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Resumen

El objetivo de este trabajo es presentar unapropuesta de control
neuronalpor modelo de refe.renciapara un sistemaque cambiasu
estructura interna de un sistema líneal de primer orden a un
sistema líneal de segundo orden, aplicandopara esta tarea una
red neuronal recurrente. Se presentan dos esquemas de control
neuronal por modelo de referencia para el sistema antes
mencionado. Una de las característicasde la red neuronalque se
utiliza es la de tener restriccionesen su::pesos, esto garantiza su
estabilidad durante el entrenamiento. En el primer esquema se
utiliza una red neuronal para la identificación del sistema de
estructura variable; en el segundo esquema se usan dos redes
neuronales con el propósito de separar la identificaciónde cada
subsistema.

Palab¡'as Clave: Redes Neuronales, Sistemas de Estructura
Variable, Control por Modelo de Referencia, Control Inteligente,
Sistemas Implícitos.

Abstract

The objective ofthis paper is to propose a referencemodel neural
control of a system, which change its infernal structurefrom a
linear system of first arder to a linear system of second order,
applyingfor this task a recurrentneural network. Twoschemes of
reference model neural control, for the above mentioned system,
are presented. One characteristicfeature of the neural network
used, is that a feedback weight restriction is applied, which
preserved its stability during the learning. The first control
scheme uses one neural networkfor identificationof the variable
structure system; the second control scheme uses two neural
networksso to separate the identificationof eachsubsystem.

Keywords: Neura! Networks, Variable Structure Systems, Model
Reference Control, Intelligent Control, Implicit Systems.
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1 Introducción

Dentro de los sistemas que pueden ser representados por
medio de las realizaciones implícitas (E, A, B, C), se
encuentran los sistemas de estructura variable. La variación
de estructura de estos sistemas puede ser clasificada como
discreta (variación entre dos o más puntos) o continua
(variación continua y acotada), esto según (Bonilla y
Malabre, 1991). Un ejemplo típico de variación discreta son
los sistemas con variación de orden, siendo éste el caso de
interés en el presente trabajo. La representación de los
sistemas de estructura variable con realizaciones (E, A, B,
e) permite sintetizar leyes de control a partir de la teoría de
Sistemas Lineales Implícitos (Bonilla y Malabre, 1991; M.
Bonma y otros, 1993; 2000; Goire y otros, 2000 a y b).

En este trabajo se presenta un enfoque neurona! para
sintetizar la ley de control de un sistema de estructura
variable usando una red neurona! dinámica en donde la
tarea de contra! consiste en seguir un modelo de referencia.
El esquema neuronal propuesto consta de dos etapas, una
etapa de identificación y otra de control.

En la Sección 2 se presentan algunos antecedentes de
sistemas de estructura variable y de un esquema de control
implícito para el mismo.

En la Sección 3 se explica la estructura de la red neuronal
recurrente utilizada, así como su ley de ajuste de los pesos

La Sección 4 presenta dos esquemas de control por
modelo de referencia para el sistema de estructura variable
en estudio, con los resultados de simulación obtenidos.
Finalmente, en la Sección 5 damos las conclusiones del
trabajo.
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2 Sistemas de Estructura Variable

Por medio de las realizaciones implícitas rectangulares (E,
A, B, C) representadas por:

Ex(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

en donde las variables: x(t) E X, u(t) E U, y(t) E Y Y las
aplicaciones: EX-+X, AX~X, B:U-+X y CX-+Y son
operadores lineales de dimensiones apropiadas, en donde
los subespacios son tales que: Dim{X} :o;Dim{X}, y es
posible representar el comportamiento y controlar sistemas
de estructura variable. En (Bonilla y MaJabre, 1991) se
mostró que gracias al grado de libertad existente por la
diferencia en las dimensiones del espacio de estados:
(Dim{X}:O;Dim{X}), hace posible tomar en cuenta la
variación de estructura en una forma implícita. En (M.
Bonilla y otros, ] 994) se obtuvieron las condiciones
geométricas con las cuales es posible diseñar una estrategia
de control "robusto" en el sentido de que aun si la
estructura interna está sujeta a variaciones, la salida del
sistema controlado tiene un comportamiento único,
(consultar: F. L. Lewis, 1992 y 1991 para mayores detalles
sobre descripciones implícitas).

Considere el sistema de estructura variable descrito

mediante la realización o descripción implícita siguiente:

[~

o
O

O

] [

- 1 - 1 1

] l
O

]
x(t)= ~ ~ x(t)+ u(t)1 O -1 O 1

~

y(t) = [1 1 O]x(t), Vt ~ O

Con las dos restricciones algebraicas:

[O - 1 1]x(t) =O

[O 1 O]x(t) = O

Si la restricción (3) está activada, el sistema se comporta
como un sistema de primer orden:

y(t) + y(t) = u(t)

Si la restricción (4) está activada, el sistema se comporta
como un sistema de segundo orden:

y{t)+;{t)=u(() (6)

En (M. Bonilla y otros, 1993) se aplica la metodología dada
en (M. Bonilla y otros, 1994), para sintetizar un controlador
lineal para tal descripción implícita, obteniéndose la ley de
control siguiente:

(1)

u(t) ~ [. 1 O
1

+ [O 1 - 1~(t)+ -- r(t)
To

(¡ = x¡;(] =X3;C =XI + x]
(8)

(1 - "J~(t) + (7)

Con esta ley de control la descripción (2) es:

así, el grado de libertad se hace no observable, es decir, la
variación de estructura ya no es visible a la salida del
sistema.

(2)

El comportamiento del sistema en lazo cerrado aplicando
la ley de control mencionada, queda descrito por la
siguiente ecuación:

TOp(t) + y(t) = r(t) (10)

(3)

(4)

Donde to es la constante de tiempo del modelo de
referencia. Independiente de si la restricción (3), o la
restricción (4), es activada.

(5)

Dado que la estrategia de control (7, 8) está basada en
acciones derivativas ideales, en (M. Bonilla y otros, 1993)
se propone un controlador propio, que aproxima al no
propIO.

Por ejemplo, con la siguiente aproximación propia del
controlador (7) y (8), se pueden describir en la forma:

T T
X (t) = [x (t) X4(t)] (11)

u(t)=...

[-HI-i) -(::-iJ
(1 '

J1

-
l.

~ x(t)+...
To E.J

+ ~.r(t)
LO

(12)
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[1 () ()]O O LIJ (t) = ...

l-1 -1 -1]= () - 1 1- :1 ,(t) +
() I (9)

JrillV(t)lW
y(t) = [O O 0t(t) Vt 2.O
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ctAt)+xAt) =[1 1 -1]x(t) (13)

Después de algunas operaciones matemáticas, se obtiene
el siguiente sistema en lazo cerrado:

Donde se han realizado los siguientes cambios de variables:

~l =Xl; ~2 =X3; ~3 =Xl + X2 ;

~4 =Xl +X2 -X3 +~4 (15)

E~4+C ~ [O 1t. (16)-1

El comportamiento entrada - salida del sistema en lazo

cerrado (14) tiende a (10) cuando E ~ O. La estabilidad
del sistema en lazo cerrado se estudia en (M. Bonilla y
otros, 1993). La estrategia de control desarrollada en (M.
Bonilla y otros, 1993, 1994) usa la variable descriptora
x(t). En (M. Goire y otros, 2000 a y b) se sintetiza un

reconstructor de esta variable descriptora, utilizando un
detector de estructura neuronal, que determina cual
estructura interna está activada y en (Bonilla y otros, 2000)
se utilizó un esquema de control adaptable.

La idea central de este trabajo es dar otra alternativa de
control de un sistema de estructura variable utilizando redes
neuronales, de manera que la variación de estructura no sea
visible a la salida del sistema. Como la planta es continua y
la red neuronal usada, es discreta, entonces las señales que
se usan como entradas a la red tienen que ser discretizados
y la salida del controlador neuronal tiene que ser retenida.

3 Red Neuronal Recurrente
3.1 Estructura de la Red

Las redes neuronales recurrentes han sido utilizadas en

varios trabajos de identificación y control de sistemas (A. S.
Poznyak, E. N Sánchez y otros, 2001; G. A. Rovithakis, M.
A. Christodoulou, 2000; J. A. K. Suykens, L. Vandewalle y
otros, 1996). En los. anteriores, se ha utilizado un enfoque
por medio de funciones de Lyapunov, esto hace que las
redes converjan más lentamente y no se estiman los estados
del sistema identificado usados para el control.
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En (1. S. Baruch, J. M. Flores y otros, 2002), se propone
una arquitectura de red neuronal recurrente entrenable
(RNRE), se consideran algunas propiedades de esta red
como controlabilidad, observabilidad y estabilidad del
algoritmo Backpropagation de su aprendizaje, comprobado
por un teorema y un lema, y se muestran los resultados de
su aplicación para la identificación y control de un motor
CD en tiempo real. En el articulo de 1. S. Baruch, J. M.
Flores y otros, 2001, se utilizan. los estados estimados por
una red neuronal para generar una retroalimentación que
estabiliza el sistema. Esta red neuronal está dividida en dos
capas, en la primera, se tiene una capa de retroalimentación
(oculta), y la capa de salida está formada por una suma
ponderada.

Las ecuaciones que describen a esta red neuronal son las
siguientes:

x(k + 1) = Jx(k) + Bu(k);

z(k) = Sh[x(k)1-

y(k) =SO [Cz(k) 1-

J = block-diag (J¡); IJ¡¡I< 1

(17)

(18)

(19)

(20)

Donde: u(k) es la entrada a la red; x(k) es el vector de

estados internos; y(k) es la salida de la red; z(k) es una

variable auxiliar. Las variables y parámetros que definen a
la red tienen las siguientes dimensiones:

u(k) E 9{1ll; x(k),z(k) E 9{n ; y(k) E 9{P

BE9{nxm; JE9{nxn; CE9{pxn,

(21)

(22)

Considerando que es una red con m entradas, n nodos
ocultos, p salidas. La matriz J es diagonal, o diagonal a
bloques. Debido a esto, se dice que esta red está descrita
por un modelo canónico de Jordan, con mínimo numero de
pesos ajustables, que permite un aprendiz<0e mas rápido y
por esto - ejecutable en tiempo real. El vector S' con
dimensión n está formado por funciones de activación del
tipo tangente hiperbólico:

1 -2¡
h/ V h/;¡ -e

s. \1 =tan \ 1/ = :- =
¡ 1+ e-2¡

S h (i) = ls;(i) , , s:(i)JT

(23)

(24)

En la teoría de las redes neuronales se destaca el papel de
la función de activación no lineal en su poder de
representación, pero al utilizar una función de la clase
tangente hiperbólico en la capa de salida de la red obliga a
que se considere la escala de las señales. Para evitar este
problema, en la capa de la salida se selecciona una función
lineal:

So (i) = i (25)

[1 O O O] [O 1 -1

l/O" ]s + ...O O lIS = O O 1/.0
O -E E E O O O -1

.+/:'J
(14)

y(t) = [O O 1 01, Vt 'c.O
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3.2 Ley de Aprendizaje

La ley de aprendizaje (ajuste) de los parámetros de esta red
se basa en la conocida regla delta, con valores iniciales
equiprobables, escogidos arbitrariamente en un rango de
números pequeños, donde el peso para el instante siguiente
se deriva, usando la recurrencia:

w¡(k + 1) = W¡ (k) + ll11w¡ (k) (26)

Si durante el ajuste de los pesos de la red se presentan
oscilaciones, se puede agregar el término de momento, que
adiciona un porcentaje de su variación del peso en el
instante anterior, es decir:

w,(k + 1)= w¡(k)+ ll11w¡(k)+allw¡(k -1) (27)

Donde los parámetros 17y a pertenecen al intervalo
cerrado [0,1]. El ajuste de los parámetros de la red están
definidos por las siguientes ecuaciones, (Baruch y otros,
2002):

llc¡(k) = e(kJ[l- y2 (k )~(k);

Mij (k) = Ru¡(k);

AJij(k) = RxJk -1);

R = C(k)e(k)z;(k);

(28)

(29)

(30)

(31)

Donde e(k) es el error de la salida. Los Índices anteriores
dependen de la estructura de la red utilizada.

Condición de Estabilidad para los Pesos J

La condición de estabilidad para la red neuronal recurrente
se da con la ecuación (20). Para facilitar su implementación
se hace la suposición que J es una matriz diagonal.
Para el caso discreto, la red neuronal será estable durante su
operación, si los elementos de la matriz J cumplen que su
magnitud es menor a 1, es decir: IJul<l, que corresponde a
un circulo con centro en el origen y con radio unitario.

Para incorporar la condición de estabilidad en las
expresiones de actualización de los pesos Ju se propone la
siguiente modificación a la regla delta:

- . aE(k)
J¡¡(k+l) = J¡i(k)-ll'~+aMii(k-l);

aJí; (32)

] ¡¡(k) = Sat[J¡¡ (k)1
Donde la función Sal (x) que se usa es:

t

I-e.

Sat(x) = x:.
e -1;

x?:.1

Ixl < 1
xs-l

Aquí la constante E es un número pequeño y positivo. De
esta forma en la red neuronal se propone sustituir el peso J¡¡
por su valor saturado y asegurar así que este peso satisface
las condiciones de estabilidad. Así, manteniendo los valores
propios de la matriz J (J¡i),que son polos de la red neuronal
recurrente, en el rango estable se asegura la estabilidad de
toda la red y su algoritmo de aprendizaje.

4 Control Nenronal por Modelo de
Referencia

El control de sistemas por modelo de referencia consiste en
diseñar un sistema que modifique el comportamiento
natural de la planta con el objetivo que se aproxime a la
respuesta que tiene un modelo de referencia establecido. En
este esquema de control se supone que el diseñador tiene el
suficiente conocimiento del sistema como para definir el
comportamiento deseado por medio de un modelo. Uno de
los primeros trabajos de la aplicación de las redes
neuronales para el control por modelo de referencia de
sistemas puede consultarse en (K. S. Narendra, K.
Parthasarathy, 1990). A continuación se presentan un par de
esquemas de control por modelo de referencia para sistemas
de estructura variable en tiempo real, en donde la etapa de
identificación se realiza por medio de redes neuronales.

4.1 Esquema con Una Red

El esquema general del control por modelo de referencia
para el sistema de estructura variable, (2-4), se muestra en
la Figura 1 El esquema de control se divide en tres
secciones: una de control, formada por un lazo de retroali-
mentación de la salida y una red neuronal recurrente; una
etapa de identificación, que utiliza otra red neuronal
recurrente; y la tercer etapa formada por el modelo de
referencia.
El ultimo suaviza la senal de referencia y define el
comportamiento del sistema en lazo cerrado, porque los
pesos del controlador neuronal se ajustan con el error de
control, que es ec= Yre/- Yp'

y"r ~

'- --- - -- - -- -- -- ~,- --- -- -- - --f'~

Fig.l: Esquema de control neuronal por modelo de referencia de
un sistema de estructura variable.
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Durante la operación del sistema de estructura variable su
comportamiento dinámico se alterna entre los siguientes
subsistemas:

~}+[~}'P[l O}

~I}+[~}.P[I 1~

Desde la representación entrada-salida, el subsistema (3)
(subsistema-l) tiene una dinámica de segundo orden con
polos en PI,2={O,-1}; dos ceros al infinito, z1,2=oc. El
subsistema (33) (subsistema-2) tiene un par de polos en
Pu=-l y ceros en z¡,2=oc,-1. El polo y cero localizados en -
l. se cancelan, en consecuencia, la dinámica mostrada por
este sistema, desde el punto de vista entrada salida, es de un
sistema de primer orden.

Con el fin de estabilizar el subsisterna (33), se agregó el
lazo de retroalimentación de la salida. El lazo de
retroalimentación no altera la localización de los ceros de
los subsistemas, pero si la posición de sus polos, para
estudiar e! efecto de este lazo vea las Figuras 2 y 3.

En la Figura 2 se observa que al ir aumentado la ganancia
de la retroaliment¡;).c;!ónnegativa, los polos en lazo abierto
en -1 y O, se mueven sobre el eje real hasta converger en -
0.5 Y de allí la parte imaginaria se incrementa
simétricamente alejándose perpendicularmente del eje real.

Para el segundo subsistema, al aumentar la ganancia del
lazo de retroalimentación, sólo uno de sus polos se altera,
alejándose por la izquierda sobre el eje real. Esto era de
esperarse pues el otro polo queda fijo al cero finito en -1
que lo cancela.

[

-1

~(t) = O

[

-1

~(t)= O

(33)

(34)

15

0.5

-0.5

-15
.15 -1 ",.5 0.5

Fig.2: Efecto de la retroalimentaciónde la salidasobre el
subsistema 1«1, primerpolo; X segundopolo).

De lo anterior se infiere que la retroalimentación de la
salida, altera la posición de los polos no apareados
conceros, y que los ceros no se ven alterados, pero de ellos
depende la dirección en la cual los polos se mueven.

Para los esquemas de control por modelo de referencia la
ganancia del lazo de retroalimentación que se seleccionó es
de -1.5. De las gráficas anteriores puede determinarse en
donde se localizaran los polos de ambos subsistemas.
Durante la simulación valores menores de -1.5 en los

esquemas neuronales, el desempeño en el seguimiento de la
referencia se reducía.

En el primer esquema de control neurona! se utiliza una
RNRE como identificador. Los pesos de esta red son
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ajustados utilizando el error formado por la diferencia entre
la señal de salida del sistema de estructura variable y la
propia salida de la red:

0.8

I
K~2 1.8 1.6 " 12 i 0.8 0(, OA 02 "

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1
-3.5 -1.5 -0.5 0.5-3 -2.5 -2 -1

Fig. 3: Efecto de la retroalimentación de la salida sobre el
subsistema2 «]), primer polo; X segundo polo).

e. = Y -Y (35)
I P n

El que sustituye a e (k) en las ecuaciones (28) y (31).

El modelo de referencia que define la respuesta deseada
es de primer orden, descrito por:

y (s)=-.Q'-~-R(s)
ref S + 0.2

(36)

La red que genera la señal de control recibe como entrada
la salida de! modelo de referencia, Yref; el ajuste de los
parámetros se determina por el nivel de! error de control, ec,
definido por la diferencia entre la señal de referencia y la
salida de la red de identificación, Yn:

ec = Yrel -y p (37)

En la Tabla 1, se resumen los parámetros para las redes
neuronales usadas en las simulaciones.

Tabla!: Parámetros de simulación.

Durante la simulación, el sistema de estructura variable,
(2), conmuta entre los subsistemas (5) y (6) cada 100
segundos. La señal de entrada es una onda cuadrada
simétrica con un periodo de 200 segundos. El periodo de
muestreo, dado en la Tabla 1, cumple con las condiciones
de Shannol1. En la Figura 4, se muestran las gráficas de la
señal de salida de! sistema de estructura variable, de la
señal de salida del modelo de referencia o señal objetivo y
el error que se comete entre ambas señales. Estos resultados
fueron obtenidos usando como entrada al modelo de
referencia una señal cuadrada. Se puede observar que el
esquema de control es capaz de cumplir con el objetivo de
hacer que el comportamiento de! sistema de estructura

, "
:"
"" ".,.
'"

'" ",

"., I
"O

".",
LO" LO"

PARAMETROS VALOR

NÚmero de Nodos, n 15

Ganancia de momento, a 0.0005

Ganancia de momento, TI 0.0005

LPeriodo de Muestreo, Ts 0.01 Seg
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variable siga al del modelo de referencia propuesto, aunque
se presenta un breve sobre impulso que coincide con el
momento de la conmutación entre los subsistemas y el
cambio de polaridad de la señal de entrada.

Analizando el error instantáneo, Figura. 4c, generado por
el esquema propuesto, se puede ver con mayor claridad que
durante la conmutación entre los subsistemas el error
aumenta, aunque su valor, posterior a este evento, se reduce
rápidamente.

(.)

ivu~
~~~~~~1
"""'."""""""'""'"""""""""""s'o."""

iG~~
,~" .". s,..""'""s. "'" i7~'

Fig.4: (a) Salida del sistema, (b) Salida del modelo de referencia,
(c) Error entre la salida del sistema y el modelo de referencia.

En la Figura 5, se presentan los componentes de la señal
de contro!. El componente del control generado por el lazo
de retroalimentación (línea continua); esta en oposición con
el componente de control producido por la red neurona!.

El control aplicado al sistema de estructura variable se
forma de la suma del control generado por el lazo de
retroalimentación de la salida y de la salida de la RNRE,
Figura 6. Como se observó en las gráficas anteriores, el
esquema de control neuronal por modelo de referencia para
el sistema de estructura variable tiene un buen desempeño
fuera de los instantes de cambio de los subsistemas. Se
presume que este efecto se debe al uso de una RNRE en la
etapa de identificación, que debe reajustar sus parámetros.

Si se supone que se tiene disponible la indicación de
cuando se realiza la conmutación entre los subsistemas, se
podría utilizar un esquema de identificación multimodelo.
En la siguiente sección se presenta esta opción.

4t

n
~r:

11
(': 0'--: r-: r-1", , o I . . o I ," ", ,

O

~

Il

O 'o

u
,

; \ " \:: \
.2

UUJ\_.¡ \": \'.i 1\-- ~--
.4t 1:

, I
"'"" ssoo ""00 (,500 '000 750 8<10 "'O ~}(I 950 !OOO

Seg.

Fig.5: Componentes de la señal de control (retroalimentación de la
salida, !inea continua; red neuronal, línea segmentada).

.2

I ;

. ~ I

N~
I I I

i.4 t
-6500 550 600 650 700 750 800 850 900 950 1000

Seg.

Fig.6: Control aplicado al sistema de estructura variable.

4.2 Esquema con Multimodelo

Se supone que S'c',' ;-~oce de ,m¡em"'!~c d núrnce)(\ ie
subsistemas en 103"uales se divide el sIstema je estructl¡ra

variable y cuando se lleva a cabo la conmutación entre
ellos. Debido a lo anteriormente expresado, en este artículo
se propone un esquema en donde la identificación se realiza
por medio de dos redes neuronales (ver Baruch y otros,
2000), conmutando entre ellas en correspondencia con el
cambio de subsistema. En la Figura 7, se presenta el
esquema que se utilizará para realizar la simulación.
El conmutador de sistema tiene la tarea de habIlitar una de

ías RNRE de la etapa de identificación, con lo que tendrá
una red neuronal para identificar a cada uno de los
subsistemas.

Los parámetros de ambas redes son los mismos a los
indicados en la Tabla l. En la Figura 8a se muestra la salida
del sistema de estructura variable, vuelven a presentarse el
efecto transitorio del sobre impulsos cuando se conmuta
entre los subsistemas. En la Figura 8b aparece la salida del
modelo de referencia y en la Figura Sc está el error entre la
salida del sistema y el modelo de referencia.

Di",;..; ,
d,

Si>t,...

Fig.7: Esquema multimodelo de control neurona! El control por
modelo de referencia de un sistema de estructura variable (multi-

modelo).

-
289



M. M. Goire C., J. M. Flores A., M. Bonilla, 1.S. Baruch : Control no Lineal por Modelo de Referencia para un Sistema de ...

(a)

i~
~~.
j~
..ffi ""' 161" "'" 17m, 17", 1"" 1861'

1961'S,g"'ffi

Fig.8: (a) Salida del sistema, (b) Salida del modelo de referencia,
(e) Error entre ambas señales.

La utilización del multimodelo en la identificación del

sistema de estructura variable no resultó en una mejora
apreciable en el contro\. Comparando las gráficas del error,
Figuras 4c y Sc, se observan ligeros cambios en algunos de
los transitorios que aparecen en el esquema de
identificación de una red.

En la Figura 9 se presentan los componentes de la señal
de control aplicada á1sistema de estructura variable. Aquí
nuevamente vemos como la componente del lazo de
retroalimentación (línea continua) se opone a la señal de
salida de la RNRE que genera el control

Finalmente, en la Figura 10 se presenta la señal de control
aplicada al sistema de estructura variable.

Se observa que la señal de control está formada por la
suma del lazo de retroalimentación de la salida y la salida
de la red neuronal que realiza el contro\.
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Fig.9: Componentes de la Señal de Control (retroalimentación de

la salida, línea continua; red neuronal, línea segmentada)
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Fig.IO: Control Aplicado al Sistema de Estructura Variable.

5 Conclusiones

En este trabajo se presentaron dos esquemas de control
neuronal por modelo de referencia' para un sistema de
estructura variable, donde la red neuronal recurrente
utilizada fue la reportada en (1. S. Baruch, J. M. Flores y
otros, 2002, 2001, 2000). Sería oportuno señalar que el lazo
de retroalimentación de la salida fue necesario para
garantizar la estabilidad del subsistema (33), este es un
requerimiento para que pueda ser identificado por la red
neurona!.

De los 'resultados de la simulación podemos decir que
ambos esquemas de control son viables. Entre estos dos
modelos de control no hubo gran diferencia en su
desempeño, lo que indica que el hecho de separar la etapa
de identificación no representa una mejora de importancia,
al menos para el ejemplo utilizado.

Estableciendo una comparación entre los esquemas
usados tradicionalmente para este tipo de sistema y el
esquema neuronal propuesto, se destaca el hecho de que en
este último, no se necesitan los estados del sistema para
realizar el contro!. Además, se hace uso de redes neuronales
dinámicas que son entrenadas en línea. Destacar que en el
primer modelo no se requiere una detección explícita de los
subsistemas.

Como línea de trabajo futura será interesante realizar
experimentos con esquemas donde el controlador esté
compuesto por más de una red neurona\. Otra línea de
trabajo podría ser investigar que otros elementos mejoran el
comportamiento del esquema de control neuronal y aplicar
los resultados a sistemas más complejos.
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