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Abstract. Hyperdimensional computing is a model of 

computation based on the properties of high-
dimensional vectors. It combines characteristics from 
artificial neural networks and symbolic computing. The 
area where hyperdimensional computing can be 
applied is natural language processing, where vector 
representations are already present in the form of word 
embedding models. However, hyperdimensional 
computing encodes information differently, its 
representations can include the distributional 
information of a word in a given context and it can also 
account for its semantic features. In this work, we 
investigate the storing capacity of hyperdimensional 
binary vectors. We present two different configurations 
in which semantic features can be encoded and 
measure how many can be stored, and later retrieved, 
within a single vector. The results presented in this 
work lay the foundation to develop a concept 
representation model with hyperdimensional 
computation. 

Keywords. Hyperdimensional computing, vector 

symbolic architectures, reduced representations. 

1 Introduction 

Hyperdimensional computing is a new model of 

computation based on the properties of high-

dimensional vectors [1]. Hyperdimensional 

computing takes ideas from artificial neural 

networks, because it performs distributed 

processing, and it is also inspired on symbolic 

computing because complex structures, such as 

hierarchical trees or sequences, can be formed by 

manipulating symbols (vectors) representing 

simpler objects.  

The set of architectures working under the 

hyperdimensional computing principles is known 

as Vector Symbolic Architectures (VSAs) [2]. In 

artificial neural networks, the use of vectors 

comes implicitly with the architecture description, 

in contrast, high-dimensional vectors in VSAs are 

not only part of the architecture but are the basic 

computing entities itself [1]. VSAs have been 

increasing in popularity during the last years; they 

have been applied in cognitive architectures [3], in 

analogy-based reasoning [4], to represent 

sequences and hierarchical structures [5, 6], and 

in pattern recognition [7].  
Hyperdimensional computing has also been 

used in natural language processing (NLP). The 
Random Indexing technique [8], for example, 
uses high-dimensional vectors to create vector 
representations for texts.  

This technique has a similar approach to 
vector semantic models, the current state-of-the-
art models in most NLP applications. These 
models, commonly known as word embeddings, 
provide vector representation for words, 
paragraphs and entire documents, and they are 
based on the distributional hypothesis of meaning 
[9], which states that words with similar meaning 
tend to occur in similar contexts.  

We propose a method for representing 
concepts using hyperdimensional computing 
principles, which are based on knowledge rather 
than in the distributional information of a word. 
These representations are created from a list of 
semantic features [10] encoded within a single 
high-dimensional vector. This work focuses on 
measuring the limit number of semantic features 
that a high-dimensional binary vector can 
successfully store. Our experimental results will 
be used for selecting the appropriate 
dimensionality of vectors within a 
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hyperdimensional computing system still in 
development.  

The rest of the paper is organized as follows. 
Section 2 explains the general properties of 
hyperdimensional computing and describes how 
to encode semantic features into high-
dimensional vectors. In Section 3 we present the 
experimental results that are later discussed in 
Section 4. Finally, Section 5 draws the 
conclusions of the work.  

2 Methods 

The most distinctive property of high-dimensional 

spaces (i.e. N > 1,000) is the tendency to 

orthogonality. This means that most of the space 

is nearly orthogonal to any given point [11]. For 

instance, if two random binary vectors are 

generated, it is highly probable that the Hamming 

distance between them is approximately N/2. As a 

consequence of this, arithmetic operations 

between this type of vectors yields to a new way 

for encoding information. In this section, we 

describe the basic arithmetic operators for high-

dimensional vectors: addition and multiplication, 

and how they can be used to encode a list of 

semantic features within a single high-

dimensional vector to represent a concept.  

2.1 Arithmetic Operations  

In general, there are two basic operations in 
hyperdimensional computing: binding (or 

multiplication) and bundling (or addition). These 
operations are used to encode, map and retrieve 
information. In this work we implement a 
framework called Binary Spatter Codes (BSC) 
[12], which uses binary vectors, see Table 1.  

To represent higher level objects through 
arithmetic operations, first a set of primitive 
objects have to be defined and be associated with 
randomly generated vectors. The simplest 
method to combine a set of primitive objects is by 
bundling them together through addition. For 
instance, to create the vector class Animals the 
vector from each animal specie in the system can 
be added together, (1): 

𝐴𝑛𝑖𝑚𝑎𝑙𝑠 = 𝐷𝑜𝑔 + 𝐶𝑎𝑡 + 𝐵𝑖𝑟𝑑𝑠+. ..   . (1) 

While this method might be useful for some 
small systems, it does not allow to encode more 
complex relations as other methods. Gallant & 
Okaywe [5] presented another method for 
encoding a single sentence where, rather than 
bundling all vectors together, the subject, verb 
and object are multiplied by a label vector, after 
which all the vectors are added. For instance, the 
sentence “Mary loves pizza” will be encoded as 
in (2):  

𝑆 = 𝑠𝑢𝑏𝑗 ⊗ 𝑀𝑎𝑟𝑦 + 𝑣𝑟𝑏 ⊗ 𝑙𝑜𝑣𝑒𝑠 + 𝑜𝑏𝑗 ⊗ 𝑝𝑖𝑧𝑧𝑎 . (2) 

Each vector added can be a randomly 
generated vector, or be another encoded 
sentence itself. Unlike the previous method, the 
order is encoded within the final vector, and 
therefore, the vectors produced for “Mary loves 
pizza” and “Pizza loves Mary” will be different.  

Table 1. Properties of arithmetic operations 

Operation Symbol Properties 

Addition 

(bundling) 
+ 

- n-ary function, 

- Combines a set of vectors, 

- Elementwise majority with ties broken at random, 

- Resultant vector is similar to argument vectors. 

Multiplication 

(binding) 
⊗ 

- 2-ary function, 

- Combination of a pair of vectors, 

- Elementwise exclusive-or, 

- Invertible operation, 

- Distributes over addition, 

- Resultant vector is dissimilar to vectors being multiplied. 
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2.2 Encoding Semantic Features  

Semantic features represent the basic conceptual 
components of meaning for a word [10]; they try 
to establish the meaning of a word in terms of its 
relationships with other words. Semantic features 
must be obtained from humans, either directly, in 
studies where humans are tasked with 
enumerating properties from a given concept, or 
indirectly, by taking information from knowledge 
bases. They incorporate different type of 
information, including both perceptual (e.g., shape 
and color), and non-perceptual attributes (e.g. 
taxonomic and functional). Table 2 gives an 
example of the semantic features in the McRae 
dataset [10] for the concept knife.  

Within a semantic feature it is possible to 
identify two different parts: a relation (e.g. has, is, 

used_for) and a feature value (e.g. handle, 
weapon, cutting). From this observation, we 
propose to construct a vector representation as 
shown in equation (3): 

𝐶𝑜𝑛𝑐𝑒𝑝𝑡 = ∑ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖 ⊗ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 .

𝑛

𝑖=1

 (3) 

Vectors representing relations are called 
relation vectors. They represent the main 
semantic relations between two different words. 
Vectors representing features are called feature 
vectors. Both feature and relation vectors can be 
selected at random, or be an encoded vector 
itself. For instance, the knife concept will be 
encoded as (4):  

𝑘𝑛𝑖𝑓𝑒 = ℎ𝑎𝑠 ⊗ ℎ𝑎𝑛𝑑𝑙𝑒 + 𝑚𝑎𝑑𝑒𝑜𝑓 ⊗ 𝑠𝑡𝑒𝑒𝑙 +

𝑖𝑠 ⊗ 𝑢𝑡𝑒𝑛𝑠𝑖𝑙. 
(4) 

The hypothesis behind this encoding method 
is that another vector with a similar set of 
semantic features will be close to the original 
vector, Fig.1. In the case of the BSC the metric 
use to measure distance between two vectors is 
Hamming distance. 

An interesting property of the multiplication 
operation is its invertibility. This means that it is 
possible to extract back a previously multiplied 
vector. For example, in (5) the vector Z is the 
multiplication between X and Y, however, since 
the XOR operation is its own inverse, it is possible 
to obtain X back by multiplying Z by Y (6): 

𝑍 = 𝑋 ⊗ 𝑌, (5) 

𝑍 ⊗ 𝑌 = (𝑋 ⊗ 𝑌) ⊗ 𝑌, 

𝑋 ⊗ 𝑌 ⊗ 𝑌 , (6) 

𝑋 ⊗ 0 , 

𝑋. 

As a consequence of the invertibility property, 
the representations created by the proposed 
method are interpretable, that is to say, once the 
final representation of a concept is created it is 
possible to analyze what features were included 
within the representation. For example, when the 
knife vector produced in (4) is multiplied by the 
relation vector has, the resultant vector would 

 

Fig. 1. Encoding concept’s definition based on its 

semantic features. Two concept vectors are 
geometrically closer if they share the same 
semantic features  

Table 2. List of semantic features for the concept 

knife 

Feature Classification 

has a handle Visual-form and surface 

made of steel Visual-form and surface 

is shiny Visual-form and surface 

used for cutting Function 

used for killing Function 

is sharp Tactile 

is dangerous Encyclopedic 

found in kitchens Encyclopedic 

is a weapon Taxonomic 

is a utensil Taxonomic 
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include the vector handle plus an additional 
noise vector: 

𝑘𝑛𝑖𝑓𝑒 ⊗ ℎ𝑎𝑠 = ℎ𝑎𝑠 ⊗ ℎ𝑎𝑛𝑑𝑙𝑒 ⊗ ℎ𝑎𝑠 + ⋯
+ 𝑖𝑠 ⊗ 𝑢𝑡𝑒𝑛𝑠𝑖𝑙 ⊗ ℎ𝑎𝑠 

ℎ𝑎𝑛𝑑𝑙𝑒 + ⋯ + 𝑖𝑠 ⊗ 𝑢𝑡𝑒𝑛𝑠𝑖𝑙 ⊗ ℎ𝑎𝑠 

ℎ𝑎𝑛𝑑𝑙𝑒 + 𝑛𝑜𝑖𝑠𝑒 . 

(7) 

This noise vector is the addition of all the other 
relation-feature pairs that do not have has as a 
relation vector. Due to the properties of the 
multiplication operation, this noise vector will be 
nearly orthogonal to handle and can be eliminated 
through an associative memory, an operation 
called clean-up. For more details and examples of 
the hyperdimensional computing operations and 
the use of autoassociative memories in VSAs 
refer to [1, 4, 5].  

3 Experimental Results 

In this section, we present the results of two 
experiments performed to test the maximum 

storing capacity of high-dimensional binary 
vectors. Each experiment was focused in a 
specific semantic features configuration. In each 
case, we quantified the storing capacity of 
hyperdimensional binary vectors for different 
vector sizes. The code for all the experiments is 
publicly available repository1. 

3.1 One Relation – One Feature Configuration  

In this first experiment, we took a simple semantic 
feature configuration where each relation is 
associated with a single feature.  

While this configuration is not common to find 
in knowledge bases, mainly because there are 
always more features than relations, it is the 
configuration storing the largest number of 
orthogonal vectors.  

The parameters for this experiment were: N, 
the dimensionality of the vectors, and npairs, the 
number of relation-feature pairs to encode. The 
encoded vectors have the form:  

𝐶 = 𝑅1 ⊗ 𝑓1 + 𝑅2 ⊗ 𝑓2 + ⋯ + 𝑅𝑛𝑝𝑎𝑖𝑟𝑠
⊗ 𝑓𝑛𝑝𝑎𝑖𝑟𝑠

 . (8) 

Each relation and feature vectors (𝑅𝑖 and 𝑓𝑖, 
respectively) was randomly generated and paired 
up with another vector to create the concept 
vector 𝐶. After this, multiplications (𝐶 ⊗ 𝑅𝑖) and 
clean-up operations were performed to extract 
back each feature (𝑓𝑖).  

Table 2 shows the precision, the relation 
between the number of encoded and retrieved 
features, for different N and npairs values. Fig. 2. 
illustrates these results.  

The results presented indicate that the storing 
capacity of high-dimensional binary vectors do not 
increase in a linear fashion. As the dimensionality 
N increases the storing capacity increases but not 
in the same proportion.  

For instance, the maximum number of relation-
feature pairs that a 2,000-size vector can store is 
30 pairs, by increasing the size to 10,000 the 
capacity increases to 40 pairs.  

Given that the intended application for this 
method is to represent concept’s definitions, 40 
pairs is enough to describe the most important 
semantic features for a concept. 

                                                      
1 https://github.com/jobquiroz/StoringCapacity_HDC 

Table 3. Precision for retrieving features 

npairs N = 2,000 N = 5,000 N = 7,000 N = 10,000 

20 1.0 1.0 1.0 1.0 

30 1.0 1.0 1.0 1.0 

40 0.88 0.97 0.98 1.0 

50 0.68 0.84 0.84 0.90 

60 0.58 0.51 0.53 0.75 

70 0.35 0.31 0.31 0.32 

80 0.32 0.20 0.13 0.12 

 

Fig. 2. Precision for the retrieving of features from 

high-dimensional vectors 
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3.1 One Relation – Multiple Features 
Configuration 

In this experiment, we focus on a more general 
configuration, where each relation could be 
associated with more than one feature.  This 
configuration is more common to find in 
knowledge bases. For instance, in the knife 
concept from Table 1 the relation is was 
associated with five different features.  

The parameters for this experiment were: N, 
the dimensionality of the vectors, nrel, the number 
of relations, and nfeat the total number of features 
to encode.  

Unlike in the previous configuration, there are 
several ways to combine the set of relations with 
the set of features. This seems to lead to 
performing a full combinatorial analysis. However, 
since this experiment was focused on measuring 
the storing capacity of vectors, we care about the 
number of features associated to each relation 
rather than which features are with each relation. 
This assumption reduces the number of 

possibilities to analyze. Equation (8) express the 
possible ways to encode a concept with nrel 

relations and nfeat features:  

𝐶 = ∑ 𝑅𝑖
𝑛𝑟𝑒𝑙
𝑖=1 ⊗ [∑ 𝑓𝑘

𝑖𝑚𝑖
𝑘=1 ], 

𝑤ℎ𝑒𝑟𝑒 ∑ 𝑚𝑖
𝑛𝑟𝑒𝑙
𝑖 = 𝑛𝑓𝑒𝑎𝑡  𝑤𝑖𝑡ℎ 𝑚𝑖 > 0 . 

(9) 

A configuration example for nrel = 3 and nfeat = 
6 is shown in (9). 

𝐶 = 𝑅1 ⊗ [𝑓1
1] + 𝑅2 ⊗ [𝑓1

2 + 𝑓2
2 + 𝑓3

2] + 𝑅3 ⊗
[𝑓1

3 + 𝑓2
3]. 

(10) 

To simplify the analysis, in this experiment we 
set a fixed number of features, nfeat = 40, and 
iterate over different nfeat and dimensionality 
values, Table 4. The reason for this is that, 
according to the previous experiment, at nfeat = 40 
the precision for the feature retrievals do not 
reach 1 for most of the vector sizes tested. By 
leaving nfeat fixed we can observe how the 
rearrangement between features and relations 
change the precision of the retrievals. 

 

Fig. 3. Precision and recall for N = 2,000 and storing 40 features in one relation – multiple features configuration 

Table 4. Precision and recall for feature retrieving using one relation-multiple features configuration (nfeat = 40) 

n_rels 
N = 2,000 N = 5,000 N = 7,000 N = 10,000 

P R P R P R P R 

1 1.0 0.87 1.0 0.97 1.0 0.95 1.0 0.99 

5 0.99 0.89 0.99 0.98 1.0 0.99 1.0 0.99 

10 0.97 0.90 0.99 0.98 0.99 0.99 0.99 0.99 

20 0.94 0.91 0.98 0.97 0.99 0.99 0.99 0.99 

40 0.88 0.88 0.97 0.97 0.98 0.98 1.0 1.0 
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In this experiment, we include the recall value, 
which measures the total amount of encoded 

features 𝑓𝑘
𝑖 that were actually retrieved. The recall 

value for all the measures in the previous 
experiment was the same than the precision 
value, meaning that when a feature was retrieved 
it was always the encoded feature; in this 
experiment this is not the case as Fig. 3 shows.  

The one relation – multiple features 
configuration reorganizes the information by 
distributing the features among a lower number of 
relations. This configuration resembles more how 
concepts are commonly described in knowledge 
bases like ConceptNet [13]. Unlike in the previous 
experiment, it was necessary to measure the 
recall value of the retrieval operations because in 
some cases the list of retrieved features did not 
match the list of encoded features. This was 
especially problematic in lowest-dimension tested 
(N = 2,000). 

4 Discussion 

The goal of the present article was to measure 

the storing capacity of high-dimensional binary 

vectors following the Binary Spatter Codes 

framework.  

Our experimental results showed that the relation 

between the increase in the size of the vectors do 

not maintain a linear relation with the total amount 

of items encoded.  

Unlike other vector representations where 
each component stores specific information, the 
representations described in this article distribute 

the information across all components (holistic 
processing [1]).  

The presented results also indicate that the 
determining factor in the overall storing capacity 
of the vectors is not the configuration used for 
encoding, but the total number of orthogonal 
vectors stored.  

However, the configuration used dictates how 
the vectors are going to be retrieved. In the first 
configuration, after the inverse multiplication and 
the clean-up operations are performed, only one 
feature vector is obtained, while in the second 
configuration the final output is a list of features.  

Table 4 summarizes the advantage and 
disadvantage of each configuration according to 
our experimental results. 

As the example in Table 4 shows there are 
general relations ( ‘is’) that can be substituted by 
more specific relations (‘shape’, ‘flavor’) to make 
the retrieving less ambiguous.  

However, adding more relations implies using 
more space. In the case of the goal application for 
this method, it should be noted that in knowledge 
bases like ConceptNet [13] and the McRae 
dataset [10], most concepts are characterized by 
less than 40 semantic features.  

Based on our findings, we propose N = 10,000 
as an appropriate vector size for representing 
concepts based on its semantic features. Vector 
sizes of 5,000 and 7,000 can also be worth 
considering if the processing speed is a 
constraint. In that case, the maximum number of 
semantic features to encode must be 
reduced accordingly.  

Table 4. Precision and recall for feature retrieving using one relation-multiple features configuration (nfeat = 40) 

 One relation – one feature One relation – multiple 
features 

Advantage Straightforward retrieving process. 
Less space needed within the 

definition vector 

Disadvantage More space needed within the definition vector Retrieving can be ambiguous 

Example 

𝐴𝑝𝑝𝑙𝑒 = 𝑖𝑠 ⊗ 𝑓𝑟𝑢𝑖𝑡 + 𝑠ℎ𝑎𝑝𝑒 ⊗ 𝑟𝑜𝑢𝑛𝑑 

+𝑓𝑙𝑎𝑣𝑜𝑟 ⊗ 𝑡𝑎𝑠𝑡𝑦 + ℎ𝑎𝑠 ⊗ 𝑠𝑘𝑖𝑛 

𝑖𝑠 ⊗ 𝐴𝑝𝑝𝑙𝑒 = 𝑓𝑟𝑢𝑖𝑡 

(8 vectors encoded) 

𝐴𝑝𝑝𝑙𝑒 = 𝑖𝑠 ⊗ 𝑓𝑟𝑢𝑖𝑡 + 𝑖𝑠 ⊗ 𝑟𝑜𝑢𝑛𝑑 

+𝑖𝑠 ⊗ 𝑡𝑎𝑠𝑡𝑦 + ℎ𝑎𝑠 ⊗ 𝑠𝑘𝑖𝑛 

𝑖𝑠 ⊗ 𝐴𝑝𝑝𝑙𝑒 = [𝑓𝑟𝑢𝑖𝑡, 𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑠𝑡𝑦] 
(6 vectors encoded) 
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4 Conclusions 

This work presented an empirical exploration of 
the storing capacity of binary vectors using a VSA 
framework. We presented some aspects of 
hyperdimensional computing, a model of 
computation based on the manipulation of high 
dimensional vectors, and proposed a method for 
representing vectors based on a list of its 
semantic features.  

We presented experimental results for 
encoding and then retrieving semantic features 
under two types of configurations: one relation – 
one feature, and one relation – many features. 
We identify the main advantage and disadvantage 
of each configuration and selected the 10,000-
size vectors as most appropriate for representing 
concepts. This result will be later used to further 
develop this encoding method.  

This works lays the foundation from a 
representation model intending to encode larger 
knowledge bases, like ConceptNet, for modeling 
language using hyperdimensional computing.  
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