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Abstract. This paper shows a new method based on
ensemble recurrent neural networks for time series
prediction. The proposed method seeks to find the
structure of ensemble recurrent neural network and its
optimization with Genetic Algorithms applied to the
prediction of time series. For this method, two systems
are proposed to integrate responses ensemble recurrent
neural network that are type-1 and Interval type-2 Fuzzy
Systems. The optimization consists of the modules,
hidden layer, neurons of the ensemble neural network.
The fuzzy system used is of Mamdani type, which has
five input variables and one output variable, and the
number of inputs of the fuzzy system is according to the
outputs of Ensemble Recurrent Neural network. Test are
performed with Mackey Glass benchmark, Mexican
Stock Exchange, Dow Jones and Exchange Rate of US
Dollar/Mexican Pesos. In this way was shown that the
method is effective for time series Prediction.

Keywords. Time series prediction, genetic algorithm,
ensemble recurrent neural network.

1 Introduction

Recurrent neural networks (RNNs) were already
conceived in the 1980s. But these types of neural
networks have been very difficult to train due to
their computing requirements and until the arrival
of the advances of recent years, their use by the
industry has become more accessible and popular
[2, 3,4, 5, 10]. Arecurrent neural network (RNN) is
one that can be connected to any other and its
recurring connection is variable. Partially recurring
networks are those that your recurring connection
fixed [1, 2, 9, 11, 14, 17].

Recurrent Neural Networks are dynamic
systems mapping input sequences into output
sequences [19, 21, 22, 23].

The calculation of an input, in a step, depends
on the previous step and in some cases the future
step [34, 35, 40, 44]. RNN are capable of
performing a wide variety of computational tasks
including sequence  processing, one-path
continuation, nonlinear prediction, and dynamical
systems modeling [38, 47, 49, 50, 52].

The purpose of carrying out a time series
analysis of this type is to extract the regularities
that are observed in the past behavior of a variable
that is, obtain the mechanism that generates it, and
know its behavior based on it over time. This is
under the assumption that the structural conditions
that make up the phenomenon under study remain
constant, to predict future behavior by reducing
uncertainty in decision-making [6, 7 ,8, 12, 29].

The essence of this work, is propose a new
algorithm to design time prediction systems, where
recurrent neural networks are applied to analyze
the data, also type-1 and interval type-2 fuzzy
inference systems to improve the prediction of time
series. For this, we apply a search algorithm to
obtain the best architecture of the recurrent neural
network, and in this way test the efficiency of the
proposed hybrid method [6, 7, 8, 12, 29].

Genetic algorithms have been applied to
various areas, such as forecasting classification,
image segmentation routes for robots stand out,
etc. Their hybridation with other techniques
improves the results of energy price predictions,
raw materials and agricultural products, that is why
we apply them to this approach, since they are
tools that help use predict a time series and find
good solutions, we have previously done work with
this metaheuristic and they have given us good
results, for this reason we apply it to network
optimization neural ensemble for time series.
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This work describes the creation of the
ensemble recurrent neural network (ERNN), this
model is applied to the prediction of the time series
[28, 31, 36, 39, 41], the architecture is optimized
with genetic algorithms, (GA) [16, 26, 27, 46]. The
results of the integration of the Recurrent Neural
Network are integrated with type-1 and interval
type-2 fuzzy systems (IT2FS), [30, 32, 33, 43, 48].
The essence of this paper is the proposed
architecture of the ERNN and the optimization is
done using Genetic Algorithms, (GA), applied to
the prediction of time series. Two systems are
proposed fuzzy type-1 and T2FS, to integrate the
responses of the (ERNN), the optimization consists
in the number of hidden layer (NL), their number of
neurons (NN) and the number of modules (NM),)
in the ERNN, the we integrate responses ERNN,
with type-1 and IT2FS and in this way we achieve
prediction. Mamdani fuzzy inference system (FIS)
has five inputs which are Pred1, Pred2, Pred3,
Pred4, and Pred5 and one output is called
prediction. The number of inputs of the fuzzy
system (FS) is according to the outputs of ERNN.
Mamdani fuzzy inference system (FIS) is created,
this FIS five inputs which are Pred1, Pred2, Pred3,
Pred4, and Pred>5, (with arange) the range 0 to 1.4,
the outputs is called prediction, the range goes
from 0 to 1.4 and is granulated into two MFs "Low",
"High", as linguistic variables.

This document is constituted by: Section 2
shows the database, in Section 3 the problem to
be solved of the proposed model, Section 4 shows
results of the proposed model, and Section
5 Conclusions.

2 Related Word

As related work, we can find a comparison was
made using recurrent networks for the Puget
Electric Demand time series, a learning algorithm
was implemented for recurrent neural networks
and tests were performed with outliers of data and
in this way compare the capacity of loses, as well
as the advantages of feedforward neural networks
for time series are shown [18].

In [45] a recurrent neural network was
developed for prognostic problems; the time series
of long memory patterns was used and tests were
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also carried out with the integrated fractional
recurrent neural network (FIRNN) algorithm.

In another study it was shown the performance
of the cooperative neuro-evolutionary methods, in
this case Mackey-Glass, Lorenz and Sunspot time
series, and also two training methods Elman
recurrent neural networks [37].

In another study, the prediction of time series
was carried out, and the recurrent neural networks
were used to make predictions. In this way the
effectiveness of recurrent networks for the
forecasting of chaotic time series was
demonstrated [51].

In the study presented in [20], Recurrent Neural
Networks (RNNs), are used to model the
seasonality of a series in dataset possess
homogeneous seasonal patterns. Comparisons
with the autoregressive integrated (ARIMA) and
against exponential smoothing (ETS),
demonstrate that RNN models are not best
solutions, but they are competitive.

In [57], advanced neural networks were used
for short term prediction. Also, the exponential
smoothed (ES) model for the time series are used,
and this allows the equations to capture
seasonality and the level more effectively, these
networks allow trends non-linear and cross-
learning, data is exploited hierarchically and local
and global components are used to extract and
combine data from or from a data series in order to
obtain a good prediction.

This section shows the data set that was used
to build the proposed model, in this case the
Mackey-Glass time series are used.

3.1 Dataset Proposed

In this case we work the Mackey Glass time series
with eight hundred data, we used 70% and 30%
data for the training and testing, respectively.

The following equation represents the Mackey-
Glass time series:
0.2X(t — 1)

x=1+x1°(t— 7)’ M

where:
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Fig. 1. Plot of the Mackey-Glass Data Set
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Fig. 3. Plot of the Dow Jones Dataset

x(t) =0,
x(0) = 1.2,
T =17,

t<O0.

The plot of the Mackey Glass for the values
mentioned in the equation is presented in Fig. 1.
[25, 26].

In Fig. 2, the graph of the Mexican Stock
Exchange data [42] is presented. In this case, we
use 800 data that correspond to period from
01/04/2016 to 31/12/2019. We used 70% of the

% 104 Mexican Stock Exchange
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Fig. 2. Plot of the Mexican Stock Exchange Dataset
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Fig. 4. Plot of the US Dollar/MX Pesos

data for the RNN trainings and 30% to test
the RNN.

Fig. 3 presents the graph of the Dow Jones data
[16], where we are using 800 data that correspond
to period from 07/01/2017 to 09/05/2019. We used
70% of the data for the RNN trainings and 30% to
test the RNN.

In Fig, 4 the graph of the data US Dollar/MX
Peso [13] is illustrated, where we use 800 data that
correspond to the period from 07/01/2016 to
09/05/2019. We used 70% of the RNN training and
30% to test the RNN.

We trained the ensemble recurrent neural
network with 500 data points, and we use the
Bayesian regularization backpropagation method
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(trainbr) with a set of 300 points for testing, this is
for each of the previously mentioned times series.

4 Problem Statement and the
Proposed Method

In this Section, it is explained how the ERNN
optimization model was created, its integration with
type-1 and IT2FS, and we also describe every
detail of the technique used for the optimization of
the ERNN, as well as type-1 and IT2FS for the
prediction of the time series.

4.1 Proposed General Scheme

The first part is to obtain the dataset of the time
series, the second part it is determining the number
of modules ERNN with the genetic algorithm, and
the third part would be to integrate with type-1 and
T2FS type-2 the responses of the ERNN to finally
achieve time series prediction, as can be observed
in Fig. 5.

4.1.1Creation of the Recurrent Neural Network
(RNN)

Recurrent neural networks (RNNs) have all the
characteristics and the same operation of simple
neural networks, with the addition of inputs that
reflect the state of the previous iteration. They are
a type of network whose connections form a closed
circle with a loop, where the signal is forwarded
back to the network, that is, the neural network’s
own outputs become inputs for later instants. This
feature endows them with memory and makes
them suitable for time series modeling. The layer
that contains the delay units is also called the
context layer, as shown (as can be illustrated) in
Fig. 6:

The recurrent neural network is made up of
several units of a fixed activation function, one for
each time step, each unit has a state and it is called
the hidden state of the unit and it means that the
network has past knowledge and a certain time
step. This hidden state is updated and signifies the
change in the network's knowledge about the past:

Ve = fW(xe, heq), (2)
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where h;_; the old hidden state, h, represents the
new hidden state, fW the fixed function with
trainable weights and x; is the concurrent input.
The new hidden state is calculated at each time
step, and recurrence is used as above and the new
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hidden state is used to generate a new state, and
so on.

Where the input stream from the previous layer,
the weights of the matrix, and bias already seen in
the previous layers. RNNs extend this function with
a recurring connection in time, where the weight
matrix operates on the state of the neural network
at the previous time instant. Now, in the training
phase through Backpropagation, the weights of
this matrix are also updated.

4.1.2 Description of the GA for RNN
Optimizations

The parameters of the recurrent neural network
that are optimized with the GA are:

1. Number of modules (NM).
2. Number of hidden layers (NL).
3. Number of neurons of each hidden layer (NN).

The following equation represents the objective
function that (that is implemented in GA) we used
with a genetic algorithm to minimize to prediction
error of the time series:

d
ERM = () Ip¢ —x¢ )/d
= (3)
Prediction Error = (ERM ; + ERM , + - +
ERM y)/ N,

where p represents the predicted the data for each
module of ensemble recurrent network,
X corresponds to the real data of time series, d is
the number of data used by time series, ERM is the
prediction error by module of ERNN, to N
corresponds the number of modules determined by
the GA and the Predicion Error corresponds to
average prediction error achieved by the ERNN.

Fig. 7 presents the structure of the
GA chromosome.

The main goal to optimize the ERNN
architecture, with a GA is to obtain the best
prediction error, which seeks to optimize NM, NL,
and NN of the ERNN. Table 1 shows the values of
the search space of the GA.

In Table 2, the values of the parameters used
for each optimization algorithm are presented. The
mutation value is variable and shown in Table 2.

Table 1. Table of values for search space

Parameters of RNN Minimum Maximum
Modules 1 5
Hidden Layers 1 3
Neurons for each 1 30

hidden Layer

Table 2. Table of GA parameters

Parameter Value
Generations 100
Individuals 100
Crossover Single Point
Probability 0.85
Selection Roulette
Mutation Variable

k
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-
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System Mackey-Glass: 5 inputs, 1 outputs, 32 rules
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Fig. 9. Rules used for the IT2FS
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Table 3. Genetic algorithm results for the RNN of MG

Evolutions Gen. Ind. Pm Pc Num. Num. Num. Duration Prediction
Modules Layers Neurons Error
22,23
1 100 100 0.07 0.6 3 2 18,19 05:10:11 0.0017568
17,16
18,22 23,24
2 100 100 0.05 0.7 5 2 25,26 06:22:16 0.0019567
20,21 18,20
25,26 20,22
100 100 0.07 0.5 4 2 24,25 07:24:22 0.0020174
3
21,22
18,22 23,24
4 100 100 0.03 0.4 5 2 25,26 07:36:27 0.0016789
20,21 18,20
18,22
100 100 0.09 0.9 3 2 21,22 06:15:16 0.0017890
5
15,16
19,20 23,24
6 100 100 0.05 0.5 5 2 25,26 09:35:23 0.0020191
7 100 100 0.09 0.9 3 2 24’23;?’22 0:06:17 0.0015678
19,18 21,22
8 100 100 0.09 1 5 2 27,28 06:12:11 0.0018904
24,24 21,22
19,20 21,22
0 100 100 0.04 0.7 4 2 25,25 06:13:34 0.0855
18,22
20,19,22 18,19,19
22,24,27 .
10 100 100 0.03 0.7 5 3 21.19.20 08:20:19 0.0016311
26,25,26
T Table 4. Results of type-1 FS for MG
Prediction Error
Test with Type-1
Fuzzy Integration
1 0.1731
2 0.2012
3 0.1965
4 0.2034
5 0.1886
6 0.2898
7 0.2234
8 0.1667
9 0.1945
10 0.2225
Table 5. Results of the IT2FS of MG
Prediction Prediction Prediction
Test Error Error Error
0.3 0.4 0.5
Uncertainty Uncertainty Uncertainty
1 0.3122 0.2815 0.2512
2 0.3321 0.3017 0.2906
3 0.4256 0.3792 0.4326
4 0.3689 0.3512 0.3891
5 0.5995 0.5725 0.5519
6 0.4912 0.4315 0.4654
7 0.5276 0.5045 0.5618
8 0.3044 0.3426 0.3725
9 0.5122 0.5389 0.5554
10 0.5572 0.5437 0.5215

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 683-700
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Table 6. Genetic algorithm results for the RNN of MSE

Evolutions Gen. Ind. Pm Pc Num. Num. Num. Duration Prediction Error
Modules Layers Neurons
28,6,24
1 100 100 0.07 0.6 3 3 28,6,24 01:27:18 0.0048872
14,30,26
28,12 an.
2 100 100 0.05 0.7 2 2 2812 01:16:49 0.0047646
3 100 100 0.07 05 2 1 12 00:56:20 0.005684
4 100 100 0.03 0.4 2 2 o2 01:24:27 0.00488
5 100 100 0.09 0.9 2 2 Hg 01:05:01 0.004078
6 100 100 0.05 05 2 2 ﬁ?; 01:00:19 0.004108
7 100 100 0.09 0.9 2 2 12 01:23:08 0.0053897
1
1
8 100 100 0.09 1 5 5 1 01:37:40 0.0021431
7
8
9 100 100 0.04 0.7 2 1 gg 01:44:21 0.004596
10 100 100 0.03 0.7 2 3 1232 02:00:22 0.0056895
Table 7. Results of type-1 FS for MSE Table 8. Results of type-2 FS of MS
Prediction Error With Type-1 Test Prediction Prediction Prediction
Test .
Fuzzy Integration Error 0.3 Error 0.4 Error 0.5
1 0.3272 Uncertainty  Uncertainty  Uncertainty
5 0.3275 1 0.3122 0.2815 0.2512
: - e
4 0.3270 4 0.3689 0.3512 0.3891
5 0.3271 5 0.5995 0.5725 0.5519
6 0.3272 6 0.4912 0.4315 0.4654
7 0.3271 7 0.5276 0.5045 0.5618
8 0.3280 8 0.3044 0.3426 0.3725
9 0.3271 9 0.5122 0.5389 0.5554
10 0.3273 10 0.5572 0.5437 0.5215
pNA
4.1.3. Description of the type-1 and IT2FS y = 2iEtnula) (4)
Z?:l u( x;);

The next step is the description of the type-1 fuzzy
system and IT2FS. The following equation shows

how the total results of the FS are calculated:

where u represents the MFs and x corresponds to
the input data.

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 683-700
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Fig. 9. Graph of real data against predicted data for
the type-1 fuzzy system of MG
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Fig. 11. Plot of real data against predicted data for the
type-1 fuzzy system of MSE

Fig. 8 shows a Mamdani fuzzy inference system
(FIS) that is created This FIS has five inputs, which
are Pred1, Pred2, Pred3, Pred4, and Pred5, the
range 0 to 1.4., the output is called prediction and
the range goes from 0 to 1.4 and is granulated into
two MFs "Low", "High", as linguistic values.

The Fuzzy system rules are as follows (as
shown in Figure 9), since the fuzzy system has 5
input variables with two MFs and one output with

two MFs, therefore the possible number of rules
is 32.
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Fig. 10. Plot of real data against predicted data for the

T2FS of MG.
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Fig. 12. Plot of the real data against predicted data for the
T2FS

5 Experimentation Results

This part presents the experiments of the
optimization of the ERNN with the GA, as well the
integration type-1 and IT2FS.

In addition, we present graphs of real data
against predicted and results of the prediction for
each of the experiments of Mackey Glass
benchmark, Mexican Stock Exchange, Dow Jones,
and Exchange Rate of US Dollar/Mexican Pesos
time series. The following table shows the results
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of the genetic algorithm, where the best
architecture of the ERNN is shown in row number
7 of Table 3 for the Mackey-Glass time series.
Table 4 illustrates the results of the type-1 FS
integration for the optimized ERNN, where the
obtained result is of experiment number 8, with a
prediction error: 0.1667. Figure 9 represents the
plot of the real data against predicted data for the
type-1 fuzzy system for the Mackey-Glass
time series. Table 5 and Figure 10 represent the
prediction of the time series using the IT2FS for the
Mackey-Glass time series, respectively. Table 6
shows the results of the genetic algorithm, where
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Fig. 16. Plot of real data against predicted data for the
T2FS of Dollar data.

the best architecture of the ERNN is shown in row
number 2 of Table 6 for the Mexican Stock
Exchange time series.

Table 7 shows the results of the type-1 FS
integration for the optimized ERNN, where the
result obtained is of experiment number 4, with a
prediction error: 0.3270. Figure 11 represents the
plot of the real data against predicted data for the
type-1 fuzzy system for the Mexican Stock
Exchange time series.

Table 8 and Figure 12 illustrates the prediction
of the time series using the IT2FS for the Mexican
Stock Exchange time series.

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 683-700

doi: 10.13053/CyS-26-2-4251



ISSN 2007-9737

692 Martha Pulido, Patricia Melin

Table 9. Genetic algorithm results for the RNN for the DJ

Evolutions Gen.

Ind.

Pm

Pc

Num. Num.
Modules Layers

Num.
Neurons

Duration

Prediction
Error

1 100

100

0.07

0.6

24,30,9
13,26,15
17,22,25
13,25,30
1,21,30

18:07:07

0.0023472

2 100

100

0.05

0.7

5,8,1
12,16,16
9,7,12
6,20,15
1,2,7

16:25:18

0.0018525

3 100

100

0.07

0.5

22,21
14,24,25
9,12,23

8,21,10

1,17,22

17:08:49

0.028711

4 100

100

0.03

0.4

6,29
6,2
5,17
8,9
2,6

19:09:55

0.0022167

5 100

100

0.09

0.9

15,16,1
5,10,4
3,16,4
6,30,6
7,30,30

18:05:13

0.0021315

6 100

100

0.05

0.5

30,11,4

30,18,17
13,9,29
7,21,5
2,1,14

17:20:12

0.0026022

7 100

100

0.09

0.9

8,1,15
6,22,11
4,8,22
6,30,27
1,10,2

17:22:17

0.0025405

8 100

100

0.09

7,8,1
6,30,6
15,30,8
12,30.27,3
3,30,30

18:23:24

0.0022419

9 100

100

0.04

0.7

9,9,26
9,15,22
13,28,8

1,19,4
2,10,24

19:20:14

0.002269

10 100

100

0.03

0.7

16,16,1
4,15,4
6,27,7

10,30,20

17,22,29

19:02:31

0.002593
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Table 10. Results of type-1 FS of DJ

Test Prediction Error
with Type-1
Fuzzy Integration

1 0.11343

2 0.12376

3 0.26920

4 0.14675

5 0.10567

6 0.22561

4 0.17888

g 0.18886

10 0.26922

Table 11. Results of type-2 FS of DJ
Prediction Prediction Prediction
Test Error Error Error
0.3 04 0.5
Uncertainty Uncertainty Uncertainty

1 0.0188 0.0188 0.0172
2 0.0117 0.0117 0.0145
3 0.0156 0.0156 0.0164
4 0.0138 0.0176 0.0137
5 0.0178 0.0180 0.0185
6 0.0217 0.0224 0.0243
7 0.0169 0.0170 0.0152
8 0.0163 0.0163 0.0165
9 0.0156 0.0154 0.0151
10 0.0208 0.0208 0.0218

Table 9 shows the results of the genetic
algorithm, where the best architecture of the ERNN
is shown in row number 2 of Table 9 for the Dow
Jones time series.

Table 10 shows the results of the integration
type-1 FS for the optimized ERNN, where the
result obtained is of experiment number 5, with a
prediction error: 0.10567 and Figure 13 represents
the plot of real data against predicted data for the
type-1 fuzzy system.

Table 11 and Figure 14 represent the prediction
of the time series using the IT2FS for the Dow
Jones time series.

Table 12 shows the results of the genetic
algorithm, where the best architecture of the ERNN
is shown in row number 4 of Table 12, for the
US/Dollar Mexican Pesos time series.

Table 13 illustrates the results of the type-1 FS
integration for the optimized ERNN, where the
result obtained is of experiment number 4, with a

prediction error: 0.113072 and Figure 15
represents the plot of real data against predicted
data for the type-1 fuzzy system, for the US/Dollar
Mexican Pesos time series.

Table 14 and Figure 16 illustrate the prediction
of the time series using the IT2FS for the US/Dollar
Mexican Pesos time series.

5.1 Comparison of Results

Comparisons were made with the paper called: “A
New Method for Type-2 Fuzzy Integration in
Ensemble Neural Networks Based on Genetic
Algorithms”, where the same data from the series
of the Mackey-Glass were used.

In this case, we obtained that recurrent neural
networks are better for predicting data from this
series since there is a significant difference in the
results, as they are better with the recurrent neural
than with ensemble neural network,
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Table 12. Genetic algorithm results for the RNN of Dollar

Evolutions Gen. Ind. Pm Pc Num. Num. Num. Duration Prediction
Modules Layers Neurons Error
1
1
1 100 100 0.07 0.6 5 1 9 02:01:34 0.00213
6
1
11,26,30
4,23,14
2 100 100 0.05 0.7 5 3 1,2,13 07:35:18 0.0018864
12,2,6
1,16,30
1
1
3 100 100 0.07 0.5 5 1 3 02:21:04 0.0029528
11
1
3
6
4 100 100 0.03 0.4 5 1 2 02:09:55 0.0018685
19
3
1
1
5 100 100 0.09 0.9 5 1 1 02:12:04 0.0030438
6
1
5,25,24
7,24,9
6 100 100 0.05 0.5 5 5 1,29,22 02:53:46 0.0020584
4,25,30
1,23,13
2
13
7 100 100 0.09 0.8 5 1 4 01:54:24 0.0021801
6
2
1
1
8 100 100 0.09 1 5 1 1 01:34:18 0.0021431
7
1
1
1
9 100 100 0.04 0.7 5 1 1 01:38:38 0.0022053
2
1
2
12
10 100 100 0.03 0.7 5 1 5 01:36:38 0.0025446
8
1
Therefore, we use a significance of 90% and paper called: “Particle swarm optimization of
according to the results obtained and we can say ensemble neural networks with fuzzy aggregation
that there is significant improvement with the for time series prediction of the Mexican Stock
ensemble neural network, as is summarized in Exchange”, where the same data from the series
Table 15. Comparisons were also made with the of the Mexican stock exchange were used.
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Table 13. Results of type-1 FS of Dollar data

Prediction Error with

Test Type-1
Fuzzy Integration
1 0.114981
2 0.113070
3 0.115000
4 0.113072
5 0.114809
6 0.113190
7 0.119767
8 0.115691
9 0.113076
10 0.114352
Table 14. Results of type-2 FS of Dollar data
Prediction Prediction Prediction
Test Error Error Error
0.3 0.4 0.5
Uncertainty Uncertainty Uncertainty
1 0.2341 0.2215 0.3972
2 0.2217 0.2056 0.3779
3 0.2118 0.2019 0.3888
4 0.1979 0.1845 0.3985
5 0.1722 0.1944 0.3612
6 0.1922 0.2251 0.3758
7 0.2012 0.2252 0.3763
8 0.2212 0.2019 0.3794
9 0.2132 0.2313 0.3590
10 0.2055 0.1903 0.3674
Table 15. Results of comparison of the Mackey-Glass
Time Series N(RNN) N(ENN) Value(T) Value(P)
Dow Jones 30 30 -0.5091 0.0694
Table 16. Results of comparison of the Mexican Stock Exchange
Time Series N(RNN) N(ENN) Value(T) Value(P)
Mexican
Stock 30 30 -9.0370 0.000
Exchange
Table 17. Results of comparison of the Dow Jones
Time Series N(RNN) N(ENN) Value(T) Value(P)
Mackey-Glass 30 30 1.3732 0.090

We obtained that recurrent neural network is
better for predicting data from this series since
there is a significant difference in the results are

better the recurrent neural that with ensemble
neural network, Therefore, we use a significance of
99% and according to the results obtained we can
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say that there is significant improvement with the
ensemble neural network, as summarizes in
Table 16.

Comparisons were made with the paper called:
“Optimization of Ensemble Neural Networks with
Type-2 Fuzzy Integration of Responses for the
Dow Jones Time Series Prediction”. where the
same data from the series of the Dow Jones were
used and we obtained that recurrent neural
networks are better for predicting data from this
series since there is a no significant difference in
the results are better the recurrent neural that with
ensemble neural network, Therefore, we use a
significance of 90% and according to the results
obtained we can say that there is significant
improvement with the ensemble neural network, as
is summarized in Table 17.

6 Conclusions

In this work the design, implementation, and
optimization of ensemble recurrent neural network
for the prediction time are presented.

The chosen algorithm for this optimization was
the GA, with which a total of 30 different
experiments were made.

Comparisons were made with previously
carried out works, in this way it can be said that
genetic algorithms are an optimization technique
that gives good results for the forecast of the time
series. The main contribution in this paper was the
creation of the new model of recurrent neural
networks presented in this document that has
shown good results since they are effective for the
prediction of time series.

A hierarchical GA was applied to optimize the
architecture of the RNN, in terms of parameters
(NM, NL NN), to find better architecture and the
time series error. The integration of the network
responses was done with a type-1 and T2FS, to
obtain the prediction error of the proposed time
series, such as Mackey Glass benchmark,
Mexican Stock Exchange, Dow Jones, and
Exchange Rate of US Dollar/Mexican Pesos
time series.

Analyzing the results, we can say that the
combination of these intelligent computing
techniques generates excellent results for this type
of problem since the recurrent neural networks

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 683-700
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analyze the data of time series, the Genetic
algorithms perform optimization and they helped
us find the best architecture of the RNN, as well as
to obtain the best solution to the
proposed problem.

As future work we plan to perform optimization
of the recurrent neural network with another
optimization method, and make comparisons of the
type-1 and type-2 fuzzy systems. We will also
consider other complex time series to test the
ability of our method for predicting complex time
series.
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