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Resumen

El objetivo de este trabajo es presentar una propuesta de control
neuronal por medelo de referencia para un sistema que cambia su
estructura interna de un sistema lineal de primer orden a un
sistema lineal de segundo orden, aplicando para esta tarea una
red neuronal recurrente. Se presentan dos esquemas de control
neuronal por modelo de referencia para el sistema antes
mencionado. Una de ias caracteristicas de la red neuronal que se
utiliza es la de tener restricciones en suz pesos, esto garantiza su
estabilidad durante el enfrenamiento. En el primer esquema se
utiliza una red neuronal para la identificacion del sistema de
estructura variable; en el segundo esquema se usan dos redes
neuronales con el propdsito de separar la identificacion de cada
subsistema.

Palabras Clave: Redes Neuronales, Sistemas de Estructura
Variable, Control por Modelo de Referencia, Control Inteligente,
Sistemas Implicitos.

Abstract

The objective of this paper is to propose a reference model neural
control of a system, which change its internal structure from a
linear system of first order to a linear system of second order,
applying for this task a recurrent neural network. Two schemes of
reference model neural control, for the above mentioned system,
are presented. One characteristic feature of the neural network
used, is that a feedback weight restriction is applied, which
preserved its stability during the learning. The first control
scheme uses one neural network for identification of the variable
structure system; the second control scheme uses two neural
nefworks so to separate the identification of each subsystem.

Keywords: Neural Networks, Variable Structure Systems, Model
Reference Control, Intelligent Control, Implicit Systems.

1 Introduccion

Dentro de los sistemas que pueden ser representados por
medio de las realizaciones implicitas (E, 4, B, (), se
encuentran los sistemas de estructura variable. La variacién
de estructura de estos sistemas puede ser clasificada como
discreta (variacién entre dos o mds puntos) o continua
(variacién continua y acotada), esto segin (Bonilla v
Malabre, 1991). Un ejemplo tipico de variacién discreta son
los sistemas con variacion de orden, siendo éste el caso de
interés en el presente trabajo. La representacién de los
sistemas de estructura variable con realizaciones (E, 4, B,
C) permite sintetizar jeyes de control a partir de la teoria de
Sistemas Lineales Implicitos (Bonilla y Malabre, 1991; M.
Bonilla y otros, 1993; 2000; Goire y otros, 2000 a y b).

En este trabajo se presenta un enfoque neuronal para
sintetizar la ley de control de un sistema de estructura
variable usando una red neuronal dinamica en donde ia
tarea de control consiste en seguir un modelo de referencia.
El esquema neuronal propuesto consta de dos etapas, una
etapa de identificacion y otra de control,

En la Seccion 2 se presentan algunos antecedentes de
sistemas de estructura variable v de un esquema de control
implicito para el mismo.

En la Seccidn 3 se explica la estructura de la red neuronal
recurrente utilizada, asi como su ley de ajuste de los pesos

La Seccion 4 presenta dos esquemas de control por
modelo de referencia para el sistema de estructura variable
en estudio, con los resultados de simulacién obtenidos.
Finalmente, en ia Seccién 5 damos las conclusiones del
trabajo.
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2 Sistemas de Estructura Variable

Por medio de las realizaciones implicitas rectangulares (E,
A, B, C) representadas por:

Ex(t) = Ax(¢)+ Bulr)
W)= Cxlr), (1)

en donde las variables: x(t) € X, u(t) € U, y(t) € Yy las
aplicaciones: E:X—kX, AX-=X, B.U-=X y CX-Y son
operadores lineales de dimensiones apropiadas, en donde
los subespacios son tales que: Dim{X} < Dim{X}, v es
posible representar el comportamiento y controlar sistemas
de estructura variable. En (Bonilla y Malabre, 1991} se
mostré que gracias al grado de libertad existente por la
diferencia en las dimensiones del espacio de estados:
(Dim{X}< Dim{X}), hace posible tomar en cuenta la
variacion de estructura en una forma implicita. En (M,
Bonilla v ofros, 1994) se obtuvieron las condiciones
geométricas con las cuales es posible disefiar una estrategia
de control “robusto” en el sentido de que aun si la
estructura interna esta sujeta a variaciones, la salida del
sistema controlado tiene un comportamiento Unico,
{consultar: F. L. Lewis, 1992 y 1991 para mayores detalles
sobre descripciones implicitas).

Considere el sistema de estructura variable descrito
mediante la realizacion o descripcion implicita siguiente:

P 5 E LA L
W)=l1 1 okle)  ve=zo0

Con las dos restricciones algebraicas:

[0 -1 Ikr)=0 &)
o 1 okl()=0 @)

Si la restriccion (3) esta activada, el sistema se comporta
como un sistema de primer orden:

)+ ple) = u )

Si la restriccion (4) esta activada, el sistema se comporta
como un sistema de segundo orden:

o)+ 3le)=u(d B

En (M. Bonilla y otros, 1993) se aplica la metodologia dada
en (M. Bonilla y otros, 1994), para sintetizar un controlador
lineal para tal descripcion implicita, obteniéndose la ley de
control siguiente:

ulty=|-1 0 (1~é)ﬁ_(r)+...

. )
+o 1 —1R@)+—r()
Ty
=X, =X,,(, = +
Cr=x,0,=%x;,(; =x,+x, ®)
Con esta ley de control la descripcion (2) es:
1 0 0 s
0 o [1][)=
Y B
=l =7 _ 1 ey +
Yo | (9)
- 0 _
L)
[ |]
W=l o 11k Vi20

asi, el grado de libertad se hace no observable, es decir, la
variacion de estructura va no es visible a la salida del
sistema.

El comportamiento del sistema en lazo cerrado aplicando
la ley de control mencionada, queda descrito por la
siguiente ecuacion:

7, 9(0)+ () = r(0) (10)

Donde 1, es la constante de tiempo del modelo de
referencia. Independiente de si la restriccion (3), o la
restriccion (4), es activada.

Dado que la estrategia de control (7, 8) estd basada en
acciones derivativas ideales, en (M. Bonilla y otros, 1993)
se propone un controlador propio, que aproxima al no
propio.

Por ejemplo, con la siguiente aproximacion propia de!
controlador (7) y (8), se pueden describir en la forma:

X)) =[x (1) xu(1)] (11)

u(r)=‘_.

ot it (-1t
el € S & A% g)l

+24) (12)
T(;‘
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e (t)+x,(0)=[1 1 -1 (13)

Después de algunas operaciones matematicas, se obtiene
el siguiente sistema en lazo cerrado:

1 0 o0o0] o1 -1 o

0 0 1 1lc=[0 0 l/r, Ux,|c+..

0 -g ¢ ¢ 00 O -1
0

| U, i (14)
0

y)=lo o 1 0ok Vt>0

Donde se han realizado los siguientes cambios de variables:

Cr=x5 &,=x5 s =%, +x,;

Co =%, 4%, -x, 4L, (15)

e, +¢, =0 -1 1k (16)

El comportamiento entrada - salida del sistema en lazo

cerrado (14) tiende a (10) cuando € — 0. La estabilidad
del sistema en lazo cerrado se estudia en (M. Bonilla y
otros, 1993). La estrategia de coatrol desarrollada en (M.
Bonilla y otros, 1993, 1994) usa la variable descriptora
X(t). En (M. Goire y otros, 2000 a y b) se sintetiza un
reconstructor de esta variable descriptora, utilizando un
detector de estructura neuronal, que determina cual
estructura interna estd activada y en (Bonilla y otros, 2000)
se utilizé un esquema de control adaptable.

La idea central de este trabajo es dar otra alternativa de
control de un sistema de estructura variable utilizando redes
neuronales, de manera que la variacion de estructura no sea
visible a la salida del sistema. Como la planta es continua y
la red neuronal usada, es discreta, entonces las sefiales que
se usan como entradas a la red tienen que ser discretizados
y la salida del controlador neuronal tiene que ser retenida.

3 Red Neuronal Recurrente
3.1 Estructura de la Red

Las redes neuronales recurrentes han sido utilizadas en
varios trabajos de identificacion y control de sistemas (A. S.
Poznyak, E. N Sanchez y otros, 2001; G. A. Rovithakis, M.
A. Christodoulou, 2000; J. A. K. Suykens, L. Vandewalle y
otros, 1996). En los anteriores, se ha utilizado un enfoque
por medio de funciones de Lyapunov, esto hace que las
redes converjan mas lentamente y no se estiman los estados
del sistema identificado usados para el control.

En (I. S. Baruch, J. M. Flores y otros, 2002), se propone
una arquitectura de red neuronal recurrente entrenable
(RNRE), se consideran algunas propiedades de esta red
como controlabilidad, observabilidad y estabilidad del
algoritmo Backpropagation de su aprendizaje, comprobado
por un teorema y un lema, y se muestran los resultados de
su aplicacién para la identificacién y control de un motor
CD en tiempo real. En el articulo de 1. S. Baruch, J. M.
Flores y otros, 2001, se utilizan los estados estimados por
una red neuronal para generar una retroalimentacién que
estabiliza el sistema. Esta red neuronal esta dividida en dos
capas, en la primera, se tiene una capa de retroalimentacion
(oculta), y la capa de salida esta formada por una suma
ponderada.

Las ecuaciones que describen a esta red neuronal son las
siguientes:

x(k + 1) = Jx(k)+ Bu(k); (17)
z(k) = S" [x(k)); (18)
y(k) =8’ [Cz(k)} 2
J = block-diag (J;;); || < 1 (20)

Donde: (k) es la entrada a la red; x(k) es el vector de

estados internos; y(k) es la salida de la red; z(k) es una

variable auxiliar. Las variables y parametros que definen a
la red tienen las siguientes dimensiones:

uk) e R™; x(k), z(k) € R"; y(k) e R® @n
BEEan; Jreinnxn; CEERPXH, (22)

Considerando que es una red con m entradas, » nodos
ocultos, p salidas. La matriz J es diagonal, o diagonal a
bloques. Debido a esto, se dice que esta red estd descrita
por un modelo canénico de Jordan, con minimo numero de
pesos ajustables, que permite un aprendizaje mas rapido y
por esto — ejecutable en tiempo real. El vector S" con
dimension » estd formado por funciones de activacioén del
tipo tangente hiperbolico:

ik : =g
s; (i) =tanh(i) = ———_= 23)
I+e™
S"D)=s"0) ey '@ 24)

En la teoria de las redes neuronales se destaca el papel de
la funcién de activacion no lineal en su poder de
representacion, pero al utilizar una funcién de la clase
tangente hiperbélico en la capa de salida de la red obliga a
que se considere la escala de las sefiales. Para evitar este
problema, en la capa de la salida se selecciona una funcién
lineal:

S°(i)=1i (25)
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3.2 Ley de Aprendizaje

La ley de aprendizaje (ajuste) de los parametros de esta red
se basa en la conocida regla delta, con valores iniciales
equiprobables, escogidos arbitrariamente en un rango de
numeros pequefios, donde el peso para el instante siguiente
se deriva, usando la recurrencia:

w,(k +1) = w, (k) +nAw, (k) (26)

Si durante el ajuste de los pesos de la red se presentan
oscilaciones, se puede agregar el término de momento, que
adiciona un porcentaje de su variacién del peso en el
instante anterior, es decir:

w,(k +1)=w,(k)+naw,(k)+aaw,(k-1) @D

Donde los parametros 7 y « pertenecen al intervalo
cerrado [0,1]. El ajuste de los parametros de la red estian
definidos por las siguientes ecuaciones, (Baruch y otros,
2002):

Ac, (k) = e()|1- y (k)|z); 28)
AB, (k) = Ru ,(k); @9)
AT, ()= Rx, (k- 1); 30)
R=Cl(k)e(k)z, (k) (€2)

Donde e(k) es el error de la salida. Los indices anteriores
dependen de la estructura de la red utilizada.

Condicion de Estabilidad para los Pesos J

La condicién de estabilidad para la red neuronal recurrente
se da con la ecuacion (20). Para facilitar su implementacion
se hace la suposicion que J es una matriz diagonal.

Para el caso discreto, la red neuronal sera estable durante su
operacion, si los elementos de la matriz J cumplen que su
magnitud es menor a 1, es decir: |J;{<1, que corresponde a
un circulo con centro en el origen y con radio unitario.

Para incorporar la condicién de estabilidad en las
expresiones de actualizacion de los pesos J; se propone la
siguiente modificacion a la regla delta:

J(k+1)=Ju(k)=n s L aAJ, (k- 1);
o/, (32)
Ji(k) = SatlJ . (k)]

Donde la funcion Saf (x) que se usa es:

I—e x21
Sat(x)=4 x|/ <1
e—1; x<-1

Aqui la constante € es un niimero pequefio y positivo. De
esta forma en la red neuronal se propone sustituir el peso J;
por su valor saturado y asegurar asi que este peso satisface
las condiciones de estabilidad. Asi, manteniendo los valores
propios de la matriz J (J;;), que son polos de la red neuronal
recurrente, en el rango estable se asegura la estabilidad de
toda la red y su algoritmo de aprendizaje.

4 Control Neuronal por Modelo de
Referencia

El control de sistemas por modelo de referencia consiste en
diseflar un sistema que modifique el comportamiento
natural de la planta con el objetivo que se aproxime a la
respuesta que tiene un modelo de referencia establecido. En
este esquema de control se supone que el disefiador tiene el
suficiente conocimiento del sistema como para definir el
comportamiento deseado por medio de un modelo. Uno de
los primeros trabajos de la aplicacién de las redes
neuronales para el control por modelo de referencia de
sistemas puede consultarse en (K. S. Narendra, K.
Parthasarathy, 1990). A continuacién se presentan un par de
esquemas de control por modelo de referencia para sistemas
de estructura variable en tiempo real, en donde la etapa de
identificacidn se realiza por medio de redes neuronales.

4.1 Esquema con Una Red

El esquema general del control por modelo de referencia
para el sistema de estructura variable, (2-4), se muestra en
la Figura 1 El esquema de control se divide en tres
secciones: una de control, formada por un lazo de retroali-
mentacion de la salida v una red neuronal recurrente; una
etapa de identificacion, que utiliza otra red neuronal
recurrente; y la tercer etapa formada por el modelo de
referencia.

El ultimo suaviza la senal de referencia y define el
comportamiento del sistema en lazo cerrado, porque los
pesos del controlador neuronal se ajustan con el error de
control, que es e. = V,or— V).

Yret P
# u -
Red Neuronal ' v Sls:;:ma Y,
Recurrente it Var
’ Retroalimentacidn '
de la Salida

Red MNewronal
Recurrente

Fig.1: Esquema de control neuronal por modelo de referencia de
un sistema de estructura variable.
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Durante la operacion del sistema de estructura variable su
comportamientc dindmico se alterna entre los siguientes
subsistemas:

i Twd 1 ] | (33)
x(r)=LO 5 x+ P u;y:[l O];
.y [-1 0 1 G4)
x(r) = R x+[0 u;y=[1 1}

Desde la representacion entrada-salida, el subsistema (3)
(subsistema-1) tiene una dinamica de segundc orden con
polos en p,.={0,-1}; dos ceros al infinito, z,,=e . El
subsistema (33) (subsistema-2) tiene un par de polos en
p12=-1 v ceros en z; ;=o;-1. El polo y cero localizados en -
! se cancelan, en consecuencia, la dindmica mostrada por
este sistema, desde el punto de vista entrada salida, es de un
sistema de primer orden.

Con el fin de estabilizar el subsisterna (33}, se agregé el
lazo de retroalimentacion de la salida. El lazo de
retroalimentacion no altera la localizacion de los ceros de
los subsistemas, pero si la posicion de sus polos, para
estudiar el efecto de este lazo vea las Figuras 2 y 3.

En la Figura 2 se observa que al ir aumentado la ganancia
de la retroalimentacién negativa, los polos en iazo abierto
en -1 y 0, se mueven sobre el eje real hasta converger en -
0.5 y de alli la parte imaginaria se incrementa
simétricamente alejandose perpendicularmente del eje real.

Para el segundo subsistema, al aumentar la ganancia del
lazo de retroalimentacién, s6lo uno de sus polos se altera,
alejandose por la izquierda sobre el eje real. Esto era de
esperarse pues el otro polo queda fijo al cero finito en -]
que lo cancela.

i5

' 12

ns

3
nx
' §a
4 L
1%

14
(1

15 -1 1.5 [ 03

Fig.2: Efecto de la retroalimentacion de la salida sobre el
subsistema 1(<], primer polo; X segundo polo}.

De lo anterior se infiere que la retroalimentacion de la
salida, altera la posicién de los polos no apareados
conceros, y que los ceros no se ven alterados, pero de ellos
depende la direccion en la cual los polos se mueven.

Para los esquemas de control por modelo de referencia la
ganancia del lazo de retroalimentacién que se selecciont es
de -1.5. De las graficas anteriores puede determinarse en
donde se localizaran los polos de ambos subsistemas.
Durante la simulacién valores menores de -1.5 en los
esquemas neuronales, el desempefio en el seguimiento de la
referencia se reducia.

En el primer esquema de control neuronal se utiliza una
RNRE como identificador. Los pesos de esta red son
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ajustados utilizando el error formado por la diferencia entre
la sefial de salida del sistema de estructura variable y la
propia salida de la red:

0.8
06 |
0.4
0.1

K=2 I8 b 14 12 1 08 06 04 02 0
a—a — 3

bl

02
04t
06+

-0.8

-1

<35 -3 -5 -2 -1.5 =1 0.5 L1 a5

Fig. 3: Efecto de la retroalimentacion de la salida sobre el
subsistema 2 (<), primer polo; X segundo polo).

ee':yp-yn (35)

El que sustituye a e (k) en las ecuaciones (28) y (31).

El modelo de referencia que define la respuesta deseada
es de primer orden, descrito por:

04 (36)

Yule)= 0

R(s)

La red gue genera la sefial de control recibe como entrada
lz salida de! modelc de referencia, y,.. el ajuste de los
pardmetros se determina por el nivel del error de control, e,
definido por la diferencia entre la sefial de referencia y la
salida de la red de identificacion, y,;:

ec :yref-yp (37}
En la Tabla 1, se resumen los parametros para las redes
neuronales usadas en las simulaciones.

Tabla i: Parametros de simulacién.

PARAMETROS VALOR
Nimero de Nodos, 1 15
Ganancia de momento, ¢ 0.0005
Ganancia de momento, 1| 0.0005
Periodo de Muestreo, Ts 0.01 Seg

Durante la simulacion, el sistema de estructura variable,
(2), conmuta entre los subsistemas (5} y (6) cada 100
segundos. La sefial de entrada es una onda cuadrada
simétrica con un periodo de 200 segundos. El periodo de
muestreo, dado en ia Tabla 1, cumple con las condiciones
de Shannon. En la Figura 4, se muestran las gréficas de la
sefial de salida del sistema de estructura variable, de la
sefial de salida de! modelo de referencia o sefial objetivo y
el error que se comete entre ambas sefiales. Estos resultados
fueron obtenidos usando como entrada al modelo de
referencia una sefial cuadrada. Se puede observar que el
esquema de control es capaz de cumplir con el objetivo de
hacer que el comportamiento de! sistema de estructura
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variable siga al del modelo de referencia propuesto, aunque
se presenta un breve sobre impulso que coincide con el
momento de la conmutacién entre los subsistemas v el
cambio de polaridad de la sefial de entrada.

Analizando el error instantaneo, Figura. 4¢, generado por
el esquema propuesto, se puede ver con mayor claridad que
durante la conmutacion entre los subsistemas el error
aumenta, aunque su valor, posterior a este evento, se reduce
rapidamente.

T T ,9'”3_&;;..
Fig.4: (a) Salida del sistema, (b) Salida del modelo de referencia,
(c) Error entre la salida del sistema y el modelo de referencia.

En la Figura 5, se presentan los componentes de la sefial
de control. El componente del control generadoe por el lazo
de retroalimentacion (linea continuaj; esta en oposicién con
el componente de control producido por ia red neuronal.

El control aplicado al sistema de estructura variable se
forma de la suma del control generado por el lazo de
retroalimentacion de la salida y de la saiida de la RNRE,
Figura 6. Como se observd en las graficas anteriores, el
esquema de control neuronal por modelo de referencia para
el sistema de estructura variable tiene un buen desempefic
fuera de los instantes de cambic de los subsistemas. Se
presume que este efecto se debe al uso de una RNRE en la
etapa de identificacion, que debe reajustar sus parametros.

Si se supone que se tiene disponible la indicacién de
cuando se realiza la conmutacion entre los subsistemas, se
podria utilizar un esquema de identificacion multimodelo.
En la siguiente seccion se presenta esta apcion.

Psl sSn 600 680 T TS0 KO0 RSO S0 930 100
Seg.

Fig.5: Componentes de la seiial de control (retroalimentacién de la
salida, linea continua; red neuronal, linea segmentada).

)

| [

..,___a___....n._.__...}i_. N —

500 350 600 650 700 750 800 BSG 900 950 1000
eg.

Fig.6: Control aplicado al sistema de estructura variable.

4.2 Esquema con Multimodelo

Se supone que se conoce de antemanc =l ntmero de
subsistemas en lcs cuales se divide el sistema de estructura
variabie y cuando se lleva a cabo la conmutacidén entre
eilos. Debido a lo anteriormente expresado, en este articulo
se propone un esquema en donde la identificacion se realiza
por medio de dos redes neuronales (ver Baruch y otros,
2000}, conmutando entre ellas en correspondencia con el
cambio de subsistema. En la Figura 7, se presenta el
esquema que se utilizard para realizar ia simulacion.

El conmutador de sistema tiene la tarea de habilitar una de
ias RNRE de la etapa de identificacién, con lo que tendrd
una red neuronal para identificar a cada uno de los
subsistemas.

Los parametros de ambas redes son los mismos a los
indicados en la Tabla 1. En la Figura 8a se muestra la salida
del sistema de estructura variable, vuelven a presentarse el
efecto transitorio del sobre impuisos cuando se conmuta
entre los subsistemas. En la Figura 8b aparece la salida del
modelo de referencia y en la Figura 8c esta el error entre la
salida del sistema y el modelo de referencia.

Hed Nnnry;ul
Recurrente

Retroalimentacion
de la Salida

Sistenna

Fig.7: Esquema muitimodelo de control neuronal Ei control por
modelo de referencia de un sistema de estructura variable (multi-
modelo).
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Fig.8: (a) Salida del sistema , (b) Salida del modelo de referencia,
(c) Error entre ambas sefiales.

La utilizacion del multimodelo en la identificacion del
sistema de estructura variable no resulté en una mejora
apreciable en el control. Comparando las graficas del error,
Figuras 4c y 8c, se observan ligeros cambios en algunos de
los transitorios que aparecen en el esquema de
identificacion de una red.

En la Figura 9 se presentan los componentes de la sefial
de control aplicada al sistema de estructura variable. Aqui
nuevamente vemos como la componente del lazo de
retroalimentacion (linea continua) se opone a la sefial de
salida de la RNRE que genera el control

Finalmente, en la Figura 10 se presenta la sefial de control
aplicada al sistema de estructura variable.

Se observa que la sefial de control esta formada por la
suma del lazo de retroalimentacion de la salida y la salida
de la red neuronal que realiza el control.
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Fig.9: Componentes de la Sefial de Control (retroalimentacién de
la salida, linea continua; red neuronal, linea segmentada)
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Fig.10: Control Aplicado al Sistema de Estructura Variable.

5 Conclusiones

En este trabajo se presentaron dos esquemas de control
neuronal por modelo de referencia para un sistema de
estructura variable, donde la red neuronal recurrente
utilizada fue la reportada en (I. S. Baruch, J. M. Flores y
otros, 2002, 2001, 2000). Seria oportuno sefialar que el lazo
de retroalimentacion de la salida fue necesario para
garantizar la estabilidad del subsistema (33), este es un
requerimiento para que pueda ser identificado por la red
neuronal.

De los resultados de la simulaciéon podemos decir que
ambos esquemas de control son viables. Entre estos dos
modelos de control no hubo gran diferencia en su
desempefio, lo que indica que el hecho de separar la etapa
de identificacion no representa una mejora de importancia,
al menos para el ejemplo utilizado.

Estableciendo una comparacién entre los esquemas
usados tradicionalmente para este tipo de sistema y el
esquema neuronal propuesto, se destaca el hecho de que en
este ultimo, no se necesitan los estados del sistema para
realizar el control. Ademas, se hace uso de redes neuronales
dinamicas que son entrenadas en linea. Destacar que en el
primer modelo no se requiere una deteccidn explicita de los
subsistemas.

Como linea de trabajo futura serd interesante realizar
experimentos con esquemas donde el controlador esté
compuesto por mas de una red neuronal. Otra linea de
trabajo podria ser investigar que otros elementos mejoran el
comportamiento del esquema de control neuronal y aplicar
los resultados a sistemas mas complejos.
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