonte: los teoremas
geométricos se podian interpretar de manera distinta de como en un prin-
cipio se tenia en mente. Por tanto, no encajaba concebir la teoria como
representacion univoca de un sistema de objetos; mas bien, ésta aso-
maba como un montaje de relaciones entre términos cuyo significado
podia variar.?® En otras palabras (y dicho en tiempo presente): lo ini-
co que logra la teoria es delimitar los objetos que le dan origen como
parte de un sistema (o estructura), reflejando sus propiedades y mutuas
relaciones.

Hilbert tenia en claro todo lo anterior al momento de escribir los
Grundlagen der Geometrie. Como testimonio, veamos como se expresa
en una carta dirigida a Frege en 1899, que este tltimo resumiera en un
cuaderno de notas:

es obvio que toda teoria es tan s6lo un andamiaje o esquema de conceptos
junto con las relaciones necesarias entre ellos, y que los elementos bésicos
se pueden pensar como uno quiera. Si al hablar de mis puntos pienso en
algtin sistema de objetos, v.gr., el sistema: amor, ley, deshollinador, [...]

22 Esto no fue lo que hicimos al trazar las figuras 1 y 2. En ambos casos las pa-
labras “punto” y “linea” las utilizamos de la misma manera. Lo diferente eran las
proposiciones ilustradas (la primera era el teorema de Pappus, la segunda el teo-
rema dual de Pappus). No obstante, la dualidad se puede entender también como
la posibilidad de intercambiar directamente la interpretacién de esto términos sin
desvirtuar con ello la validez de los teoremas. Por lo tanto, la figura 2 es también
una ilustracion del teorema de Pappus si aceptamos llamar “linea” a lo que antes
llaméabamos “punto”, y viceversa.

% Esta manera de entender los enunciados teéricos es el sostén de la teoria de
modelos, de la que los Grundlagen der Geometrie son un exponente histérico.
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y tomo mis axiomas como relaciones entre estas cosas, entonces mis pro-
posiciones, v.gr., el teorema de Pitagoras, son validas también para estas
cosas. En otras palabras: cualquier teoria se puede aplicar a una infinidad
de sistemas bésicos de elementos. Lo tinico necesario es aplicar una trans-
formacion reversible [...] y establecer que los axiomas seran correspon-
dientemente los mismos para las cosas transformadas. Esta circunstancia
se utiliza, por ejemplo, en el principio de dualidad, etc., y yo me he servido
de ella en mis pruebas de independencia. [...] Pero la circunstancia que he
mencionado no puede ser un defecto de las teorias (representa mas bien
una enorme ventaja), y es en todo caso inevitable. (Frege 1980, pp. 40-41;
las cursivas son mias.)**

La mencién que Hilbert hace de la dualidad muestra que, al escribir
los Grundlagen, ya tenia en mente la lectura recién expuesta de dicho
principio. Es mas, hoy en dia podemos remitir el origen de estas ideas
al periodo 1891-1893.

En el otofio de 1891, Hilbert asisti6 a la primera reunién anual de
la Sociedad Matematica Alemana, celebrada en la ciudad de Berlin.
Ahi escuché una conferencia de Hermann Wiener acerca de los funda-
mentos y el desarrollo sistematico de la geometria. En su disertacién,
Wiener abordd complejas cuestiones relacionadas con la geometria pro-
yectiva, entre las que se encuentran: a) la idea de edificar dicha teoria
como una ciencia abstracta; b) la tentativa de quitar el ropaje geométri-
co a los términos de la teoria a fin de poner al descubierto la manera en
que se combinan y se opera con ellos; ¢) la relacion entre la continui-
dad, los teoremas de Desargues para el plano y el espacio, el teorema de
Pappus, el orden entre los puntos de la recta y el modo de obtener haces
de puntos armoénicos sobre la recta; d) la cuestion de la demostraciéon
matematica y las hipdtesis que servirian como base para el desarrollo
de la teoria; y e) la posibilidad de reconstruir la geometria proyectiva a
partir de un sistema simple de suposiciones.?®

Al parecer, la conferencia de Wiener atrajo a Hilbert hacia tales pro-
blemas y avivd su interés por la axiomadtica. Esto no sélo se puede ad-
vertir en los Grundlagen, donde recoge muchas de las cuestiones plan-
teadas por Wiener, sino en el hecho de que entre 1891 y 1898 impartio

24 Con relacién a la geometria proyectiva, la sefialada transformacién reversible
no es otra cosa que el esquema de sustituciones que se ha utilizado en el caso del
teorema de Pappus y su dual: punto « linea, puntos alineados «+ lineas concurren-
tes, etcétera.

% Un reporte de la conferencia de Wiener, quien fuera profesor de la Universidad
de Halle, se encuentra en Ziwet 1892, p. 98.
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cuatro cursos en los que discurre en torno a los fundamentos de la
geometria.®

Con base en estos y otros elementos podemos ubicar los origenes del
formalismo de Hilbert en esos afios. Hasta hace poco tiempo, lo tinico
que teniamos era una anécdota relatada por Otto Blumenthal, quien
reporta que Hilbert, al comentar con otros matematicos la platica de
Wiener en la estacion de Berlin, habria dicho: “Uno siempre debe po-
der decir mesa, silla y tarro de cerveza en vez de punto, linea y plano.”?’
Esta frase se considera representativa del punto de vista que afios mas
tarde Hilbert expondra en forma sistematica. En apoyo a lo dicho por
Blumenthal, hoy en dia contamos con una nota escrita por Hilbert al-
rededor de 1893 en la que habla de “las matemadticas sobre sistemas
de mesas, pizarrones, etc. (Tisch, Tafel, etc.)”.?® Por lo tanto, podemos
sefialar el afio de 1891 como el momento en que Hilbert transité hacia
una nueva concepcion de las matematicas.

Podemos decir, entonces, que el papel de la geometria proyectiva en
la génesis del formalismo de Hilbert fue doble. Primero, le sugiri6 que,
en un sistema axiomatico, los términos matematicos no actiian seman-
ticamente como constantes, sino como variables; es decir, como expre-
siones cuyo significado puede cambiar. Segundo, le sugirié que ninguna
teorfa matematica tiene una unica lectura como si estuviera referida a
un dominio particular de objetos; mas bien, las teorias son sélo formas
o moldes disefiados para alojar una gran variedad de materias que se

26 En Hallett y Majer 2004 se hallan las notas de dos de estos cursos, uno sobre
geometria proyectiva y otro sobre los fundamentos de la geometria, impartidos en
1891 y 1894. En ellos, Hilbert expone muchas piezas de su filosofia como, por
ejemplo, la idea de que la teoria no es sino un esquema de conceptos. En cuanto
a los Grundlagen, entre las cuestiones planteadas por Wiener y que Hilbert recoje
podemos mencionar la relacion entre los teoremas de Desargues y Pappus (o Pas-
cal), y la de éstos con la continuidad y otras nociones. Este es, de hecho, uno de los
temas centrales del libro, cuyo desarrollo ocupa los capitulos V y VI. Es mds, quien
lea el reporte de la conferencia de Wiener se dara cuenta de que muchos resultados
de los Grundlagen estan inspirados en las interrogantes de Wiener.

27 “Man muR jederzeit an Stelle von ‘Punkte, Geraden, Ebenen’ ‘Tische, Stiihle,
Bierseidel’ sagen konnen.” Otto Blumenthal fue el primer estudiante de doctorado
de Hilbert y uno de los asistentes a la reunion de la Sociedad Matematica Alemana.
El lugar donde narra lo anterior es en su “Lebensgeschichte” [Historia de la vida (de
Hilbert)], reproducido en Hilbert 1935, pp. 388-429. Al respecto, quiero agradecer
a uno de los drbitros anénimos de este trabajo el haberme proporcionado el lugar
exacto de la cita.

28 Hayashi 2007, seccién 2.1.7. Se trata de un archivo publicado en Internet por
Susumu Hayashi y colaboradores en el que dan a conocer algunos fragmentos de
los cuadernos de notas de Hilbert, escritos entre 1888 y 1910.
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van a tratar. Las siguientes son algunas expresiones que se han utiliza-
do para referirse a esta situacion: “recipientes vacios” (Pasch), “teorias
hipotético-deductivas desligadas de toda interpretacién concreta posi-
ble” (Weyl), “sistemas de objetos no interpretados” (Curry).

6. Un nuevo modo de “hacer” matemdticas

Comparemos el punto de vista de Hilbert en su formalismo geométrico
con la teoria kantiana del conocimiento matematico, poniendo espe-
cial atencion en la teoria de esquemas. En la Critica de la razoén pura,
Kant sostiene que es imposible pensar los conceptos geométricos sin
darles un objeto: “No podemos pensar en una linea sin trazarla en el
pensamiento, ni un circulo sin describirlo, como tampoco representar
tres dimensiones del espacio sin construir tres lineas perpendiculares a
partir del mismo punto” (B 154). Esta simple observacién es un signo
indicativo de que el peso de los esquemas geométricos en la epistemo-
logia matematica de Kant es superior a lo que aqui he dicho. En efecto,
en las secciones precedentes me he referido a los esquemas como ins-
tancias que permiten construir en la representacion objetos en confor-
midad con los conceptos. Pero lo dicho por Kant en el pasaje anterior
les otorga una mayor importancia: sin esquemas es imposible pensar
los conceptos geométricos en absoluto, pues esta actividad precisa una
representacion interna de ellos.

Lo anterior no constituye ninguin problema para Kant, pues, para é€l,
los conceptos geométricos nacen ligados a una forma de representa-
cion. Pero, desde la perspectiva que abre el principio de dualidad, este
maridaje entre esquemas y conceptos se rompe: las “rectas” pueden ser
lo que siempre fueron o lo que originalmente eran los “puntos”. Ergo,
los conceptos definidos por los axiomas son algo mas que los esquemas,
poseen una mayor generalidad, con lo que la teoria se descubre como
algo mas abstracto de lo previsto, como algo que ya no esta indisolu-
blemente ligado a un sistema fijo de objetos. De hecho, en la geometria
de Hilbert, los conceptos se piensan sin esquemas, aunque hay circuns-
tancias en las que esto no es lo mas adecuado para el investigador. Esta
disociacion entre los conceptos y sus representaciones abrié una feraz
posibilidad: pensar la teoria per se, es decir, convertirla en un objeto de
estudio.

Esto tltimo lo hace Hilbert en los Grundlagen der Geometrie. Lo que
ahi investiga no son los objetos que dice Kant (ciertas entidades cons-
truibles en la intuiciéon pura), sino la teoria misma. Digamos que la
escudrifia primariamente: a ella, no a sus interpretaciones.
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Esta manera de abordar la teoria sefiala el surgimiento de la teoria
de modelos, donde el juego consiste en interpretar los términos y las
relaciones fundamentales de distintas maneras.?? En particular, muchos
modelos de la teoria geométrica y sus variantes resultan de enlazar sus
conceptos con ciertos esquemas. Un notable ejemplo es el modelo de
Poincaré para la geometria hiperbdlica, en el que al concepto formal
de linea se le asocia un esquema euclidiano como sigue. Sea C una
circunferencia fija en el plano euclidiano. Si X es una circunferencia
que corta ortogonalmente a C, entonces el arco de X que se halla en el
interior de C es una h-linea (la “h” con el propdsito de diferenciarla de
las lineas euclidianas). Aqui, el caso es que contamos con un esquema
(euclidiano) para producir circunferencias ortogonales a C, y es a través
de este esquema que especificamos las h-lineas del modelo (para una
geometria que no es euclidiana).

X

Circunferencia
ortogonal

h-plano =
interior de C

Circunferencia
fundamental C

Este modo de tratar la teoria geométrica significé un desplazamiento
en las investigaciones y tuvo importantes consecuencias. Para empezar,
permitié una enorme economia de pensamiento: cada proposicion de-
mostrada era valida en todos los modelos de la teoria, donde ya no
se la tenia que investigar. Y las ganancias no se redujeron a eso. La
posibilidad de interpretar la teoria de distintas maneras permitié a Hil-
bert explorar su conexién con otros dominios de la matematica, con
sorprendentes resultados. Por ejemplo, este nuevo tratamiento lo llevé
a relacionar los teoremas de Desargues y Pascal con las propiedades de
los anillos en el algebra; v.gr, “Si el teorema de Desargues es valido en
un dominio, entonces el dlgebra de segmentos es un anillo quizd no

® Grosso modo, un modelo es una interpretacién de los términos primitivos de
una teoria que hace verdaderos a los axiomas.

Didnoia, vol. LIV, no. 63 (noviembre 2009).



DE LA MATEMATICA CLASICA A LA MATEMATICA MODERNA 59

conmutativo”; o bien, “El dlgebra de segmentos basada en el teorema
de Pascal es un anillo conmutativo.” Estas investigaciones forman parte
de los Grundlagen der Geometrie. Es mas, el sentido del trabajo se pue-
de invertir: en vez de ver qué clase de algebra resulta a partir de un
espacio, se pueden “construir” espacios a partir de las algebras (v.gr.,
espacios afines a partir de anillos ternarios).

Es evidente que nada de lo anterior habria sido posible si la mate-
matica se hubiera mantenido dentro de los estrechos limites impuestos
por el concepto de objeto matemdtico ofrecido por Kant. Esto lo sabia
Hilbert, para quien la investigacion axiomadtica representé un factor de
expansién y descubrimiento en esta disciplina.

Podemos decir, entonces, que para Hilbert la axiomatica es algo mas
que un instrumento para ordenar las teorias; mas bien, se trata de un
medio para la investigacion matematica. Esto se advierte claramente en
los Grundlagen der Geometrie, donde “jugando” con los axiomas, Hilbert
obtiene numerosos resultados: geometrias no arquimedianas, nuevos
teoremas acerca de la continuidad, una nueva caracterizacion topold-
gica del plano, una caracterizacién de la geometria euclidiana y de la
geometria de Bolyai y Lobachevsky mediante grupos de desplazamien-
tos, un analisis del papel de los teoremas de Desargues y de Pascal en
la coordenatizacion del espacio, un estudio comparativo de las distintas
geometrias entre si, y una investigacién de los medios requeridos para
demostrar ciertos teoremas.

En este sentido, las investigaciones de Hilbert en torno a los funda-
mentos de la geometria significaron un triunfo para el método axio-
matico, al punto de que, en su opinidn, éste estaba llamado a ocupar
un lugar preeminente no sélo en la matematica, sino en la ciencia en
general.>®

7 . Nociones ideales y dualidad

El principio de dualidad de la geometria proyectiva guarda un estrecho
vinculo con el llamado “método de los elementos ideales”. En su sentido
original, este método consiste en introducir en una teoria elementos sin
ninguna base intuitiva o constructiva. Su inclusidn se justifica aducien-
do que ésta es fructifera o tiene un efecto simplificador. En el caso que
nos ocupa se trata de la incorporacién de los puntos y la recta al infinito
en el plano euclidiano, con lo que el espacio geométrico deviene en un
espacio proyectivo.

30yéase, al respecto, Hilbert 1917.

Didnoia, vol. LIV, no. 63 (noviembre 2009).



60 CARLOS TORRES ALCARAZ

A continuacion se expondran estas ideas con base en algunos con-
ceptos pertenecientes a la teoria de conjuntos.3! Sea II el conjunto de
puntos del plano euclidiano y A el correspondiente conjunto de rectas.
Asociado a cada haz ¢ de lineas paralelas de A, incorporamos un punto
adicional Pg, un “punto al infinito”. Ahora extendemos cada lineal € ®
a una “linea” I’ como sigue:

Asimismo, introducimos una nueva “linea” ., la “linea al infinito”, de
la siguiente manera:

loo = {Pg | ® es un haz de lineas paralelas de A}

Por tltimo, extendemos el plano (afin) euclidiano a un plano proyectivo
(IT", A’) como sigue:

Il' =TTU{Py | ® esun haz de lineasen A}; A’ ={l' |l € A} U{l..}

¢Qué ventajas ofrece esta extension del plano? Primero, que ya no hay
excepciones: cualesquiera dos lineas se intersectan en al menos un pun-
to; cuando éstas son euclidianamente paralelas entre si, su interseccion
es el correspondiente punto al infinito Pg. Segundo, que entre las no-
ciones de punto y linea aparece la simetria ya sefialada: el principio
de dualidad es vdlido para esta nueva geometria, pues el plano se ha
convertido con esta extensién en un espacio proyectivo.

Las entidades recién introducidas son un claro ejemplo de lo que en
matematicas se denomina “elementos ideales”: por una parte, se trata
de objetos que no corresponden a nada en la intuicién espacial; por la
otra, son objetos cuya incorporacién da unidad y simplicidad a la teoria,
al evitar la existencia de casos especiales en los que ciertas propiedades
no se cumplen.

La adopciéon del método de los elementos ideales conllevaba, entre
otras cosas, sobrepasar los limites del constructivismo kantiano, y eso
fue lo que hizo Hilbert con todas sus implicaciones: abandon¢ la teoria
de esquemas. A fin de cuentas, no solo se trataba de la geometria,
sino del andlisis matematico y, sobre todo, de la teoria de los nimeros
transfinitos de Cantor.

3lyéase, al respecto, Bennett 1995, p. 43.
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8. Un ejemplo de la utilidad del método

El uso de nociones ideales forma parte del desarrollo de las matemati-
cas. Hilbert ve en este método un factor de progreso al que no debemos
renunciar, pues de su aplicacién resultan nuevas matematicas.>?

Al respecto, podemos ilustrar la utilidad del método con un ejemplo.
Se trata de la solucién de un problema aritmético “simple” (es decir,
relativo a nimeros enteros) en el contexto de los nimeros complejos.

Consideremos la sucesion de numeros enteros 1,1,0, —2, —4, —4, 0,
8,16,16,0, —32,...; la cual se genera a partir de la base doble f(0) =
1, f(1) = 1 con la regla recursiva

f(n+2)=2f(n+1)—2f(n).>

Si bien esta regla indica un procedimiento para calcular cualquier ele-
mento de la sucesién, tiene el inconveniente de que, para compu-
tar f(n), es preciso calcular todos los valores anteriores.>* Se trata,
claro esta, de un procedimiento ineficiente, por lo que nos pregunta-
mos si habrd una férmula que nos permita calcular directamente el

32 Entre los ejemplos que Hilbert menciona se hallan los siguientes:

1. La introduccién de la unidad imaginaria i = v/—1 que da lugar al teorema
fundamental del dlgebra: Todo polinomio de grado n con coeficientes reales
tiene n raices.

2. La adicién de los puntos y la recta al infinito al plano euclidiano para completar
un plano proyectivo.

3. La utilizacién plena de la ldgica clasica en el analisis matemadtico y la teoria
de conjuntos, donde el principio del tercero excluido se presenta como una
nocidn ideal. Este principio sirve como base para las pruebas de existencia por
reduccién al absurdo que él mismo impulsara.

4. El axioma de eleccién en la teoria de conjuntos, con el caudal de resultados
que se prueban con base en é€l.

Otros ejemplos que podemos mencionar son la introduccién de las cortaduras de
Dedekind, la generalizacion cantoriana del concepto de nimero mediante la intro-
duccién de los niimeros transfinitos, el lema de Zorn, la recursién transfinita y, mas
recientemente, las curvas fractales.

% El ejemplo mdas famoso de esta clase de sucesiones recursivas es, sin lugar a
dudas, la sucesién de Fibonacci: f(0) =1,f(1) =1y f(n+2) = f(n + 1) + f(n).

34 Por ejemplo, para computar f(7) es necesario conocer los valores f(6) y f(5),
lo cual exige a su vez conocer los valores f(4) y f(3), etc.
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valor de f(n) (esta cuestién forma parte de la teoria de las funciones
generatrices, la cual se estudia en los cursos de combinatoria).3®

La respuesta a la interrogante anterior (en su forma general, es decir,
con relacion a cualquier sucesién recursiva) es afirmativa. No obstante,
a la fecha no se conoce otra manera de hallar la férmula que aden-
trandose en el dominio del analisis complejo. En otras palabras: para
resolver un problema relativo a niimeros enteros, no conocemos otro
camino que el de acudir a una extensién de la teoria mediante la adi-
cién de ciertas nociones ideales, como lo son los numeros irracionales
y la unidad imaginaria i = \/—1. Y si bien aqui no es el lugar para
abordar los detalles técnicos de la solucién general, al menos podemos
traer a colacidn la férmula buscada. Se trata de la férmula

fln) = S+ + 21—,
2 2
que explicitamente se sirve de los nimeros complejos. Esto resulta sor-
prendente si consideramos que en un principio se trataba de una cues-
tién que sélo concernia a los nimeros enteros. Y si bien la presencia de
i se puede obviar en la férmula anterior escribiendo (mediante ciertas
transformaciones trigonométricas)

nmw
f(n) cos —=,

queda el hecho de que, para obtener esta tultima férmula, se ha tenido
que realizar una digresiéon por el dominio de los niimeros complejos.
Tenemos, por lo tanto, fuertes razones para justificar la extensién de los
numeros enteros mediante la introduccidn de estos elementos ideales:
la teoria gana en poder y generalidad.

Desde la perspectiva de los niimeros enteros, el caracter ideal de los
numeros complejos es evidente: se generan mediante la introduccion
de una unidad imaginaria i. ¢Tendran algtn tipo de existencia real tales
objetos? Hilbert diria, con justa razén, que para hacer matemadticas no
es necesario aclarar esta cuestién. Lo manifiesto es que tales ntimeros
existen como un eficaz instrumento de la imaginacién, y eso es todo lo
que necesitamos saber. Su importancia radica en que, con ellos, la teoria
aritmética se enriquece y se pueden resolver problemas para lo que
quiza de otra manera no podriamos encontrar la solucién. Y es por esto
que los admitimos. Aqui cabe recordar lo que algun dia le dijera Hilbert
a Brouwer tras una charla de este ultimo en el Instituto de Matemadticas

% En Graham, Knuth y Patashkin 1989 hay una clara exposicién de esta teoria.
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de Gotinga: “Con sus métodos [constructivos], la mayor parte de los
resultados de la matematica moderna tendrian que ser abandonados, y
para mi la cosa mds importante no es obtener menos resultados, sino
mads” (Reid 1970, p. 184).

Fue a partir de consideraciones de este tipo como Hilbert formuld
un criterio sui generis de existencia matematica: en una teoria se pue-
de admitir como existente todo aquello que no sea contradictorio con
los supuestos basicos. Esto debilita la nocién de existencia matematica,
pues la reduce a la mera relatividad de la no contradiccidn, una cues-
tién ldgica alejada del constructivismo kantiano. Esta nocién se ajusta
muy bien a la tendencia abstracta predominante en su momento. Al
respecto, Hilbert establece los siguientes criterios como tinica condicién
de aceptacion de nuevos elementos y nociones en una teoria: (a) que
su anexién sea coherente con los contenidos de la teoria subyacente,
y (b) que aporten eficiencia y simplicidad en la produccién del conoci-
miento matemadtico. Con base en estos criterios se les debe juzgar, no
por la particularidad de satisfacer ciertas normas constructivas.>®

9. Nuevos objetos, nuevas matemdticas

¢En qué sentido es el conjunto de los nimeros naturales un objeto ma-
temadtico? Ciertamente, no lo es en el sentido de Kant: lo que para este
ultimo caracteriza a los objetos matematicos es la posibilidad de su
construccién en la intuicidn pura, y ninguna totalidad infinita se pue-
de elaborar de esta manera.>” Antes bien, el conjunto de los nimeros
naturales es s6lo una idea, es decir, un concepto racional del que no
puede haber en la experiencia objeto adecuado alguno. Y la matema-

36 Fue en el siglo xx cuando Hilbert emprendié abiertamente la defensa del mé-
todo de los elementos ideales. A ello corresponde el referido programa de los afios
veinte y la etapa aritmética de su formalismo, temas de los que me ocuparé en
otro trabajo. No obstante, algunas ideas basicas ya las tenfa en mente al escribir
los Grundlagen der Geometrie, y se hallan presentes en su concepto del método
axiomatico.

%7 Hagamos algunas precisiones con relacién a la nocién de objeto matematico
en la epistemologia de Kant. En su opinién, todo objeto matematico ha de satisfa-
cer dos condiciones: primero, ha de ser construible en el espacio y en el tiempo;
segundo, se le ha de entender como una unidad, i.e., ha de haber un concepto que
una sus partes en una totalidad. Es aqui donde entran en escena los esquemas: los
conceptos s6lo se puede relacionar con los objetos a través de ellos. Estos criterios
estan claramente establecidos en la Estética trascendental (v.gr., en A 19/B 33), en
la Analitica trascendental (v.gr., en A 137-47/B 176-87) y en la Ldgica trascenden-
tal (v.gr., en A 92-3/B 125).
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tica del siglo x1x cobijé una multitud de entidades de esta naturaleza.
Por ejemplo, el sistema de los nimeros reales, los nimeros transfini-
tos de Cantor, el conjunto (fractal) de Cantor, o curvas como la de
Peano (que cubre un area rectangular) y la de Weierstrass, calificada
por Hermite como “un mal deplorable”. Frente a la negativa de algunos
matemadticos a aceptar entidades de esta naturaleza —v.gr., Kronecker
y Poincaré—, Hilbert opté por extender conceptualmente esta ciencia
y defender la libertad que tiene el matematico de elegir sus métodos y
objetos de estudio. Como ya lo hemos visto, esto lo llevd a sobrepasar
el constructivismo kantiano, hasta admitir como objetos ciertas ideas.
En otras palabras, Hilbert decidié generalizar el concepto de objeto en
las matematicas. Tal ampliacidon vino emparejada con lo que podemos
denominar cuasi esquemas, es decir, procedimientos infinitos que se ad-
miten como procedimientos idealmente realizables.>®

Nada de lo anterior carecia de sustento; mas bien, era la expresién
filosofica de una creciente tendencia generada en el interior de la ma-
tematica.

Consideremos, por ejemplo, las cortaduras de Dedekind, cuya apari-
cién en el siglo X1X significo la primera exposicién formal del continuo
numérico. Toda cortadura es un conjunto infinito de niimeros racio-
nales que representa a un numero real. Estas entidades las podemos
sumar y multiplicar, formando de esta manera un campo completo. Ob-
viamente, estas operaciones solo tienen lugar en el pensamiento, sin la
posibilidad de contar en todos los casos con un esquema que permita
producir un objeto. Aun asi, esta elaboracidon tedrica es la base del ana-
lisis matematico moderno, una pieza central en el conocimiento de la
naturaleza a la que Hilbert no estaba dispuesto a renunciar. Y frente
al rechazo del sistema de los nimeros reales en virtud del cardcter no
constructivo de sus elementos, Hilbert decidi6 extender el concepto de
“objeto matemadtico” hasta admitir ciertas ideas (elementos ideales en
sus palabras). En conformidad, también decidié acoger y dar soporte a
la generalizacion de la teoria kantiana de esquemas hasta incluir, como
va lo he sefialado, procedimientos s6lo realizables en un plano ideal, es
decir, procedimientos que solo tienen cabida en el pensamiento, nunca
en la representacion.

Un claro ejemplo de lo anterior es la prueba que ofrece Cantor de que
los puntos de un cuadrado se pueden poner en correspondencia uno a

38 Repitamos las palabras de Hilbert ya citadas en la nota al pie 11, supra: “Cual-
quier cosa que sea objeto del pensamiento es por lo mismo objeto de las matema-
ticas. La matematica no es el arte de la computacion, sino el arte de la no compu-
tacién.”
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uno con los puntos de uno de sus lados. Quien siga la demostracion
verd que el procedimiento de intercalacidén de fracciones continuadas
infinitas es tan soélo el apunte de una posibilidad, la generalizacion de
un procedimiento realizable cuando el nimero de digitos es finito. Y
frente a la imposibilidad real de llevar a cabo el “encaje” propuesto,
Cantor simplemente supone consumado el proceso e imagina el resul-
tado: otra fraccién continuada.>® Surgen con ello las dudas en torno
de la existencia de estos objetos: éen qué sentido podemos afirmar su
existencia? La respuesta de Hilbert seria la siguiente: en el sentido de
que son algo pensado sin incurrir por ello en contradicciones.

Obviamente, nada de lo que se “hace” en dominios como el de los
numeros reales o la teoria cantoriana de conjuntos seria posible sin
la correspondiente extension del concepto de esquema a entidades no
construibles.

Sin adentrarnos en esta cuestion, debemos notar que, hacia 1920,
Hilbert concibié las nociones ideales como ideas regulativas en el sen-
tido de Kant, y que con base en esta concepcién fue que ide6 su pro-
grama. Baste este comentario indicativo de que la epistemologia de
Hilbert se nutrié en todo momento con elementos tomados de la filoso-
fia critica. Y si bien, al referirse al origen de la geometria, adopta una
perspectiva empirista, su vision general de las matemadticas se sustenta
en muchas ideas tomadas de Kant.** Esto es evidente en su segundo
formalismo, donde preconiza el caracter a priori del conocimiento arit-
mético y se sirve de principios tomados de la Dialéctica trascendental a
fin de dar cabida a la moderna teoria del infinito.*!

%9 Quiz4 el caso mds famoso de desdén al esquematismo kantiano lo constituye
el axioma de eleccién, introducido por Zermelo en 1908.

40Fn la seccién 4 ya se han citado algunos pasajes en los que Hilbert otorga un
origen empirico a la geometria (segunda cita in extenso y parrafo que le sigue).
Quiza lo siguiente ayude a aclarar su postura al respecto. Las siguientes citas datan
de 1894: “el origen [de los axiomas de la geometria] se halla en la experiencia.
Los axiomas son, como Hertz dirfa, imagenes o simbolos en nuestro espiritu, de
manera que las consecuencias de las imagenes nuevamente son imdagenes de las
consecuencias, es decir, aquello que deducimos légicamente de las imagenes vuelve
a ser cierto en la naturaleza” (Hallett y Majer 2004, p. 74). Un poco antes afirma:
“Los axiomas corresponden a observaciones [...]. Estos simples hechos de la expe-
riencia son de tan frecuente observacion [...], y por lo tanto tan conocidos, que el
fisico no necesita comprobarlos en el laboratorio.”

“l Este tema serd tratado en otro lugar, en el contexto del formalismo aritmético
desarrollado por Hilbert en la década 1920-1930 en intima conexién con el finitis-
mo y el programa.
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10 . Comentarios finales

En el prefacio del libro Anschauliche Geometrie,** escrito en colabora-
cion con S. Cohn-Vossen en 1921, Hilbert advierte:

En las matematicas, como en cualquier otra disciplina cientifica, se hallan
presentes dos tendencias. Por una parte, la tendencia hacia la abstraccion,
que busca cristalizar las relaciones ldgicas inherentes al caudal de resul-
tados estudiados tratando de unificar el material de manera sistematica y
ordenada. Por la otra parte, la tendencia a la comprension intuitiva, que
nos alienta a significar de manera inmediata tales relaciones logicas, sub-
rayando su significado concreto.

En la geometria, la tendencia abstracta ha conducido a las magnificas
teorias de la geometria algebraica, la geometria de Riemann y la topolo-
gia; estas teorias se sirven ampliamente del razonamiento abstracto y del
calculo simbdlico en el sentido del dlgebra. No obstante, hoy en dia sigue
siendo tan cierto como siempre que la comprension intuitiva desempefia
un papel principal en este dominio. Tal intuicién concreta es de gran valor
no solo para el investigador, sino para todo aquel que desee estudiar y
apreciar los resultados de la geometria. (Hilbert 1952, p. iii)

Las palabras anteriores muestran un aspecto muy poco conocido del
pensamiento de Hilbert. Para €I, la formalizacién no es un objetivo final,
sino una fase en el movimiento propio del pensamiento matemadtico.
Desde su punto de vista, la matematica se desenvuelve en medio de una
dialéctica entre lo formal y lo intuitivo, entre la forma y el contenido.
El libro de cuyo prefacio he tomado el pasaje anterior es en si una viva
expresion de esta duplicidad, donde el lector podrd descubrir diversos
aspectos visuales de la geometria proyectiva y diferencial, de la cinema-
tica y la topologia. Y si bien en este ensayo nos hemos concentrado casi
en exclusiva en las ideas que tiene Hilbert acerca de las matematicas
puras, seria un error desestimar la perspectiva anterior. Hilbert no es
el formalista radical que muchos autores presentan, ni un purista para
quien las matematicas se reducen a un juego formal con vacuos concep-
tos; mas bien, ve en la formalizaciéon un instrumento para: i) elaborar
un montaje conceptual con relaciéon a una teoria, ii) generalizar las
teorias y iii) investigar las teorias mismas y establecer vinculos entre
distintas dreas de las matematicas. En cuanto a la perspectiva general
que nos ofrece Hilbert de la matematica pura, espero haber proyectado
suficiente luz sobre su pensamiento como para clarificar su imagen:

2 Hilbert y Cohn-Vossen 1952 es una traduccién de este libro al inglés.
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la de un pensador que no sélo nos legd una obra matematica vasta y
profunda, sino una manera diferente de entender esta disciplina.*®

En cuanto a Kant, espero haber contribuido a esclarecer su teoria
del conocimiento matematico al mirarla bajo la luz de la teoria de es-
quemas. De hecho, la consideracién del esquematismo kantiano nos
permitid: (i) entender con mayor claridad la epistemologia hilbertiana,
aunque en este trabajo s6lo hayamos hecho un esbozo parcial de la mis-
ma; (ii) examinar el pensamiento de Kant desde un angulo que aclara
la nocién que sustenta de los objetos matematicos; (iii) iluminar los
cambios ocurridos en la matematica durante el siglo Xix; (iv) entender
como se relacionan los conceptos y los objetos en la geometria clasica,
y (v) entender la nocién de objeto matematico que introduce Hilbert
en la filosofia de las matematicas. Al respecto, aqui s6lo se considerd el
esquematismo kantiano desde la perspectiva de la geometria clasica, sin
tocar en absoluto su relacidn con la aritmética. Esto es asi en virtud de
que las primeras manifestaciones del formalismo de Hilbert se dieron
en torno a los fundamentos de la geometria, tema central de este ensa-
yo. De igual forma, no se consider6 en plenitud la explicaciéon que da
Hilbert del conocimiento matemadtico en general, pues esta tarea la aco-
mete justo en la segunda etapa de su formalismo, un tema que escapa a
los propésitos de este ensayo. No obstante, con los elementos ofrecidos
espero haber puesto en claro que el formalismo de Hilbert, antes que
una negacion de la epistemologia kantiana, constituye una generaliza-
cién necesaria de ella en adecuaciéon a la matematica moderna.
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