ISSN 2007-9737

Measuring the Storing Capacity of Hyperdimensional Binary Vectors

Job Isaias Quiroz Mercado, Ricardo Barrén Fernandez, Marco Antonio Ramirez Salinas

Instituto Politécnico Nacional,
Centro de Investigacion en Computacion,
Mexico

jobquiroz@hotmail.com, barron2131@gmail.com, mars@cic.ipn.mx

Abstract. Hyperdimensional computing is a model of
computation based on the properties of high-
dimensional vectors. It combines characteristics from
artificial neural networks and symbolic computing. The
area where hyperdimensional computing can be
applied is natural language processing, where vector
representations are already present in the form of word

embedding models. However, hyperdimensional
computing encodes information differently, its
representations can include the distributional

information of a word in a given context and it can also
account for its semantic features. In this work, we
investigate the storing capacity of hyperdimensional
binary vectors. We present two different configurations
in which semantic features can be encoded and
measure how many can be stored, and later retrieved,
within a single vector. The results presented in this
work lay the foundation to develop a concept
representation model with hyperdimensional
computation.

Keywords. Hyperdimensional computing, vector
symbolic architectures, reduced representations.

1 Introduction

Hyperdimensional computing is a new model of
computation based on the properties of high-
dimensional vectors [1]. Hyperdimensional
computing takes ideas from artificial neural
networks, because it performs distributed
processing, and it is also inspired on symbolic
computing because complex structures, such as
hierarchical trees or sequences, can be formed by
manipulating symbols (vectors) representing
simpler objects.

The set of architectures working under the
hyperdimensional computing principles is known

as Vector Symbolic Architectures (VSAS) [2]. In
artificial neural networks, the use of vectors
comes implicitly with the architecture description,
in contrast, high-dimensional vectors in VSAs are
not only part of the architecture but are the basic
computing entities itself [1]. VSAs have been
increasing in popularity during the last years; they
have been applied in cognitive architectures [3], in
analogy-based reasoning [4], to represent
sequences and hierarchical structures [5, 6], and
in pattern recognition [7].

Hyperdimensional computing has also been
used in natural language processing (NLP). The
Random Indexing technique [8], for example,
uses high-dimensional vectors to create vector
representations for texts.

This techniqgue has a similar approach to
vector semantic models, the current state-of-the-
art models in most NLP applications. These
models, commonly known as word embeddings,
provide vector representation for words,
paragraphs and entire documents, and they are
based on the distributional hypothesis of meaning
[9], which states that words with similar meaning
tend to occur in similar contexts.

We propose a method for representing
concepts using hyperdimensional computing
principles, which are based on knowledge rather
than in the distributional information of a word.
These representations are created from a list of
semantic features [10] encoded within a single
high-dimensional vector. This work focuses on
measuring the limit number of semantic features
that a high-dimensional binary vector can
successfully store. Our experimental results will
be used for selecting the appropriate
dimensionality of vectors within a

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 1027-1033

doi: 10.13053/CyS-26-2-3343

ISSN 2007-9737

1028 Job Isaias Quiroz Mercado, Ricardo Barrén Fernandez, Marco Antonio Ramirez Salinas

Table 1. Properties of arithmetic operations

Operation Symbol Properties
- n-ary function,
Addition + - Combines a set of vectors,
(bundling) - Elementwise majority with ties broken at random,
- Resultant vector is similar to argument vectors.
- 2-ary function,
- Combination of a pair of vectors,
Multiplication ® - Elementwise exclusive-or,
(binding) - Invertible operation,

- Distributes over addition,

- Resultant vector is dissimilar to vectors being multiplied.

hyperdimensional computing system still in
development.

The rest of the paper is organized as follows.
Section 2 explains the general properties of
hyperdimensional computing and describes how
to encode semantic features into high-
dimensional vectors. In Section 3 we present the
experimental results that are later discussed in
Section 4. Finally, Section 5 draws the
conclusions of the work.

2 Methods

The most distinctive property of high-dimensional
spaces (i.e. N > 1,000) is the tendency to
orthogonality. This means that most of the space
is nearly orthogonal to any given point [11]. For
instance, if two random binary vectors are
generated, it is highly probable that the Hamming
distance between them is approximately N/2. As a
consequence of this, arithmetic operations
between this type of vectors yields to a new way
for encoding information. In this section, we
describe the basic arithmetic operators for high-
dimensional vectors: addition and multiplication,
and how they can be used to encode a list of
semantic features within a single high-
dimensional vector to represent a concept.

2.1 Arithmetic Operations

In general, there are two basic operations in
hyperdimensional computing: binding (or

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 1027-1033

doi: 10.13053/CyS-26-2-3343

multiplication) and bundling (or addition). These
operations are used to encode, map and retrieve
information. In this work we implement a
framework called Binary Spatter Codes (BSC)
[12], which uses binary vectors, see Table 1.

To represent higher level objects through
arithmetic operations, first a set of primitive
objects have to be defined and be associated with
randomly generated vectors. The simplest
method to combine a set of primitive objects is by
bundling them together through addition. For
instance, to create the vector class Animals the
vector from each animal specie in the system can
be added together, (1):

Animals = Dog + Cat + Birds+... . 0}

While this method might be useful for some
small systems, it does not allow to encode more
complex relations as other methods. Gallant &
Okaywe [5] presented another method for
encoding a single sentence where, rather than
bundling all vectors together, the subject, verb
and object are multiplied by a label vector, after
which all the vectors are added. For instance, the
sentence “Mary loves pizza” will be encoded as
in (2):

S =subj @ Mary + vrb @ loves + obj ® pizza . (2)

Each vector added can be a randomly
generated vector, or be another encoded
sentence itself. Unlike the previous method, the
order is encoded within the final vector, and
therefore, the vectors produced for “Mary loves
pizza” and “Pizza loves Mary” will be different.

ISSN 2007-9737

Measuring the Storing Capacity of Hyperdimensional Binary Vectors 1029

« 010,011
- 110,001
« O1L...000
« 010,101

Jknife
3 . ol .on
w = 000 00
weapon » 100111
fournd in = 110,001 ofe)
hodroom = 100, .00

firean
(

Foatures High-dsmensional vecioes
& relations Cenndonn)

Fig. 1. Encoding concept's definition based on its
semantic features. Two concept vectors are
geometrically closer if they share the same
semantic features

Table 2. List of semantic features for the concept
knife

Feature Classification

has a handle Visual-form and surface

made of steel Visual-form and surface

is shiny Visual-form and surface
used for cutting Function

used for killing Function

is sharp Tactile

is dangerous Encyclopedic

found in kitchens Encyclopedic
is a weapon Taxonomic

is a utensil Taxonomic

2.2 Encoding Semantic Features

Semantic features represent the basic conceptual
components of meaning for a word [10]; they try
to establish the meaning of a word in terms of its
relationships with other words. Semantic features
must be obtained from humans, either directly, in
studies where humans are tasked with
enumerating properties from a given concept, or
indirectly, by taking information from knowledge
bases. They incorporate different type of
information, including both perceptual (e.g., shape
and color), and non-perceptual attributes (e.g.
taxonomic and functional). Table 2 gives an
example of the semantic features in the McRae
dataset [10] for the concept knife.

Within a semantic feature it is possible to
identify two different parts: a relation (e.g. has, is,

used_for) and a feature value (e.g. handle,
weapon, cutting). From this observation, we
propose to construct a vector representation as
shown in equation (3):

n
Concept = Z Relation; ® Feature; . 3)

i=1

Vectors representing relations are called
relation vectors. They represent the main
semantic relations between two different words.
Vectors representing features are called feature
vectors. Both feature and relation vectors can be
selected at random, or be an encoded vector
itself. For instance, the knife concept will be
encoded as (4):

knife = has ® handle + made,; ® steel +
is @ utensil.

4)

The hypothesis behind this encoding method
is that another vector with a similar set of
semantic features will be close to the original
vector, Fig.1. In the case of the BSC the metric
use to measure distance between two vectors is
Hamming distance.

An interesting property of the multiplication
operation is its invertibility. This means that it is
possible to extract back a previously multiplied
vector. For example, in (5) the vector Z is the
multiplication between X and Y, however, since
the XOR operation is its own inverse, it is possible
to obtain X back by multiplying Z by Y (6):

7=XQY, (5)
IQY=XQVQY,
IQRYRY, (6)

X®O0,
X.

As a consequence of the invertibility property,
the representations created by the proposed
method are interpretable, that is to say, once the
final representation of a concept is created it is
possible to analyze what features were included
within the representation. For example, when the
knife vector produced in (4) is multiplied by the
relation vector has, the resultant vector would

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 1027-1033

doi: 10.13053/CyS-26-2-3343

ISSN 2007-9737

1030 Job Isaias Quiroz Mercado, Ricardo Barrén Fernandez, Marco Antonio Ramirez Salinas

Table 3. Precision for retrieving features

Npars N =2,000 N=5000 N=7,000 N=10,000
20 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0
40 0.88 0.97 0.98 1.0
50 0.68 0.84 0.84 0.90
60 0.58 0.51 0.53 0.75
70 0.35 0.31 0.31 0.32
80 0.32 0.20 0.13 0.12

Fig. 2. Precision for the retrieving of features from
high-dimensional vectors

include the vector handle plus an additional
noise vector:

knife @ has = has Q handle @ has + -+
+ is @ utensil @ has
handle + --- + is @ utensil Q has (7
handle + noise .

This noise vector is the addition of all the other
relation-feature pairs that do not have has as a
relation vector. Due to the properties of the
multiplication operation, this noise vector will be
nearly orthogonal to handle and can be eliminated
through an associative memory, an operation
called clean-up. For more details and examples of
the hyperdimensional computing operations and
the use of autoassociative memories in VSAs
referto [1, 4, 5].

3 Experimental Results

In this section, we present the results of two
experiments performed to test the maximum

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 1027-1033

doi: 10.13053/CyS-26-2-3343

storing capacity of high-dimensional binary
vectors. Each experiment was focused in a
specific semantic features configuration. In each
case, we quantified the storing capacity of
hyperdimensional binary vectors for different
vector sizes. The code for all the experiments is
publicly available repository?.

3.1 One Relation — One Feature Configuration

In this first experiment, we took a simple semantic
feature configuration where each relation is
associated with a single feature.

While this configuration is not common to find
in knowledge bases, mainly because there are
always more features than relations, it is the
configuration storing the largest number of
orthogonal vectors.

The parameters for this experiment were: N,
the dimensionality of the vectors, and npairs, the
number of relation-feature pairs to encode. The
encoded vectors have the form:

C=Ri®fi+tRQfa++Rn, ;.. ® fairs - 8)

Each relation and feature vectors (R; and f;,
respectively) was randomly generated and paired
up with another vector to create the concept
vector C. After this, multiplications (€ ® R;) and
clean-up operations were performed to extract
back each feature (f;).

Table 2 shows the precision, the relation
between the number of encoded and retrieved
features, for different N and npairs values. Fig. 2.
illustrates these results.

The results presented indicate that the storing
capacity of high-dimensional binary vectors do not
increase in a linear fashion. As the dimensionality
N increases the storing capacity increases but not
in the same proportion.

For instance, the maximum number of relation-
feature pairs that a 2,000-size vector can store is
30 pairs, by increasing the size to 10,000 the
capacity increases to 40 pairs.

Given that the intended application for this
method is to represent concept’s definitions, 40
pairs is enough to describe the most important
semantic features for a concept.

1 https://github.com/jobquiroz/StoringCapacity HDC

https://github.com/jobquiroz/StoringCapacity_HDC

ISSN 2007-9737

Measuring the Storing Capacity of Hyperdimensional Binary Vectors 1031

——————

redator

Fig. 3. Precision and recall for N = 2,000 and storing 40 features in one relation — multiple features configuration

Table 4. Precision and recall for feature retrieving using one relation-multiple features configuration (nfeat = 40)

N = 2,000 N = 5,000 N = 7,000 N = 10,000
n_rels P R P R P R P R
1 1.0 0.87 1.0 0.97 1.0 0.95 1.0 0.99
5 0.99 0.89 0.99 0.98 1.0 0.99 1.0 0.99
10 0.97 0.90 0.99 0.98 0.99 0.99 0.99 0.99
20 0.94 0.91 0.98 0.97 0.99 0.99 0.99 0.99
40 0.88 0.88 0.97 0.97 0.98 0.98 1.0 1.0
3.1 One Relation — Multiple Features possibilities to analyze. Equation (8) express the
Configuration possible ways to encode a concept with N

relations and nreat features:

In this experiment, we focus on a more general

configuration is more common to find in
knowledge bases. For instance, in the knife
concept from Table 1 the relation is was
associated with five different features.

configuration, where each relation could be C =Y R ® [ZpL, fil,

i i i ©)
associated with more than one feature. This where Z?re’ My = Npoqe Withm; > 0 .

A configuration example for nie = 3 and Nyear =
6 is shown in (9).

The parameters for this experiment were: N, C=Ri Q1 +R, QI+ fE+fE+R: ® 10
the dimensionality of the vectors, nre, the number [£2 + £ (10)
of relations, and nrea the total number of features
to encode. To simplify the analysis, in this experiment we

Unlike in the previous configuration, there are set a fixed number of features, nfa = 40, and
several ways to combine the set of relations with iterate over different nfa and dimensionality
the set of features. This seems to lead to values, Table 4. The reason for this is that,
performing a full combinatorial analysis. However, according to the previous experiment, at Nrea = 40
since this experiment was focused on measuring the precision for the feature retrievals do not
the storing capacity of vectors, we care about the reach 1 for most of the vector sizes tested. By
number of features associated to each relation leaving nrear fixed we can observe how the
rather than which features are with each relation. rearrangement between features and relations
This assumption reduces the number of change the precision of the retrievals.

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 1027-1033
doi: 10.13053/CyS-26-2-3343

ISSN 2007-9737

1032 Job Isaias Quiroz Mercado, Ricardo Barrén Fernandez, Marco Antonio Ramirez Salinas

Table 4. Precision and recall for feature retrieving using one relation-multiple features configuration (nfeat = 40)

One relation — one feature

One relation — multiple
features

Advantage

Disadvantage

Apple = is Q fruit + shape ® round
+flavor @ tasty + has @ skin
is @ Apple = fruit
(8 vectors encoded)

Example

Straightforward retrieving process.

More space needed within the definition vector

Less space needed within the
definition vector

Retrieving can be ambiguous
Apple = is Q fruit + is Q round
+is ® tasty + has Q skin
is @ Apple = [fruit, round, tasty]
(6 vectors encoded)

In this experiment, we include the recall value,
which measures the total amount of encoded
features f that were actually retrieved. The recall
value for all the measures in the previous
experiment was the same than the precision
value, meaning that when a feature was retrieved
it was always the encoded feature; in this
experiment this is not the case as Fig. 3 shows.

The one relation - multiple features
configuration reorganizes the information by
distributing the features among a lower number of
relations. This configuration resembles more how
concepts are commonly described in knowledge
bases like ConceptNet [13]. Unlike in the previous
experiment, it was necessary to measure the
recall value of the retrieval operations because in
some cases the list of retrieved features did not
match the list of encoded features. This was
especially problematic in lowest-dimension tested
(N = 2,000).

4 Discussion

The goal of the present article was to measure
the storing capacity of high-dimensional binary
vectors following the Binary Spatter Codes
framework.

Our experimental results showed that the relation
between the increase in the size of the vectors do
not maintain a linear relation with the total amount
of items encoded.

Unlike other vector representations where
each component stores specific information, the
representations described in this article distribute

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 1027-1033

doi: 10.13053/CyS-26-2-3343

the information across all components (holistic
processing [1]).

The presented results also indicate that the
determining factor in the overall storing capacity
of the vectors is not the configuration used for
encoding, but the total number of orthogonal
vectors stored.

However, the configuration used dictates how
the vectors are going to be retrieved. In the first
configuration, after the inverse multiplication and
the clean-up operations are performed, only one
feature vector is obtained, while in the second
configuration the final output is a list of features.

Table 4 summarizes the advantage and
disadvantage of each configuration according to
our experimental results.

As the example in Table 4 shows there are
general relations (‘is’) that can be substituted by
more specific relations (‘shape’, ‘flavor’) to make
the retrieving less ambiguous.

However, adding more relations implies using
more space. In the case of the goal application for
this method, it should be noted that in knowledge
bases like ConceptNet [13] and the McRae
dataset [10], most concepts are characterized by
less than 40 semantic features.

Based on our findings, we propose N = 10,000
as an appropriate vector size for representing
concepts based on its semantic features. Vector
sizes of 5,000 and 7,000 can also be worth
considering if the processing speed is a
constraint. In that case, the maximum number of
semantic features to encode must be
reduced accordingly.

ISSN 2007-9737

Measuring the Storing Capacity of Hyperdimensional Binary Vectors 1033

4 Conclusions

This work presented an empirical exploration of
the storing capacity of binary vectors using a VSA
framework. We presented some aspects of
hyperdimensional computing, a model of
computation based on the manipulation of high
dimensional vectors, and proposed a method for
representing vectors based on a list of its
semantic features.

We presented experimental results for
encoding and then retrieving semantic features
under two types of configurations: one relation —
one feature, and one relation — many features.
We identify the main advantage and disadvantage
of each configuration and selected the 10,000-
size vectors as most appropriate for representing
concepts. This result will be later used to further
develop this encoding method.

This works lays the foundation from a
representation model intending to encode larger
knowledge bases, like ConceptNet, for modeling
language using hyperdimensional computing.

Acknowledgments

This work has been funded by SIP-IPN under
grant SIP-20201415 and by CONACYT
scholarship number 666415.

References

1. Kanerva, P. (2009). Hyperdimensional computing:
An introduction to computing in distributed
representation with high dimensional random
vectors. Cognitive Computation, Vol. 1, No. 2, pp.
139-159.

2. Gayler, R. (2003). Vector Symbolic Architectures
answer Jackendoffs challenge for cognitive
neuroscience. ICCS/ASCS International
Conference on Cognitive Science. Sydney
Australia, pp. 133-138.

3. Snaider, J., Franklin, S. (2014). Vector LIDA.
Procedia Computer Science, Vol. 41, pp. 188-203.

4. Emruli, B., Sandin, F. (2013). Analogical Mapping
with Sparse Distributed Memory: A simple model
that learns to generalize from examples. Cognitive
Computation, Vol. 6, pp. 74-88.

5. Gallant, S., Okaywe, T. (2013). Representing
objects, relations and sequences. Neural
Computation, Vol. 25, No. 8, pp. 2038-2078.

6. Quiroz, J.I, Barrén, R., Ramirez, M.A. (2017).
Sequence prediction with Hyperdimensional
Computing. Research in Computer Science, Vol.
138, pp. 117-126.

7. Rahimi, A., Datta, S., Kleyko, D., Paxon, E.,
Olshausen, B., Kanerva, P., Rabaey, J. (2017).
High-Dimensional computing as a nanoscalable
paradigm. |EEE Transactions on Circuits and
Systems: Regular Papers, Vol. 99, pp. 1-14.

8. Kanerva, P., Kristofersson, J., Holst, A. (2000).
Random Indexing of text samples for Latent
Semantic Analysis. Proceedings of the 22nd
Annual Conference of the Cognitive Science
Society. New Jersey, USA.

9. Harris, Z. S. (1954). Distributional Structure. Word,
Vol. 10, No. 2-3, pp. 146-162.

10. McRae, K., Cree, G., Seidenberg, M., McNorgan,
C. (2005). Semantic feature production norms for a
large set of living and nonliving things. Behavior
Research Methods, Instruments & Computers, Vol.
37, No. 4, pp. 547-559.

11. Kanerva, P. (1988). Sparse Distributed Memory.
Cambridge, MA: Bradford/MIT Press.

12. Kanerva, P. (1996). Binary spatter-coding of
ordered K-tuples. Artificial Neural Networks -
ICANN 96, pp. 896-873.

13. Speer, R., Chin, J., Havasi, C. (2017).
ConceptNet 5.5: An open multilingual graph of
general knowledge. Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pp.
4444-4451.

Article received on 05/03/2020; accepted on 19/02/2021.
Corresponding author is Ricardo Barron Fernandez.

Computacion y Sistemas, Vol. 26, No. 2, 2022, pp. 1027-1033

doi: 10.13053/CyS-26-2-3343

