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Abstract. This paper is concerned in to propose a 

complete methodological architecture that is used to 
develop a complete demand system. The general 
methodology could be subdivided into three modules. 
The first module is focused on data consumption 
emulation, in it is implemented Monte Carlo method to 
generate data behavior of household appliances set 
over time getting a user profile. The second module is 
about developing a user interface that lets the user 
interact with the system, through the interface is 
possible that the user feeds the system with the 
features that describe the context. The interface gives 
feedback to the user with graphical information about 
consumption and a possible household appliances 
behavior which decrease the consumption, with that the 
user could get more conscious about his consumption 
behavior. In the third module is implemented a 
metaheuristic that analyzes the data consumption and 
searches the optimum using an objective function 
which is obtained from a mathematical model. The 
mathematical model contemplates how household 
appliances consume. 

Keywords. Demand system, data simulator, 

methodology architecture. 

1 Introduction 

Accordingly, with the International Energy Agency 
(IEA), the global energy demand is 2% to 2.3% 
higher than in the year 2000. The global electricity 
demand is going to grow at 2.1% per year 
till 2040.  

One-fifth part of the global demand is destined 
to satisfy heating and cooling needs. 30% of the 
total global energy produced is destined for 
domestic use.  

House consumption depends on six factors: 
climate, infrastructure, service system and use of 
electricity, the inner design, house´s maintenance 
and uses, and occupant behavior [1].  

Every each of the first five factors has been 
significant progress using different strategies like 
using renewable energies, house designing, 
implementing home energy management 
systems, and others, the last factor is an open 
research area. 

Home energy management systems have 
been developed from different approaches 
focusing on an interface, the implementation and 
development of search techniques for optimal use 
and consumption, the detection of patterns 
behavior device use, obtaining user needs, usage 
rules, and sensor architecture design with the 
main goal of reducing domestic consumption.  

To the knowledge of the author, there is not a 
development methodology that involves all of 
them. Following the data flow in this kind of 
project makes sense to propose a methodology 
focusing on it.  

Dataflow by itself defines the modules that 
conform to the methodology that we are 
developing: Home Energy Management System 
Architecture  (HEMSA).  
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1.1 Home Energy Management System   

A methodological HEMSA proposition was 
obtained from reviewing papers about what is a 
demand system [2], which are its components, 
and what are the variables that are necessary to 
consider in the development. In the review, there 
are two main topics: demand system architecture 
(components, data kind, and characteristics) and 
conscious systems (it is about data flow in 
projects) [3]. 

From an architectural perspective, a demand 
system consists of five parts: sensors array, three 
modules (programming, monitor, and prediction), 
and one logical control unit [4]. In conscious 
system dataflows passes through five layers: 
sensor, physic, conscious of behavior, digital, and 
meta; between physics and conscious of behavior 
layers there is a fusion of information module. So, 
the data flow itself determines how the data is 
acquired, its processing, and how the results 
are displayed. 

From architectural demand system and the 
conscious system has conceptualized a 
methodology that embeds three main parts: 
sensor layer (SL), intelligent ambient (IA), and 
prediction module (PM).  

To design SL which considers the occupant 
behavior (action when the occupant turns on/off 
household appliances and time-consumption of 
household appliances). How the devices are used 
affects the consumption that is being generated 
and allows us to predict how this consumption is 
carried out. SL is made by implementing a 
simulator that generates consumption and uses 
profiles of household appliances. These profiles 
allow emulating household appliances (room air 
conditioner, heater, washing clothes and furnace 
fan) On/Off behavior. 

IA is the user interface through which the user 
feeds the system with de context features and 
gets feedback with graphical information about 
data consumption.  

PM is the part where data consumption is 
analyzed and is obtained an optimal consumption, 
in this module is implemented a bioinspired 
metaheuristic (Particle Swarm 
Optimization (PSO)).  

This paper is organized as follows. Section 2 
presents the related work. Section 3 the topics 

that conform to the parts of the home energy 
system architecture methodology. In section 4 is 
presented the case study. The experimental 
results and validations are presented in section 5. 
Finally, conclusions and further work are 
presented in section 6. 

2 Related Work 

From the literature review, the general objectives 
for the implementation of an electricity 
consumption analysis system are identified, these 
can be focused to maintain a comfortable 
environment for the user, reduce the consumption 
that is made in the implementation environment, 
helping to reduce consumption costs, and voltage 
peaks [5], the most referenced is the one that 
focuses on meeting the needs of the user, 
followed by the reduction of cost and consumption 
(which are directly related to each other) and 
finally reduce voltage peaks when turning on 
a device. 

For a demand system, it is necessary to have 
a consumption database, and for the construction 
of this, the characteristics of the devices must be 
identified, these are average consumption, 
frequent use time, and type of device to which it 
belongs (interruptible, uninterruptible, flexible and 
not flexible) [6]. 

Consumption data is obtained from a sensor 
architecture; but, when one does not have one, 
then a simulator is used to generate usage and 
consumption profiles. Vectors are used in the 
simulator to store consumption data for each of 
the devices being simulated. Each of the vectors 
that are constructed corresponds to a specific 
time in the range from 0 to 23 (the hours that 
make up a day) [7]. 

An important part of the design of a demand 
system is the mathematical modeling of the 
consumption is carried out by the devices that 
characterize the context to obtain the objective 
function [8]. 

The implementation of an interactive system 
[9] as part of an energy management system for 
the home, encourages the user to make changes 
in consumption behavior, as this makes them act 
efficiently and conscious, thus generating a 
transparent, dynamic, controllable, and intelligent 
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environment, it provides comfort by simplifying the 
control and management of electrical devices 
[10]. The interactive system is a means that 
serves to make a virtual representation [11] 
creating objects [12] of the identified context [10], 
the interactive system groups the data concerning 
the implementation objective [13]. The system 
interface must have the characteristic of being 
flexible, accessible, and intuitive[14] as a SCADA 
system [15] by allowing the inclusion of more 
virtual objects to the system. Presenting 
consumption data through the interface [16] 
reduces consumption by between 3% and 
13%  [13]. 

In the system, there is a module in which the 
procedure uses the implementation objective to 
propose an optimized consumption [17]. In the 
literature, four types of linear programming 
procedure, genetic algorithms, metaheuristics, 
and game theory are identified [6]. Being one of 
the most implemented metaheuristics [17]. 

In the reviewed works, it is observed how the 
development approach focuses only on one of the 
parts that make up a demand system, that is, only 
some of the parts are improved and the others 
are only approached in a shallow way or are 
not developed. 

3 System Architecture Topics 

3.1 Energy Consumption Model  

A mathematical representation of electric 
consumption in a house is made by a 
mathematical model. The sort of devices and their 
characterization are used to model them. The 
device's description is done by every kind of 
household appliance, the minimum, and 
maximum consumption, and they frequently use 
time. The on/off household appliances´ states are 
represented by 1 and 0 respectively. 

3.2 Household Appliances  

According to the way which the household 
appliances work, they can be sorted into flexible 
(𝐹), not flexible (𝑁𝐹), interruptible (𝐼), and 

uninterruptible (𝑁𝐼) devices. The flexible devices 
are the devices of electric consumption whose 

function can be interrupted and continue at 
another moment [18]. Flexible devices can be put 
on standby. The not-flexible appliances are 
devices of electric consumption that cannot be 
turned off, this type of appliance has a constant 
operation [17]. Interruptible appliances are 
electrical consumption devices that can be used 
at any time, the time of use varies according to 
the user´s needs [17]. Uninterruptible appliances 
are electrical devices that stop to function has 
finished; the electric consumption can be constant 
or variable [18]. 

3.3 Household Appliances Consumption  

The set of devices in a context is represented by 
𝐴, and 𝑖 −device is represented by 𝑎𝑖. Set 𝐴 have 

four subsets 𝐴𝐼, 𝐴𝑁𝐼, 𝐴𝐹, and 𝐴𝑁𝐹.  Set 𝐴 = 𝐴𝐼 ∪
𝐴𝑁𝐼 ∪ 𝐴𝐹 ∪ 𝐴𝑁𝐹, every subset represents a kind 

of device, 𝑎𝐼 ∈ 𝐴𝐼, 𝑎𝑁𝐼 ∈ 𝐴𝑁𝐼, 𝑎𝐹 ∈ 𝐴𝐹, 𝑎𝑁𝐹 ∈ 𝐴𝑁𝐹. 

The on/off devices state in the ꞇ moment is 
represented by 𝜏(𝑡) ∈ {0,1}, 1 represents 𝑂𝑁 and 

0 represents 𝑂𝐹𝐹. There are considered 24 

moments in the modeling, 𝜏 ∈ 𝑇, 𝑇 =
{𝜏1, 𝜏2, … , 𝜏24}. 

The cardinality of set 𝐴 and its subsets are 

represented as |𝐴| = 𝑚, |𝐴𝐼| = 𝑛, |𝐴𝑁| = 𝑝, 
|𝐴𝐹| = 𝑞, |𝐴𝑁𝐹| = 𝑟. So, 𝑛 + 𝑝 + 𝑞 + 𝑟 = 𝑚, and 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚}. 

Set 𝐴 can have devices belonging to the same 
type of device with different identifiers. The 
household appliances consumption function takes 
the elements of the set 𝐴 in every moment in set 

𝑇 and generates the consumption measured in 

watts. The kind of values is ε: A × T →  R+, the 
hourly consumption of a device at a specific 
time is: 

𝜀(𝑎𝑖 , 𝜏𝑖) =  ϒ𝑎𝑖
𝜏 . (1) 

The total consumption of the set is 
represented as the sum of daily devices 
consumption (where 𝜀𝐼 represents the daily total 
consumption of interruptible devices group and is 
the same for the others 𝜀𝑖), it is represented as: 

𝜀 = 𝜀𝐼 + 𝜀𝑁𝐼 + 𝜀𝐹 + 𝜀𝑁𝐹 . (2) 

The hourly consumption is the sum of the 
consumption that is carried out at a specific 
moment by every device group (here ϒ𝐼

𝜏 
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represents the total hour-consumption 
interruptible group in 𝜏 moment, it is the same for 
the other groups), it is: 

ϒ𝜏 = ϒ𝐼
𝜏 + ϒ𝑁𝐼

𝜏 + ϒ𝐹
𝜏 + ϒ𝑁𝐹

𝜏 . (3) 

The minimum consumptions per day is: 

𝜀𝑚𝑖𝑛 = 𝜀𝑁𝐹 = ∑ ∑ ϒ𝑎𝑁𝐹
𝜏𝑇

𝜏=1𝑎𝑁𝐹∈𝐴𝑁𝐹
. (4) 

And per hour consumption is:  

ϒ𝑚𝑖𝑛
𝜏 = ∑ ϒ𝑁𝐹

𝜏
𝑎𝑁𝐹∈𝐴𝑁𝐹

   ∀𝜏, 𝜏 ∈ 𝑇. (5) 

The maximum consumptions per day is: 

𝜀𝑚𝑎𝑥 = 𝜀𝐼 + 𝜀𝑁𝐼 + 𝜀𝐹 + 𝜀𝑁𝐹 

= ∑ ∑ ϒ𝑎𝑖
𝜏𝑇

𝜏=1𝑎𝑖∈𝐴    , 𝛼𝑎𝑖
(𝜏) = 1. 

(6) 

And per hour, are represented as: 

ϒ𝑚𝑎𝑥
𝜏 = ϒ𝐼

𝜏 + ϒ𝑁𝐼
𝜏 + ϒ𝐹

𝜏 + ϒ𝑁𝐹
𝜏  

= ∑ ϒ𝑎𝑖
𝜏

𝑎𝑖∈𝐴    ∀𝜏, 𝜏 ∈ 𝑇. 
(7) 

For the model, it is identified that 𝜀𝑚í𝑛 < 𝜀𝑜𝑝𝑡 <

𝜀𝑚𝑎𝑥, where 𝜀𝑜𝑝𝑡 t it meets the needs of the user 

minimizes consumption and reduces the peak 
average ratio. 

𝐴𝐼 = {𝑎𝐼1, 𝑎𝐼2, … , 𝑎𝐼𝑛}, |𝐴𝐼| = 𝑛 < 𝑚, and 
∃ 𝑎𝐼𝑖 , 𝑎𝐼𝑗 ∈  𝐴𝐼 ,   𝑖 ≠ 𝑗  →   𝑎𝐼𝑖 = 𝑎𝐼𝑗. 

The total consumption of the subset AI is 
obtained from (8) and represents the sum of the 
total consumption of every device belonging to 
this subset and whose consideration depends on 
the state of the device (on / off) for each moment. 
The partial consumption is obtained in (9) 
(consumption per hour), which is the sum of the 
consumption made by all the devices that are on 
in the moment 𝑇.  

𝜀𝐼 = ∑ [∑ (ϒ𝑎𝐼𝑖
𝜏  𝑥 𝛼𝑎𝐼𝑖

(𝜏))
𝑇

𝜏=1
]

𝑎𝐼𝑖∈𝐴𝐼𝑖

, (8) 

ϒ𝐼
𝜏 = ∑ (ϒ𝑎𝐼𝑖

𝜏  𝑥 𝛼𝑎𝐼𝑖
(𝜏))

𝑎𝐼𝑖∈𝐴𝐼

   ∀𝜏, 𝜏 ∈ 𝑇 . (9) 

To define the subsets 𝐴𝑁𝐼, 𝐴𝐹, and 𝐴𝑁𝐹 are 
used similar expressions to those exposed for the 
subset 𝐴𝐼. For 𝐴𝑁𝐹, 𝛼(𝜏) =1, because they are 
turned on all time. 

A window represents the range of hours 

between which a device can operate, [𝜎𝑎𝐼
, 𝜓𝑎𝐼

], 

To define the window device, are identified four 
parameters: the device on time 𝜎𝑎𝐼𝑖

, the time for 

which the device will no longer turn on 𝜓𝑎𝐼𝑖
, the 

frequent operating time 𝜉𝑎𝐼𝑖
, and the time Ϛ𝑎𝐼𝑖

 at 

which the device 𝑎𝐼𝑖 has been turned on.   

These four parameters fulfill the following 
constraints: 𝜎𝑎𝐼𝑖

≤ 𝜓𝑎𝐼𝑖
, Ϛ𝑎𝐼

≥ 𝜎𝑎𝐼
      𝑦   Ϛ𝑎𝐼

≤  𝜓𝑎𝐼
−

𝜉𝑎𝐼
, Ϛ𝑎𝐼

≥ 𝜎𝑎𝐼
  𝑦  Ϛ𝑎𝐼

≤  𝜓𝑎𝐼
− 𝜉𝑎𝐼

, Ϛ𝑎𝐼
∈ [𝜎𝑎𝐼

, 𝜓𝑎𝐼
−

𝜉𝑎𝐼
]. 

The objective function is defined to minimize 
the daily consumption, it is: 

𝑚í𝑛 ∑ (∑ ϒ𝑎𝑖
𝜏 )𝑎𝑖𝜖𝐴

𝑇
𝜏=1 . (10) 

3.4 Monte Carlo Method  

A strategy to approximate an unknown quantity μ 
is using random sampling, referred to as Monte 
Carlo Methods. This method is based on finding a 
sequence 𝑋1, 𝑋2, … ,  𝑋𝑛 of mutually independent, 
identically distributed random variables, such that 
the expectation E𝑋𝑖 = 𝜇 exits for i = 1,2, … , n. Let 

be 𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, the Weak Law of Large 

Numbers states that, for every ε > 0, 𝑙𝑖𝑚
𝑛→∞

𝑝𝑟 (|
𝑆𝑛

𝑛
−

𝜇| > 𝜀) = 0. 

Besides, when the expectation 𝜎2 =
𝐸(𝑋𝑖 − 𝜇)2 exits the Central Limit theorem asserts 

that 𝑝𝑟 (|
𝑆𝑛

𝑛
− 𝜇| <

3𝜎

√𝑛
) ≈ 0.997. 

Then the mean of 𝑆𝑛/𝑛 will be approximately 

equal to 𝜇. 

3.5 Methodology to Implement a Simulator  

The simulator was programmed in MATLAB 
R2018a following the Monte Carlo method with 
the Acceptance-Rejection technique to generate 
the fins. This technique supposes that there is a 
method for simulating a random variable from the 
probability mass function. First is simulated a 
random variable “𝑌” from the mass function “𝑞𝑗” 

and then accepting this simulated value with a 
probability of 𝑝𝑗/𝑞𝑗. The constant 𝑐 is defined as 

getting the maximum of 𝑝𝑗/𝑞𝑗, where 𝑝𝑗 > 0. So, 

the simulated value 𝑌 with the probability mass 

function 𝑞𝑗 generates a random number 𝑈, if 𝑈 >
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𝑝𝑗/𝑐𝑞𝑗 set 𝑋 = 𝑌 and stop, otherwise generating a 

new 𝑌. 

The diagram of the Acceptance-Rejection 
technique is shown in Figure 1. 

3.6 Model-Driven 

The benefit of developing software with a rational 
ser of principles includes reproducibility. The task 
model describes each task in a system workflow 
like enable access, user functions, device 
functions, scenario functions, report functions. 

Enable access refers to validation when a user is 
in the system. The user´s needs include CRUDs 
for the user, devices, scenarios, reports, and 
special comments on data visualization. Scenario 
specification refers to creating scenarios tasks 
(see Figure 2) and adding devices to them. 
Report functions convey data to the user. 

To get a class model, first, the scenarios to be 
characterized are identified. Second, the frequent 
devices. Third, the list of devices and devices’ 
characteristics. Fourth, for every device the most 
common data of minimum, maximum and standby 
power, and the frequently daily time use. Fifth, the 

 

Fig. 1. Acceptance-Rejection technique diagram 

 

Fig. 2. Task Model of the definition of demanding Home Energy Management System 
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devices are categorized into the group to which 
they belong. 

The user interface design was introducing 
sources of data and introducing an aspect of 
social computing to reinforce the current 
perspective of the framework and gamification 
strategies. Finally, the prototyping is created by 
considering User Interface (UI) design patterns. 
To exemplify the challenges that the potential 
users may face is using storytelling with which is 
possible to see different situations from a general 
point of view as designers of the project. 

3.7 Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) is a social 
behavior metaphor of birds and fishes. PSO is a 
stochastic search that uses swarm particles, 
everyone particle moves through the cluster 
adjusting its trajectories to find the best solution 
using the objective function. The position of every 
particle, xi, is determined by the velocity vi, the 
acceleration coefficient, inertia, and the size of the 
cluster of particles. The velocity and position 
equations [19] are: 

Table 1. Velocity and position equations components 

Variable Description 

𝑖 1…, s 

𝑗 1…, n 

𝑤 Inertia factor 

𝜑1𝑗(𝑡) 𝑐1𝑟1𝑗(𝑡) 

𝜑2𝑗(𝑡) 𝑐2𝑟2𝑗(𝑡) 

𝑠 Number of swarm particles  

𝑛 Number of parameters  

𝑐1, 𝑐2 Acceleration coefficient 0<c1, c2<1, c1 cognitive 
weight and c2 social weight 

𝑟1𝑗(𝑡), 𝑟2𝑗(𝑡) U (0,1), uniform distribution in (0,1) 

𝑥𝑖(𝑡) Particle i-position in t-moment 

𝑣𝑖(𝑡) Particle i-velocity in t-moment 

𝑦𝑖(𝑡) The best particular solution found by particle I in t-
moment 

𝑦̂𝑖(𝑡) Best global position found I in t-moment 

Table 2. Particle velocity components 

Components Description 

𝑣𝑖(𝑡) To prevent oscillation in the direction research 

𝜑1(𝑡)(𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)) Cognitive component 

𝜑2(𝑡)(𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)) Social component 

𝑦𝑖(𝑡) Best global solution found by i-particle 
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𝑣𝑖𝑗(𝑡 + 1) = 𝑤𝑣𝑖𝑗(𝑡) + 𝜑1𝑗(𝑡) (𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡))

+ 𝜑2𝑗(𝑡) (𝑦̂𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)), 
(11) 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣1𝑗(𝑡 + 1). (12) 

Table 1 describes the components of (11) 
and (12). 

To warranty the PSO algorithm convergence is 
needed to satisfy that 0 < 𝑐1, 𝑐2 < 1, and aleatory 

𝑟1, 𝑟2 evenly distributed in (0,1) [20]. The particle 
velocity is defined by the components which are 
described in Table 2.  

4 Case Study 

4.1 Simulation phases 

Problem definition: the implementation objective 
of a demand system is defined accordingly with 
the context, geographical area, and variables that 
define the electricity consumption. The devices, 
the moments in which each of the devices is on, 
and their consumptions features are identified in 
Table 3, the features were obtained from their 
datasheet’s device. 

System´s conceptualization: identify devices 
that characterize the context of use, and then 
classify them according to the type of device to 
which they belong see Table 3. Once the devices 
are identified, the associations and correlations 
that exist between the devices concern the 
moments of use. 

Model representation: the relationships 
between devices are formalized by equations that 
identify the states of devices at specific and daily 
moments and consumption. 

Behavior model: behavior representation and 
devices consumption over time are represented in 
the behavior matrix and consumption matrix. 

Model´s evaluation: it is observed the behavior 
of devices’ probability distribution function (PDF) 
[21], the devices are furnace fan, space heater, 
room air conditioner, and clothes washer. For 
every device PDF, the (𝑥, 𝑦) coordinates obtained 
from their graphs [21] are shown in Table 4, the 

coordinates were obtained by manual and visual 
graph analysis. 

4.2 Validating Simulator 

The simulator is validated generating almost 1000 
data. The data were graphed in a histogram, the 
waves between the histogram and Probability 
Distribution Function’s (PDF) furnace fan 
histogram [21] are similar (Figure 3). The same 
procedure is followed with room air conditioner, 
heater, and washing clothes in [21].  

The simulation of the trial was carried out for 
furnace fan, space heater, air conditions, and 
clothes washer. Four arrays were made per 
device, every array has #number_of_experiments 
rows by 24 columns, each array corresponds to 
schedules, turn on device, usage profile, and 
consumption profile. From the arrays were 
generated two more, in the first one is storage the 
total consumption and in the second one the total 
use time per experiment per device. 

The number of experiments by each simulation 
is defined: 

- Choose an acceptable value for 𝑑 =  10−3 to 
estimate the standard estimation. 

- Generate 100 experiments. 

 

Fig.  3. Furnace fan histogram 

Table 3. Household appliances features 

Device Power (kW) Daily 
Freq. 

use time 

Kind of 
Device 

Furnace fan 1000- 2000 3 I 

Space 
heater 

763-1500 4 I 

Room air 
conditioner 

1000-2950 4 I 

Clothes 
washer 

550- 2850 0.57 F 
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- Generate more experiments, when has been 

generated 𝑘 values and 
𝑠

√𝑘
< 𝑑, where 𝑆 is 

the standard deviation of 𝑘 test sampling. 

- To estimate 𝜃 is from 𝑋̅ = ∑ 𝑋𝑖
𝑘⁄𝑘

𝑖=1 . 

The margin of error of the system is calculated 
using the standard deviation, and considering that 
the experiment is non-sensitive, it was 

established at 5%. When the standard deviation is 
no longer significant then the simulation is 
stopped, the number of experiments necessary 
per device is almost 189 for a furnace fan, 388 for 
a space heater, 419 for a room air conditioner, 
and 100 for a clothes washer. 

4.3 Model-Driven Map 

To build and share customer knowledge across 
the organization about what they need at each 
point in their day and how these requirements are 
being met and provide insight into customer paint 
points were used Card Sorting technique and 
Journey Map. An empathy map (see Figure 7) is 
used too to model the user´s care about his 
electricity consumption and environment. 

Finally, the codesign Framework focuses on 
Social Computing to achieve a perfect balance 
between social behavior and computational 
systems. it seeks to create new practices that 
allow socialization through technology. The 
demand home management system includes 
certain actions that family members or 
acquaintances, in the case of shared floors, can 
perform, since the application will be used by any 
member of a community using the same devices. 
For instance, share a limit of energy expenditure, 
an alert will be sent to each of the participants 
warning the current consumption and to know a 
little more in-depth the electrical activity, can be 
complemented with smart connected devices to 
the current in which through Siri or Alexa, you can 
identify the devices that consume more energy, 
and in this way the different members can see the 
consumption of other participants and send 
messages warning of excessive consumption in 
some area of the house or even emojis, allowing 
interaction between participants of the same 
family, plus if the monthly goal of maximum 
energy consumption is achieved, it can be shared 
on social networks like Facebook. User stories 
are written once the co-design is finished. 

4.4 PSO Constraints 

The space research is formed by consumption 
arrays of ten devices and swarm with 1000 
particles. For the experiments, the inertia is 0.8, 
cognitive weight is 1, social weight is 1.  

Table 4. Table Fan coordinates 

 Furnace Fan 

Coord x y 

1 0 0.7879 

2 1 0.6069 

3 2.0482 0.5620 

4 3.0120 0.5620 

5 3.9759 0.5517 

6 5.0602 0.5207 

7 6.1446 0.5620 

8 6.9879 0.6828 

9 7.8313 0.7569 

10 10 0.5207 

11 10.8434 0.5517 

12 11.9277 0.5517 

13 13.0120 0.5207 

14 15.7831 0.6069 

15 18.1928 0.8689 

16 19.1566 0.9379 

17 20.9639 1 

18 22.1687 0.9724 

19 24 0.7879 

20 - - 

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 135–147
doi: 10.13053/CyS-26-1-4159

Blanca Nydia Pérez-Camacho, Juan Manuel González-Calleros, et al.142

ISSN 2007-9737



 

Fig. 7. Empathy maps of the user of a demanding HEMS 

 

Fig.  8. Furnace fan simulated behavior 

 

Fig.  10. Consumption per on time – schedule 8 

 

Fig.  9. Time the device is turned on per trial 

 

Fig.  11. Average consumption per trial 
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To stop criteria is 50 cycles or when the 
minimum value is repeated five times. The code 
was written in Python using Jupyter in a Dell 
laptop with an Intel Core i7 processor, 8.0 Gb 
ram, Windows 10, the PSO program uses the 
objective function (11). 

5 Results 

As an example of simulated behavior, Figure 8 
shows the simulated behavior of the furnace fan. 
Extracts of the time of use and consumption 
profiles are shown in Figure 9 and Figure 10, 
respectively.  

Parts of the results of time and average 
consumption are also shown in Figure 11 and 
Figure 12, respectively. The percentage of On/Off 
time household appliances (furnace fan space 
heater room air conditioner, and washing clothes) 
are reported in Table 5. 

5.1 Intelligent Ambient Evaluation 

At the beginning design of the interface, the 
participants were required to design a user 
interface in which they could define the electrical 
devices they have at home. The interface used 
architectural plans of their houses to represent 
the physical spaces. In this work, we compared 
preferences vs performance during the 
experiment. To this work were compared 
preferences vs performance during the 
experiment, a vignette study was conducted. 
Collecting prospective users was a problem due 
to the pandemic, so a sample for convenience 
around the family and acquaintances is used. Ten 
Participants were presented our graphical mock-
ups for the scenario specification, In Figure 13, 
the two alternatives are shown, the rationale 
behind each option is described as follows: 

- The solution is alike to commercial tools, a 
look and feel like the Apple Home app was 
designed, depicted in Figure 13-A.  

- A blueprint solution. Trying to deal with the 
workload problem of commercial solutions to 
handle multiple rooms and devices, selecting 
proper devices and their locations is time-
consuming as you base everything just on 

icons. The blueprint-like selector to design 
scenarios was the first approach to do 
something different from existing solutions, 
this option is shown in Figure 13-B.  

To control the presentation of multiple pairs, 
we employed the A/B testing method, apart from 

 

Fig. 12. Average time-use in each trial 

 

Fig. 13. User interface alternatives to create 

scenarios 

Table 5. Household appliances percentage status 

time 

Device % time is turn 
On 

% time is 
Turn Off 

Furnace fan 6-7 94-93 

Space heater 15-14 85-86 

Room air 
conditioner 

13-14 87-86 

Clothes 
washer 

6-7 94-93 
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being popular it is well accepted in research to 
elicit preferences. Although preference and 
performance are sometimes indirectly related, not 
as expected, it frequently happens that you might 
prefer the tool that is not necessarily the one in 
which you are performant. On the contrary, it 
could happen exactly the opposite. In the end, 
you learn to use the tool even if you have poor 
performance. In our case, we can confirm this 
scenario. Our user performs better in the blueprint 
scenario but prefers the solution that is similar to 
existing solutions in the A/B testing and IBM 
CSUQ as usability measurements. A web page 
was used for collecting preferences of A/B testing. 
Figure 13 shows two alternatives to create 
scenarios, in A) the preferred solution, a list of 
scenarios is listed to the right and the object in 
each scenario are listed in the middle with 
representative icons. In B) a blueprint of a house.  

The application design and its process are 
carried out with the co-design technique, 
supported by known techniques of analysis and 
user experience design. The prototype proposal 
was evaluated with a convenience sample and 
the final decision gives us a clue of what the 
interactive system should look like that helps 
people make decisions regarding their electricity 
consumption, how they can design spaces or 
scenarios of houses room. The application design 
uses icons that allow the user to interact 
intuitively, the characterization of the rooms 
(Figure 14) choosing the device 

The consumption of all devices is plotted and 
showed it through application to the user 
(Figure 15). 

5.2 PSO Implemented 

PSO was implemented in a database with 24 by 
365 records. Each record is used to make a 
comparison with the vector found by PSO. 100 
repetitions for the experiment were made for each 
record. The Analysis was made with the data 
obtaining the average for the 100 experiments for 
every device. The device-experiment average and 
standard deviation are calculated. The results are 
shown in Table 6. 

The PSO implementation lets to propose 
consumption that each device should have to 
lower the total consumption without having to turn 

 

Fig. 14. Selection and identify the type of room 

 

Fig. 15. Graph of the month- consumption 

 

Fig. 16. Real consumption – proposed PSO 

consumption 

Table 6. Household appliance average and standard 

deviation 

Household 
appliance 

Average(kW/h) Standard 
Deviation 

Room Air 
conditioner 

1496.341 9.0e-05 

Space Heater 808.00005 
5.760072e-

02 

Furnace fan 1425.0 0 

Clothes 
washer 

895.5 0 
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off any device that is in an inactive state. The 
proposal generated is displayed in the application 
transposing the real consumption graph (graph 
above) with the proposed by PSO (graph below) 
(Figure 16). 

6 Conclusions and Further Work 

Current solutions around the development of 
software for an electrical demand system are 
focused on data processing, but little on the 
interactive application that, regardless of the user, 
can use it. The design of the application and its 
process is carried out with the co-design 
technique, supported by analysis techniques and 
user experience design. The prototype proposal 
was evaluated with a convenience sample and 
the final decision indicates how the interactive 
system should be that helps people make 
decisions about their electricity consumption, how 
they can design spaces or room scenarios of the 
houses. Much has been discussed on how to 
communicate this information and, in the end, we 
found that the solution must go beyond the 
sketches; But without a doubt, a device list, a 
common solution in most device applications, is 
far from an adequate solution. The 
implementation of this prototype has many 
technological challenges that undoubtedly leave 
open the debate on the interoperability of the 
devices currently available in the 
technological context. 

An architecture for data analysis in a home 
energy management system is presented. The 
concept takes into account the characteristics of 
the data, considers how consumption data flows 
from its origin, processing, and use for the 
proposal of the regulation of consumption. The 
factors that involve the development of an 
architecture for the design of a demand system 
require an analysis of the data flow. 

The electricity consumption analysis 
methodology serves to define a strategy for 
solving problems and can be replicated in 
other contexts. 

Further work, to develop a flexible and 
scalable sensor architecture that allows 
generating consumption data in real-time. 
Develop an interface that detects the devices that 

make up the context, and that the interface can 
be installed on a server so that it can be 
used remotely. 
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