
Sistema adaptativo para la generación de comportamientos
emergentes en juegos serios emergentes

José Aguilar1,2, Junior Altamiranda1, Francisco Díaz2

1 Universidad de los Andes, Facultad de Ingeniería,
Venezuela

2 Universidad EAFIT,
Colombia

{aguilar, altamira, francisco.diaz}@ula.ve

Resumen: Un sistema de adaptación de videojuegos

(SAV) para juegos serios emergentes (JSE), permite
comportamientos emergentes en el juego, tales como la
aparición de ambientes, eventos, narrativas y
personajes, entre otros, con el fin de adaptarse al
contexto en el que se esté desarrollando. En artículos
anteriores se ha propuesto la arquitectura de un motor
para JSE. Además, se ha propuesto un primer
subsistema que permite la emergencia de un JSE según
los objetivos del entorno, basado en el algoritmo de
optimización de colonia de hormigas (ACO). En el
presente trabajo, se especifica el segundo componente
de dicha arquitectura, el SAV, el cual permite su
adaptación dinámica (durante la realización del JSE). El
SAV está compuesto por las subcapas de estrategias,
secuencias y propiedades, que gestionan cada uno de
esos tipos de emergencia posible en un JSE, con la
intención de adaptarlo dinámicamente al contexto-
dominio donde se está realizando el juego. Además, en
este trabajo se analiza el comportamiento de dichas
subcapas en un caso de estudio específico, mostrando
resultados muy alentadores del SAV en el contexto
educativo de un salón de clases inteligente (SaCI).

Palabras claves: Juegos serios emergentes, motor de

juegos serios emergentes, sistema de adaptación de
videojuegos, salón de clases inteligentes, sistema
clasificador difuso, algoritmos culturales, algoritmo de
optimización de colonia de hormigas.

Adaptive System for the Generation of
Emerging Behaviors in Serious

Emerging Games

Abstract: A video game adaptation system (SAV) for

serious emergent games (JSE), allows emergent

behaviors in the game, such as the appearance of
environments, events, narratives and characters, among
others, in order to adapt to the context in the one that is
developing. In previous articles the architecture of a JSE
engine has been proposed. Furthermore, a first
subsystem has been proposed that allows the
emergence of a JSE according to the objectives of the
environment, based on the ant colony optimization
algorithm (ACO). In the present work, the second
component of said architecture is specified, the SAV,
which allows its dynamic adaptation (during the JSE).
The SAV is made up of the sub-layers of strategies,
sequences and properties, which manage each of these
types of possible emergencies in a JSE, with the
intention of dynamically adapting it to the context-
domain where the game is being played. Furthermore, in
this work the behavior of these sublayers is analyzed in
a specific case study, showing very encouraging results
of SAV in the educational context of an intelligent
classroom (SaCI).

Keywords: Serious emerging games, serious emerging

game engine, video game adaptation system, smart
classroom, fuzzy classifier system, cultural algorithms,
ant colony optimization algorithm.

1. Introducción

Los JSE son la fusión de dos teorías, la teoría
de juegos serios (JS), la cual establece que un
juego tiene un propósito específico que puede
estar relacionado con el aprendizaje o con la
comprensión de un tema complejo [1]; y la teoría
de juegos emergentes (JE), que comprende
juegos cuyos comportamientos surgen a partir de
las interacciones espontáneas de los elementos

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

ISSN 2007-9737

mailto:altamira@ula.ve

vinculados al juego (tales como los jugadores, los
personajes, etc.), sin leyes explícitas [2, 3, 4, 21].
Por ende, el concepto de JSE define juegos cuyo
objetivo es diferente al de solamente jugar, el cual
puede ser educativo, de entrenamiento, de
rehabilitación, entre otros fines, y en particular,
cuya dinámica va surgiendo en función de lo que
va aconteciendo en el contexto [5].

Un Motor de JSE (MJSE) es un conjunto de
programas que permiten la creación, la
representación, la ejecución y la adaptación de un
JSE [5]. Un MJSE debe poder ser usado por
diferentes videojuegos, adaptándose a los
requerimientos específicos del entorno.
Particularmente, un MJSE está compuesto por un
conjunto de submotores. En [5] se ha especificado
un MJSE estructurado en capas, el cual, sigue el
objetivo específico del JS, usando reglas sencillas
para hacer emerger tácticas complejas,
considerando al jugador (estudiante) y al
entorno educativo.

Por otro lado, un SAV [6] es una parte
específica del MJSE que se encarga de adaptar
dinámicamente el JSE al entorno, con la intención
de adecuarlo a sus necesidades y objetivos. En
nuestro caso, el SAV posibilita el comportamiento
emergente del JSE, tal que las diferentes formas
de emergencia se puedan dar en el juego para su
adaptación al entorno. El SAV está compuesto de
subcapas, que gestionan diferentes formas de
emergencia en un JSE.

A su vez, para diseñar el SAV se requieren de
un conjunto de formalismos que le permitan
generar los respectivos comportamientos
emergentes en el JSE. Los comportamientos
emergentes más importantes en un JSE son los de
estrategias, secuencias y propiedades, los cuales
le permiten adaptarse al contexto-dominio.

En este trabajo se especifican los tres
componentes del SAV para el MJSE definido en
[5], que le permiten soportar los comportamientos
emergentes más importantes en un JSE. Para el
comportamiento emergente de estrategias se
propone diseñar un modelo genérico basado en
reglas que las definan, y usar un sistema
clasificador difuso (SCD) [7, 8] para instanciarlas
en el JSE, adaptarlas a sus objetivos, y hacer
emerger nuevas adecuadas al contexto del JSE.
Por otro lado, para el comportamiento emergente
de secuencias en un JSE se propone usar el

mismo esquema propuesto en [6] para la
emergencia inicial del JSE, el cual está basado en
el algoritmo ACO; pero esta vez, su uso será para
hacer emerger nuevas escenas en el actual JSE
adecuadas a su contexto, según lo establecido
en [22].

De igual forma, para hacer emerger
propiedades se parte de los parámetros del JSE,
los cuales son adaptados al entorno donde se
realiza el JSE utilizando algoritmos culturales (AC)
[9]. Así, en los tres casos, las emergencias que se
producen responden a la adaptación del JSE
al contexto.

A continuación, comentamos algunos trabajos
de interés para nuestra propuesta. En cuanto a
trabajos vinculados a permitir la emergencia en un
juego, en [3] plantean un JE denominado
Metrópolis, que parte de la premisa de que las
ciudades se pueden auto-gestionar a partir de las
decisiones tomadas en conjunto por sus
habitantes (jugadores), sin que ninguno de ellos
sea más importante que otro.

En ese juego emergen patrones urbanísticos
en la ciudad. Recientemente, Metrópolis se ha
extendido en [4] para permitir la emergencia de
propiedades, debido a la adecuación de sus
parámetros a los jugadores.

Por otro lado, en [10] se analiza la emergencia
narrativa en un videojuego, utilizando diversos
principios de la narratología, que ayudan en la
emergencia del juego. En [11], los autores
analizan la relación entre los elementos de las
narrativas y las acciones en los juegos.
Denominan “Disonancia Ludonarrativa” al
desacuerdo entre la “Narrativa Acoplada”, que
viene en la programación previa del juego, y la
“Narrativa Emergente”, creada por el jugador a
partir de las decisiones tomadas durante el juego.
A partir de allí, construyen nuevos escenarios en
el juego que aproximen ambas narrativas.

En el ámbito del uso de técnicas inteligentes en
videojuegos, en [12] presentan un análisis de las
técnicas de inteligencia artificial más utilizadas en
los videojuegos, y particularmente, en juegos del
tipo de simuladores. Entre las técnicas que
señalan en dicho trabajo están los sistemas de
clasificación de aprendizaje (LSC, por sus siglas
en inglés), las redes neuronales, y los algoritmos
genéticos, entre otros.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1030

ISSN 2007-9737

En [13] se utiliza la robótica de rehabilitación
con el videojuego ReHabGame, para pacientes
con trastornos neuromusculares.

El videojuego utiliza una interfaz basada en
lógica difusa, para permitir al jugador controlar un
avatar a través de un Kinect Xbox, el brazalete
Myo y el pedal del timón. En [14] proponen una
versión difusa de un juego gráfico que se centra en
los objetivos de accesibilidad, denominado juegos
de accesibilidad difusa (FRG). En un FRG, el
objetivo del jugador es maximizar su valor de
verdad al alcanzar un conjunto de objetivos dado,
mientras que un otro jugador apunta a lo contrario.

El objetivo principal de este artículo es
presentar los mecanismos que permitan la
emergencia durante el uso de juegos serios en el
SAV, basados en técnicas inteligentes, para el
MJSE propuesto en [5, 6]. El artículo se organiza
de la siguiente manera, en la sección 2 se
describen los aspectos teóricos bases de este
trabajo, tales como la arquitectura general del
MJSE, los tipos de emergencia en un JSE, y las
técnicas inteligentes usadas en este trabajo.

La sección 3 presenta el diseño del SAV para
el MJSE propuesto en [5]. A continuación, se
presenta un caso de estudio, y se compara el
MJSE con otros trabajos similares, para
finalmente, presentar las conclusiones.

2. Aspectos teóricos

2.1. Tipos de comportamientos emergentes en
JSE

Los tipos de emergencia que se pueden dar en
un JSE son los siguientes [4]:

— Estrategias: se generan nuevas logísticas
(serie de acciones encaminadas hacia un fin
determinado) y tácticas (procedimiento o
método que se siguen para ejecutar algo),
siguiendo las normas, leyes y reglas del
videojuego. Estas emergencias no han sido
diseñadas, creadas, ni predefinidas por el
diseñador del juego, por ejemplo, la
emergencia de estrategias de golpes, tácticas
de combos de ataque, etc. en videojuegos de
combate, es un ejemplo de lo anterior.

— Secuencia: se crean nuevas tramas (orden
cronológico de diversos acontecimientos
presentados a un jugador) o temáticas
(contexto de su desarrollo) en los juegos, lo que
puede implicar cambiar el ambiente del juego,
los eventos que aparecen en su dinámica,
entre otras cosas. Por ejemplo: cambio de
escenarios o de época en juegos tipo
“Los Sims”.

— Propiedad: cambia las características y
capacidades en los objetos, lo que puede
conllevar a nuevos escenarios, personajes, etc.
Eso puede implicar el cambio de normas, leyes
y reglas en el videojuego, por ejemplo: jugar en
sentido de las agujas del reloj en el dominó.

— Final: determina cuando debe terminar el
videojuego, cambiando aspectos en el mismo.
Algunas cosas que podrían definirse en este
tipo de emergencia son: hacer emerger vidas
infinitas, o finalizar el juego cuando se alcance
un objetivo, entre otras cosas. Por ejemplo, en
[4], al aparecer ciertos patrones de interés se
podría dar por terminado el juego. En particular,
en “Metrópolis”, al aparecer patrones
urbanísticos que determinan cuando se agota
el espacio urbano, se daría por concluido
el juego.

— Modelo de Negocio: según [4], tiene que ver
con el surgimiento de modelos de servicios
alrededor de los juegos. Por ejemplo, en
algunos juegos aparece un sistema de
comercio para comprar e intercambiar
personajes, herramientas, entre otras cosas,
como en “Top Gear” la compra de cauchos, de
motor, etc.

— Utilidad: hace emerger como se va a utilizar el
JSE, en función del contexto o la narrativa del
ambiente donde se esté usando. Por ejemplo:
“Era Mitológica” puede ser utilizado para
explicar hechos históricos, geográficos
o religiosos.

Todo lo anterior, surge como producto de un
conjunto de reglas que rigen el JSE, que, en
nuestro caso, el MJSE debe permitir manipular.
Los tres primeros tipos de comportamientos
emergentes son conocidos como emergencia
fuerte, ya que pueden generar cambios profundos
en el juego.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1031

ISSN 2007-9737

2.2 Arquitectura de un MJSE

La arquitectura del MJSE que se presenta en
este trabajo, está basada en [5], la cual fue
desarrollará para soportar JSEs en salones
inteligentes (SaCI, ver [15, 16, 17] para más
detalles de SaCI). El MJSE está basado en capas
jerárquicas (ver figura 1), cuyos componentes son:

— Núcleo del Motor de Videojuego (NMV): es el
elemento central del MJSE, en él se
encuentran los seis submotores de base para
cualquier videojuego, los cuales son: submotor
de gráficos (SG), submotor físico (SF),
submotor de sonido (SS), submotor de
interacción (SI), submotor de video (SV) y
submotor de renderización (SR). Más detalles
de esos submotores en [5].

— Subsistemas de Emergencia del Videojuego
(SEV) y de Adaptación del Videojuego
(SAV): los cuales son las capas de la
arquitectura MJSE que permiten hacer emerger
un JSE. En específico, ambos subsistemas
usan los siguientes submotores:

a. Submotor de IA (SIA): se encarga de
introducir comportamientos inteligentes en
los diferentes componentes del JSE. Para

ello, en este componente se despliegan
las diferentes técnicas usadas de la IA
para permitir la emergencia en un JSE. Un
ejemplo de ello es ACO, que lo usa el
Submotor de Trama Emergente (STE)
cuando es invocado por el SEV, para
definir la primera versión del JSE que se
comienza a ejecutar.

b. Submotor de Trama Emergente (STE):
es el responsable de hacer emerger en el
JSE las narrativas y las secuencias de las
tramas adaptadas al contexto. Para ello,
recolecta la información del contexto,
realiza la gestión de escenas y eventos,
ensambla subtramas/guiones de
diferentes juegos, entre otras cosas. El
STE, en el caso del SEV, permite hacer
emerger la primera versión del JSE, según
los objetivos que se deben cumplir con el
JSE. El STE, en el caso del SAV, permite
adaptar al JSE durante el desarrollo del
mismo incorporando nuevas tramas.

El STE (ver figura 2), cuando es invocado por
el SEV, está compuesto por los siguientes
componentes (ver [6, 22], para más detalles
del STE):

— Gestor de Materia (GM): determina la temática
que se está tratando en el contexto para, a
partir de allí, establecer el objetivo que debe
cubrir el JSE

— Gestor de Videojuegos (GV): busca en
repositorios de videojuegos (por ejemplo,
edugame, advergame, etc.), subtramas o
videojuegos para esa temática. Dichas
subtramas/videojuegos son definidos como
Recursos de Aprendizaje (RA). Para la
búsqueda, compara los metadatos de los Ras
en los repositorios con el definido por el GM. Si
no consigue al menos un videojuego parecido
a lo buscado, llama al módulo siguiente.

— Módulo de Generación de JSE (MGJSE): es
el responsable del ensamblaje de un nuevo
JSE usando las subtramas provistas por el GV.
En un trabajo previo, se ha definido el MGJSE
basado en ACO [6]. El MGJSE tiene imbricadas
las funciones de los siguientes tres
componentes del SEV, para generar
inicialmente un JSE.

Fig. 1. Arquitectura del motor de juegos

serios emergentes

Fig. 2. Submotor de trama emergente

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1032

ISSN 2007-9737

— Storyboard (SB): se encarga de generar los
guiones narrativos o subtramas del JSE.

— Gestor de Escenas (GE): genera el ambiente,
mundo o entorno, requerido por las tramas
del JSE.

— Sistemas de Eventos (SE): se encarga de
generar eventos especializados requeridos por
el SB, para generar los comportamientos
deseados en el JSE.

Los detalles del STE y SIA cuando son
invocados por el SAV (ver figura 1), serán
presentados en este trabajo.

2.3 Los sistemas clasificadores difusos (SCD)

Según [7, 8, 13], un sistema clasificador (SC)
es un tipo de máquina de aprendizaje que se basa
en reglas. Un SCD es un SC cuyas reglas o
clasificadores son reglas difusas de la forma Si
<condición> Entonces <acción>. De esta manera,
la activación de una regla se logra cuando se
cumplen las instancias de la <condición> de una
regla. El peso de cada regla será un elemento a
ser tomado en cuenta cuando se establezca el
valor del crédito de las reglas, el cual está basado
en el grado de activación de la regla. En
específico, la importancia de una regla viene
definida por la ecuación (1):

𝑆𝑖(𝑡 + 1) = 𝑆𝑖(𝑡) + 𝐴𝑐𝑡𝑖𝑖(t) − 𝑃𝑆𝑖 + 𝑅𝑖(𝑡), (1)

dónde: i es el identificador de la regla; 𝐴𝑐𝑡𝑖𝑖(t) es
el grado de activación de la regla; PS¡(t) es el pago
dado por la activación de la regla; 𝑅𝑖(𝑡) es el pago
recibido, definido como ∑ 𝑃𝑟 ∗ 𝐴𝑐𝑡𝑗(𝑡), 𝑗=𝐷 tal que

D es el conjunto de reglas que activó la regla i en

el instante t; y 𝑃𝑟 es la rata de pago, dada como
un parámetro del SC.

La función de ajuste para la función de
pertenencia de un conjunto difuso F, cuando el
operador condición es "O", viene dada por [8]:

𝑆𝐹(𝑡 + 1) = 𝑆𝐹(𝑡) + 𝐴𝑐𝑡𝑖𝑖 ∗ 𝜇𝐹[𝑥𝑘] . (2)

Y cuando el operador condición es "Y", viene dada

por [8]:

 𝑆𝐹(𝑡 + 1) = 𝑆𝐹(𝑡) + 𝐴𝑐𝑡𝑖𝑖 ∗
1

𝜇𝐹[𝑥𝑘]
, (3)

dónde: 𝑆𝐹(𝑡)es el valor de crédito de la función de
pertenencia del conjunto difuso F en el tiempo t;

𝜇𝐹[𝑥𝑘]es el grado de pertenencia del elemento xk al

conjunto difuso F presente en la <condición>.

La definición de las ecuaciones (2 y 3) permite
asignar más crédito al conjunto difuso que influyo
más en el nivel de disparo de una regla [7, 8]. El
macroalgoritmo de un SCD para ajustar las
reglas es:

Inicializar SCD

Repita Mientras (existan eventos)

Fusificar (evento)

Activar (SCD, evento)

Actualizar (SCD)

2.4 Algoritmos culturales

Según [9], los algoritmos culturales (AC),
desarrollados por Robert G. Reynolds, son un
complemento a los algoritmos de computación
evolutiva (CE), los cuales han sido exitosos en la
resolución de diversos problemas de búsqueda y
optimización, en situaciones con poco o ningún
conocimiento del dominio. En particular, los AC
pueden mejorar su ejecución porque utilizan un
conocimiento específico del problema para
guiarlos en su resolución.

Están basados en que la evolución cultural
puede ser vista como un proceso de herencia en
dos niveles: en el nivel micro-evolutivo, que
consiste en el material genético heredado por los
padres a sus descendientes, y en el nivel macro-
evolutivo, que es el conocimiento adquirido
culturalmente a través de las generaciones, y que
una vez codificado y almacenado, sirve para guiar
el comportamiento de una población. En la figura
3 se puede apreciar cada uno de los componentes
de los ACs.

En específico, los componentes de un AC son
(figura 3):

‒ Espacio de la Población: está formada por
individuos. Cada individuo tiene un conjunto de
características, a las que les es posible
determinar su aptitud. A través del tiempo, tales
individuos podrán ser reemplazados por sus
descendientes, obtenidos a partir de un
conjunto de operadores aplicados a la
población. Para ese espacio se definen:

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1033

ISSN 2007-9737

a. Función Objetivo: permite evaluar el
desempeño o comportamiento de
cada individuo.

b. Operadores Genéticos: los cuales
permiten la reproducción o modificación de
los individuos en el espacio de la población.
Los más comunes son los operadores
genéticos de cruce y mutación.

‒ Espacio de Creencias: es donde se
almacenan los conocimientos que han
adquirido los individuos en generaciones
anteriores. La información contenida en este
espacio debe ser accesible a cualquier
individuo, quien puede utilizarla para modificar
su comportamiento. En ese espacio existen las
siguientes categorías de conocimiento:

a. Situacional: toda la información del
contexto: eventos y sus importancias,
mejores/peores soluciones obtenidas en el
pasado, combinaciones de valores ideales
para una situación dada, etc.

b. Normativo: son comportamientos ideales,
rangos de valores idóneos de cada una de
las variables, o las gamas de
comportamientos aceptables.

c. Dominio: conocimiento de los objetos del
dominio, de las relaciones entre ellos, de los
objetivos del dominio, entre otros
conocimientos. Por ejemplo, almacena el
conocimiento sobre el contexto donde se
aplica el juego JSE.

d. Histórico: son patrones temporales,
comportamientos históricos a resaltar, etc.

e. Topográfico: son patrones espaciales,
características del espacio de soluciones,
caminos de interés, etc.

‒ Protocolo Comunicación: las funciones de
aceptación e influencia son los protocolos que
permiten la interacción entre el espacio de
creencias y el de la población. Estas funciones
actualizan ambos conocimientos, de la
siguiente manera:

a. Función aceptación: incorpora las
experiencias individuales de un grupo
selecto de individuos, que se obtiene de
entre toda la población, para actualizar el
conocimiento en el espacio de creencias.

b. Función influencia: determina como el
conocimiento del espacio de creencia
influye en los individuos de la población.
Ejerce cierta presión, para que los
individuos resultantes de la variación se
acerquen a los comportamientos deseables,
y se alejen de los indeseables, según la
información almacenada en el espacio de
creencias. El macroalgoritmo del AC es:

Inicio
t = 0 // Generar población inicial
Iniciar el espacio de creencias
Iniciar la población (posibles soluciones)

Repetir
Evaluar los individuos en la población
Reproducir los individuos usando los operadores
genéticos y la función de influencia
Actualizar el espacio de creencia usando la
función de aceptación

Seleccionar una nueva generación de
individuos

Hasta (haber alcanzado la condición de
finalizar)
Fin

2.5 Algoritmo de colonia de hormigas (ACO)

ACO es un tipo de metaheurística basada en
una población, el cual está inspirado en la
conducta de las colonias de hormigas reales
cuando buscan comida, para resolver problemas
de optimización combinatoria [6, 22]. ACO está
compuesto por:

— Espacio de solución: es un grafo o espacio
que recorrerán las hormigas para
obtener soluciones.

— Hormigas: caminan en el grafo.

Fig. 3. Estructura de los algoritmos culturales

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1034

ISSN 2007-9737

— Solución: los nodos son marcados por una
feromona en el grafo, igual que los arcos que
los interconectan. Cuando converge el
algoritmo ACO, los nodos son seleccionados
según si su feromona pasa un umbral, igual que
los arcos que salen de ellos, como parte de la
solución final.

— Feromonas: define lo deseable de los nodos y
de los arcos que los interconectan, para
pertenecer a la solución final.

— Función Feromona: actualiza cada tipo de
feromona, en función de la calidad de la
solución propuesta.

— Función Heurística: define la decisión
heurística que toma una hormiga, al estar en un
nodo, con respecto a que otro nodo debe
continuar a visitar después de él.

El macroalgoritmo clásico de ACO [2, 6] se
muestra a continuación:

— Inicializar parámetros, feromonas y grafo
— Repita Mientras (no se cumpla terminación)
— ConstruirSolucionesporHormigas
— ActualizarFeromona

— ConstruirSolucionFinal

3. Subsistema de adaptación del
videojuego

La capa SAV (ver figura 1) permite que en un
JSE se generen comportamientos emergentes
durante el juego, actuando sobre sus
características de base. En particular, esta capa
permite la adaptación de las características desus
elementos, la emergencia de nuevas estrategias,
secuencias de tramas, ambientes y eventos, en el
videojuego. Para realizar esas tareas, se apoyará
en el SIA y STE. En específico, los tipos de
emergencia fuerte [4] de la sección II.A que
soportará el SAV, serán definidos en esta sección.

3.1. Mecanismo para hacer emerger
estrategias

Permite la emergencia generando nuevas
variantes tácticas y estrategias en el juego, sin
dejar de seguir las normas, leyes y reglas del
mismo. El punto relevante, en este caso, es definir
como se modelarán las tácticas y estrategias.

En nuestro caso, ellas serán definidas por
reglas, en las cuales en el antecedente de la regla
se establece que debe suceder (eventos que
deben ocurrir), y en el consecuente las acciones
que deben ocurrir en el juego dado esos eventos.
También, es fundamental definir como se
adaptarán las reglas, que en nuestro caso será
usando SCD. En la figura 4 se presenta el modelo
de SCD a usar, y su comportamiento en SAV es
como sigue:

1. Cada uno de los submotores de MJSE
genera eventos.

2. El Sistemas de Reglas (antecedente) recibe los
eventos que van ocurriendo en el juego, los
fusifica, y determina que reglas se activan.

3. El Sistema Evaluador (consecuente), según los
eventos recibidos, evalúa el grado de
activación de cada regla en el SCD, y
determina la salida inferida del SCD.

4. El Sistema Adaptativo va adaptando las reglas,
en función de sus comportamientos durante el
juego (grado de activación). Aquellas más
efectivas (más usadas), permiten alcanzar el
objetivo del juego, por lo que perduran más
tiempo, y son usadas por este sistema para
generar nuevas reglas.

A continuación, se definen todos los elementos
que permitirán caracterizar las tácticas y
estrategias, e implementar el SCD, para permitir la
emergencia de comportamientos en un juego:

a. Variables Difusas y Conjuntos Difusos:
tanto los eventos de cada uno de los
submotores, como las acciones en el JSE,
serán definidas por las siguientes variables y
conjuntos difusos:

i. Contexto JSE (CJ): representan variables
que definen el tema del JSE [8] (CJx para
[x=0,1,2,3…n]). Por ejemplo, en un JSE en
el contexto educativo, suponiendo una clase

Fig. 4. Modelo de SCD

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1035

ISSN 2007-9737

de matemática, las variables difusas
podrían ser: suma, resta, multiplicación o
división de números reales. Todas tendrían
los mismos conjuntos difusos, los cuales
serían: Ninguna (N), Escasa (E), Mediana
(M) y Alta (A).

ii. Evento Físico (EF): representa eventos
que ocurren en el juego (EFx para
[x=0,1,2,3…m]). Por ejemplo, un carro
moviéndose, un personaje saltando, un
futbolista jugando, el avatar tropieza una
pelota, etc. Los conjuntos difusos
considerados son: Verdadero (V), Más o
menos (MM) y Falso (F).

iii. Evento Acústico (EA): representa tipos de
eventos auditivos, como: cantar, gritar, etc.
(EAx donde [x=0,1,2,3…p]). Así, representa
cada tipo de evento auditivo. Por ejemplo: el
sonido de un rayo, el ruido al partirse un
vaso, etc. Los conjuntos difusos
considerados son: V, MM y F.

iv. Evento Cámara (EC): eventos que ordenan
el movimiento, tanto en posición como en
rotación, de la cámara que muestra el juego
al jugador (ECx para [x=0,1,2,3…r]). Por
ejemplo: mirar hacia arriba o hacia abajo. El
conjunto difuso considerado para estas
variables son: N, E, M y A.

v. Evento de Video (EV): es cuando en el
videojuego se utiliza una animación, efecto
especial o video. Por ejemplo: cuando
aparece un efecto especial de larga
duración, la presentación en videoclip, etc.
(EVx, donde [x=0,1,2,3…q] representa los
tipos de eventos videos). Los conjuntos
difusos considerados son: V, MM y F.

vi. Acción de Movimiento (AM): se encarga
de pedir al MJSE que aplique un movimiento
sobre al avatar (AMx para [x=0,1,2,3…s]).
Sus conjuntos difusos son: N, E, M y A.

vii. Acción de Destreza (AD): son teclas
especiales del videojuego que varían según
el tipo de habilidad a permitir: salto,
agachar, abrir, cerrar, agarrar, soltar, etc. o
cualquier otra actividad que este
contemplada en el JSE (ADx para
[x=0,1,2,3…t]). Normalmente, son scripts
básicos predeterminado. Por ejemplo:

disparar en Contar Strike, saltar en Mario
Bros, patear en FIFA. Los conjuntos difusos
considerados son: N, E, M y A.

viii. Acción de Avanzada (AA): define una
acción que es disparada por un algoritmo de
inteligencia artificial después que haya una
solución (AAx [x=0,1,2,3…v]). Por ejemplo,
después de utilizar los arboles de
comportamiento (BT) en Halo 2, o min-max
en ajedrez, etc. El conjunto difuso
considerado para estas variables son: N, E,
M y A.

b. Funciones de Pertenencia: a continuación, se
definen las funciones de pertenencia de cada
uno de los conjuntos difusos asociados a cada
variable difusa. Se propone, de manera
general, el uso de funciones de pertinencia del
tipo trapezoidal.

Las variables difusas EF, EA y EV, pueden
estar caracterizada por la función de pertenencia
mostrada en la figura 5. El universo de discurso
[0%, 100%] determina el grado de ocurrencia de
ese evento en un momento dado.

Las variables difusas CJ, AD, EC, AM, AD y AA
se caracterizan por la función de pertenencia
mostrada en la figura 6. El universo de discurso es
[0%, 100%], por las mismas razones anteriores.

c. Reglas de Control Genéricas: a continuación,
se presentan un grupo pequeño de reglas
asociadas con las variables difusas, que en
otro artículo futuro se extenderá, las cuales se
dividen según el tipo de estrategia de juego:

Fig. 5. Funciones de pertenencia de la variable difusa

Fig. 6. Funciones de pertenencia de la variable difusa

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1036

ISSN 2007-9737

i. JSE de agilidad: son juegos de saltos y
poderes, como por ejemplo, Mario Bros,
Donkey Kong y otros. Un ejemplo de sus
posibles reglas serían:

Si <EF=hueco> entonces <AM=saltar>

i <EF=enemigo> entonces <AD=disparar>

ii. JSE de velocidad: son juegos de manejo
de algún vehículo, como por ejemplo: carro,
moto, avión, barco, bicicleta, etc. Un
ejemplo de sus posibles reglas sería:

Si <EF=chocar>y <EA=gritar>entonces
<AA=proteger>

Si <EF=chocar>o <EF=parar> entonces
<AM=parar>

Existen muchos más grupos de reglas de
estrategias, vinculadas a JSE de lucha,
rompecabezas, entre otros.

d. Comportamiento de las reglas difusas
(instancias): a continuación, se dan ejemplos
de algunas de las instancias de las reglas de
control genéricas, que podrían definir las
estrategia y táctica en un JSE dado:

Si EF=hueco es V y EF=enemigo es V entonces
AM=saltar es A y AD=disparar es A

Esta regla indica que, si un evento físico es un
hueco y otro es un enemigo, entonces se realizan
las acciones saltar y disparar al mismo tiempo.

Si (EF=chocar es V o EA=grita es MM) entonces
AA=proteger es A.

En esta regla se establece que, si ocurre un
evento físico de chocar y más o menos un evento
auditivo, entonces se invoca a una técnica de
inteligencia artificial que permita establecer la
estrategia de protegerse.

3.2. Mecanismo para hacer Emerger
Secuencias

Esta emergencia se caracteriza por crear
nuevas tramas, o cambiar el orden en las actuales,
en los juegos. Este tipo de emergencia utiliza el
algoritmo ACO y el sistema de búsqueda en
repositorio (ver figura 7).

En particular, para esta emergencia se requiere
determinar la brecha entre lo que está
aconteciendo en el JSE y lo requerido cuando se
diseñó el JSE. Con esa información, se
determinan las necesidades aun por cubrir por el
JSE, y basado en ello, se busca en los repositorios
de tramas las nuevas que puedan ser de interés.

Fig. 7. Componentes del STE

Fig. 8. Modelo de cambio de los escenarios

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1037

ISSN 2007-9737

Con ellas, se procede a invocar al algoritmo ACO,
el cual usa como base el esquema actual de
tramas del JSE y las nuevas tramas conseguidas,
para intentar transformarlo, o proponer uno
completamente nuevo (ver figura 8).

ACO está compuesto en la emergencia de
secuencia por:

— Espacio de solución: un grafo compuesto por
nodos que describen las subtramas
seleccionadas desde diferentes repositorios, y
arcos que establecen las relaciones de
dependencia entre ellas, cuando existen. Pero
además, el grafo incluye un subgrafo que
representa el actual JSE en ejecución.

— Hormigas: caminan en el grafo de subtramas,
para seleccionar las escenas.

— Solución: es la ruta del grafo final que posee
más feromona en los arcos y nodos, tal que los
nodos representan las subtramas nuevas del
JSE

— Feromonas: hay dos tipos, una para las
subtramas (nodos) y otra para los arcos entre
las subtramas.

— Función Feromona: actualiza cada tipo de
feromona en función de la calidad del nuevo
JSE.

— Función Heurística: define cual subtrama
(nodo) se debe tomar a medida que se va
construyendo la solución. Para el uso de ACO
en el proceso de emergencia de secuencia, se
debe considerar lo siguiente:

a. Creación del grafo teórico de recorrido
de las Hormigas (Inicializar grafo): El
grafo teórico es definido como G=(N, E),
donde N es un conjunto de nodos que
representan las sub-tramas (JSs
seleccionados por GV de ROAs), y E un
conjunto de arcos que conectan todos los
nodos de N (ver figura 3). Además, se
incluye el subgrafo que representa al actual
JSE en ejecución. Por otro lado, se
establece una función de peso dij para

determinar el peso de un arco (i, j) ∈ E, tal
que es 1 si existe una relación de
dependencia secuencial entre dos nodos

(JSi, JSj, ∈ N), y 0 en caso contrario. Eso

implica que dij0 cuando entre dos nodos
hay una relación de dependencia entre ellos.

b. Construcción de la solución por parte de
las hormigas (Construir Soluciones por
Hormigas): En esta fase, algunas
consideraciones se realizan:

i. Se define el número de hormigas que
integran la colonia.

ii. Cada hormiga inicialmente se coloca de
modo aleatorio en el grafo para iniciar su
recorrido, y determina un JSE (una
solución).

Cada hormiga ejecuta una función heurística (o
de transición) desde el nodo actual donde se
encuentra, para determinar el próximo nodo que
visita que no haya previamente visitado. Esta
función es definida como la probabilidad de visitar
desde el nodo r a cada uno de sus nodos contiguos
s, en función del nivel de feromona “γ(r,s)” del arco
entre el nodo r y cada nodo s, y el índice de
similitud “η(s)” de cada nodo s con respecto a la
temática buscada, lo cual es calculado para todos

los nodos aun no visitados por la hormiga k (𝐽𝑟
𝑘).

Eso se expresa en la siguiente ecuación:

P(𝑟,𝑠)
𝑘 =

𝛾(𝑟,𝑠). 𝜂(𝑠)

Σu ϵ J𝑟
𝑘 𝛾(𝑟,𝑢). 𝜂(𝑢)

Si 𝑠 𝜖 𝐽𝑟
𝑘 . (4)

Particularmente, esta expresión se usa cuando
no se quiere parar la construcción de una solución.
Es decir, la hormiga puede culminar en cualquier
momento la construcción de una solución, o
continuar paseando por los nodos hasta recorrer a
todos, basado en la siguiente regla:

Recorrido Hormiga k

={
𝑝𝑎𝑟𝑎𝑟, 𝑛𝑢𝑚𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑜 > 𝑢𝑚𝑏𝑟𝑎𝑙_𝑝𝑎𝑟𝑎𝑟

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟. 𝐽𝑆𝐸 , 𝑐𝑎𝑠𝑜 𝑐𝑜𝑛𝑡𝑟𝑎𝑟𝑖𝑜 .

Ahora bien, en el grafo inicialmente se
ponderan los nodos de las nuevas tramas y sus
arcos de interconexión, de acuerdo a sus
similitudes con los objetivos no cubiertos por el
actual JSE, de tal manera de darles una
posibilidad de ser seleccionadas por las hormigas,
y poder competir así con los nodos y arcos del
subgrafo que representa el actual JSE.

c. Actualización de los Feromonas: en nuestro
caso hay dos feromonas, una para los arcos y
otra para los nodos. Ambas son actualizadas al
final de cada iteración (recorrido de cada

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1038

ISSN 2007-9737

hormiga), según cómo se definió en [6, 22]. En
ese sentido, cada hormiga actualiza la
feromona de cada arista y cada nodo que visita.
Para ello, se determina un índice de la calidad
del JSE propuesto por cada hormiga, el cual
será usado durante el proceso de actualización.
Ese índice de calidad es calculado a partir del
nivel de similitud del JSE propuesto por cada
hormiga con respecto a los objetivos no
cubiertos del tema deseado (definido por GV).
El nivel de similitud del JSE propuesto por una
hormiga k (ηk) no es más que la agregación de
los índices de similitud “η(s)p”, para p=1… P, de
las P subtramas que componen el JSE. De esta
manera, la feromona de cada nodo y arco se
actualiza usándose las ecuaciones genéricas
siguientes:

γ(𝑟,𝑠) = γ(𝑟,𝑠) + ∆ γ(𝑟,𝑠) ,

γ(𝑟) = γ(𝑟) + ∆ γ(𝑟) ,
(5)

donde, Δγ (r, s) y Δγ (r), son el incremento de las
feromonas, que vienen dadas por la sumatoria de
las cantidades de feromona dejadas por las M
hormigas en el arco (r, s) o nodo (r):

γ(r) =
Σk=1

M ∆γ(r)

M
 γ(𝑟,𝑠) =

𝛴𝑘=1
𝑀 ∆γ(𝑟,𝑠)

M
 (6)

En general, tanto ∆𝛾(𝑟)
𝑘 como ∆𝛾(𝑟,𝑠)

𝑘 son

iguales a ηk.

La actualización de las feromonas también
tiene un proceso de evaporación de las mismas, la
cual se ejecuta sobre todos los nodos y arcos en
el grafo al final de cada iteración, según la
siguiente función:

γ(𝑟,𝑠) = (1 − ρ) + ∆ γ(𝑟,𝑠) ,

γ(𝑟) = (1 − ρ) + ∆ γ(𝑟) ,
(7)

donde, ρ ∈ (0,1] es el coeficiente de evaporación
de feromona. Este proceso se realiza
repetidamente, hasta que la colonia converge en
un grupo de soluciones (JSE).

d. Construcción de la solución final (Construir
Solución Final): una vez que la colonia
concluye su trabajo, se debe pasar a construir
la solución final, es decir, la nueva versión del
JSE que propondrá ACO. Para ello, se hace un
recorrido sobre todos los nodos del grafo,
seleccionándose los nodos con mayor valor de

feromona, y los arcos que saldrán de cada uno
de ellos serán seleccionados según un valor de
feromona también (será el que tenga el valor
mayor), tal que se garantice que todos los
nodos (subtramas) conformen un camino (esa
será la secuencia lógica del nuevo JSE
propuesto). Este procedimiento es muy
parecido al definido en [6].

3.3. Mecanismo para hacer Emerger
Propiedades

Esta emergencia cambia las características en
los objetos, normas, leyes y reglas que tiene el
videojuego, basado en un proceso adaptativo de
las propiedades emergentes. Para ello, se
considera los siguientes aspectos:

— ¿Cuáles elementos del JSE se pueden
parametrizar, tal que dichos valores se puedan
adecuar al contexto?

— ¿Cómo desde la interacción de los jugadores,
se pueden establecer mecanismos de
aprendizaje de esos parámetros?

En este caso, se propone utilizar AC de la
siguiente manera:

1. Espacio de Población: en nuestro caso, los
individuos son las múltiples ejecuciones de un
JSE dado por grupos de jugadores, los cuales
pueden o no ser los mismos cada vez. En
específico, un individuo es definido por los
valores de los diferentes parámetros que se
usaron en ese JSE. En la tabla 1, JSEi

representa el individuo i, y Pj los valores de los
j parámetros usados en ese juego la i vez que
se jugó.

Por otro lado, para generar nuevos individuos
se usa el operador de cruce [20]; pero además, un
operador de mutación guiado por el conocimiento
en el espacio de creencia. Este operador es muy
importante, porque es el que explota el
conocimiento cultural.

2. Función Objetivo: permite evaluar el

Tabla 1. Estructura interna de un individuo en el Espacio

de Población

JSEi P1 P2 Pj FOi

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1039

ISSN 2007-9737

desempeño del JSE, según el objetivo para el
cual se diseñó el mismo. En nuestro caso, el
mejor individuo será aquel que maximice esa
función objetivo, definida por la Ec. (8):

𝐹𝑂 = 𝛴𝑖=1
𝑛 (𝑎 ∗ 𝑃𝐴𝑖 − 𝑏 ∗ 𝐿𝐸𝑖)/n (8)

donde, a y b son constantes definidas por el
usuario, que permiten normalizar las unidades
en la función. El número de ejecuciones de ese
individuo con esos parámetros en el JSE es n,
la cantidad de puntuación acumulada
(suponiendo que se asocia a si se alcanzan los
objetivos del JS) en el JSE cada vez es PAi y el
lapso de tiempo que duro el JSE cada vez es
LEi, el cual puede estar basado en el número
de rondas, tiempo, entre otros, para determinar
quién es más rápido o lo hace en
menos movimientos.

3. Espacio de Creencias: En el espacio de
creencias se tienen cinco categorías
desconocimiento, pero en este trabajo solo se
usan cuatro:

a. Conocimiento Situacional: contiene
ejemplos de éxitos de los JSE, pero en
particular, los valores (Vj) de los parámetros
(Pi) en dichos juegos, con sus índices de
ocurrencia (IOj) a través de los diferentes
juegos. Además, la calidad promedio de ese
valor de parámetro (Cj), determinada como

el promedio de la calidad de los JSEs donde
se usó ese parámetro (ver tabla 2).

b. Conocimiento Normativo: define los
rangos de valores idóneos de cada uno de
los parámetros del JSE. En la tabla 3, LI y
LS son los límites inferiores y superiores de
cada parámetro Pi.

c. Conocimiento de Dominio: en nuestro
caso, indica los contextos donde se puede
aplicar el JSE, con los valores de parámetro
adecuados para cada uno de ellos. En la
tabla 4, Di representa el conjunto de
parámetros (Pj) de un JSE en el dominio i, y
la función de calidad (FCi) es calculada
como el promedio de calidad de las veces
que se ha usado el JSE en ese dominio.

d. Conocimiento Histórico: son patrones
temporales del comportamiento de los
JSEs. Es un conocimiento que explota el
comportamiento histórico del juego, en
nuestro caso, basado en eventos de interés
que debe incluir el JSE. Para ello, se
establece un vector del tipo evento, que
establece que valores ideales deben tener
los parámetros Pj para que el evento k
ocurra, y la función FEk establece la calidad
de esos valores para generar ese evento
(tabla 5).

4. Protocolo Comunicación: dictan las
reglas para hacer interactuar a la población
de JSEs con el espacio de creencias.

a. Función de Aceptación: según
Reynolds [9, 19], con un 20% de los
individuos de la población, es suficiente
para nutrir con sus experiencias el
espacio de creencias. Este trabajo sigue
ese criterio al usar las funciones de
aceptación. Además, las funciones de
aceptación actualiza los diferentes
valores de calidad en los diferentes tipos
de conocimiento: en el conocimiento
situacional, los valores de Cj e

IOj.j=1…u; en el normativo, los valores

de LIj y LSj,j=1…u; en el conocimiento
de dominio, se puede actualizar porque
hay un nuevo dominio Ds, o porque los
valores ideales de los parámetros han
cambiado, o porque FCs ha cambiado

Tabla 2. Representación del Conocimiento Situacional

Pi Vj IOj Cj

Tabla 3. Representación del Conocimiento Normativo

P1 P2 Pu

LI
1

LS
1

LI
2

LS
2

LI
u

LS
u

Tabla 4. Representación del Conocimiento Dominio

D
i

F
C

i

P1 P2 Pu

valor
ide
al

valor
ide
al

valor
ide
al

Tabla 5. Representación del Conocimiento Histórico

Eventok P1 P2 Pu FEk

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1040

ISSN 2007-9737

para los actuales valores ideales.
Finalmente, en el conocimiento histórico,
pueden cambiar los valores ideales de
los parámetros, o el valor FEk para los
actuales valores ideales. La manera de
actualizar en cada caso será diferente.

En el caso del conocimiento situacional, se
actualiza de la siguiente manera: IOj es
actualizado mediante la siguiente ecuación:

𝐼𝑂𝑗 = 𝑁𝑂𝑗 + 𝐼𝑂𝑗, (9)

donde, NOj es el nuevo número de ocurrencia del
valor Vj en la actual generación. A su vez, Cj,
también es necesario actualizar, para eso se
emplea la siguiente ecuación:

𝐶𝑗 = 𝐶𝑗 ∗ 𝑚̅ + 𝐶𝑗̅ ∗ 𝑚, (10)

donde, m̅ es el complemento del momento, es

decir, (1 - m), y Cj̅ es el promedio del valor Cj de

todos los individuos dentro del 20% aceptados
proveniente de la población actual con el valor de
Vj. Finalmente, m es el momento, que viene dado
por la ecuación:

m = µ/t. (11)

Tal que μ es una constante de momento entre
0 y 1, y t es el número de generaciones (t = 1, 2,
3). De esta manera, cada vez que llega una nueva
experiencia de la población, Ci se actualizan.

En el caso del conocimiento normativo, los
valores de LIj y LSj se actualizan de manera
similar, según la siguiente ecuación:

Lac(Pu) = [(Lv * 𝑚̅+𝑃̅* m) / 2], (12)

donde, Lac (Pu) es el límite actual (ya sea LI o LS)

del parámetro Pu, Lv es el límite anterior, 𝑃̅es el
promedio del valor del límite de todos los
individuos, dentro del 20% aceptados proveniente
de la población actual.

De esta manera, cada vez que llega una nueva
experiencia de la población, los límites de cada
parámetro se actualizan.

En el conocimiento de dominio, al aparecer un
nuevo dominio i (Di), se actualiza la matriz de la
tabla 4 con una nueva fila. Si los valores ideales
para un dominio ya existente i han cambiado, se
sustituyen en la tabla, y se coloca su valor de 𝐹𝐶𝑖.

En particular, los valores ideales para un dominio i
son los que maximizan la FO de la Ec. (8). Por otro
lado, si solo se debe actualizar el valor de la
función calidad (FCi) de los actuales valores
ideales, se debe usar la siguiente ecuación:

Fig. 9. Modelo conceptual de un AJSE en un SaCI. (Fuente [18])

Fig. 10. 3 videojuegos de fracciones utilizando domino (Fuente [6])

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1041

ISSN 2007-9737

𝐹𝐶𝑖 = 𝐹𝐶𝑖 ∗ 𝑚̅ + 𝐹𝐶𝑖
̅̅ ̅̅̅ ∗ 𝑚 , (13)

donde, FCi es la función de calidad actual; 𝐹𝐶𝑖
̅̅ ̅̅ ̅es

el promedio del valor FCi de todos los individuos

dentro del 20% aceptados proveniente de la
población actual en el dominio Di.

Finalmente, en el conocimiento histórico, si los
valores ideales de los parámetros Pi para un

evento k deben cambiar, simplemente se
sustituyen en la tabla 5. En este caso, los valores
ideales para un evento k son los que maximizan la
FO de la Ec. (8). Ahora bien, si solo se debe
actualizar el valor de FEi de los actuales valores
ideales, se debe usar la siguiente ecuación:

 𝐹𝐸𝑖 = 𝐹𝐸𝑖 ∗ 𝑚̅ + 𝐹𝐸𝑖
̅̅ ̅̅̅ ∗ 𝑚 , (14)

donde, 𝐹𝐸𝑖
̅̅ ̅̅̅es el promedio del valor FEi de todos los

individuos dentro de los 20% aceptados
proveniente de la población actual con el evento k.

b. Función de Influencia: se establece
usar el conocimiento almacenado en el
espacio de creencias para realizar
operaciones de mutación guiada en el
espacio poblacional. El conocimiento
situacional permite una mutación directa
a los mejores valores Vj de un parámetro
Pi dado; el conocimiento normativo
permite reajustar los rangos de un
parámetro Pi; el de dominio usa los
valores ideales de Pj para el dominio en
el que se quiere diseñar el JSE, y el
histórico usa los valores ideales de Pj,
según el evento k que se desee
que aparezca.

4. Caso de estudio

4.1 Contexto de aplicación: SaCI

Se considera un Salón de Clases Inteligente
(SaCI) como el propuesto en [15, 16], tal que en el
aula inteligente todos sus componentes son
modelados usando el paradigma de Sistemas
Multiagentes (SMA), el cual caracteriza a sus
dispositivos de hardware (pizarra inteligente,
laptop, tableta, smartphone, etc.) y de software

(Entorno Virtual de Aprendizaje, Sistema
Académico, etc.) como agentes.

SaCI utiliza un middleware reflexivo
autonómico para entornos de aprendizaje
inteligente en la nube, llamado AmICL, propuesto
en [15, 16, 17]. Este middleware reflexivo
autonómico está basado en SMA, y posibilita el
despliegue de las diferentes comunidades de
agentes de SaCI.

En particular, uno de esos agentes es el Agente
Juego Serios Emergentes (AJSE), el cual gestiona
los JSE de forma autónoma. El AJSE, una vez
recolectada la información del entorno de SaCI
(perfil de los estudiantes, objetivos del actual
proceso de aprendizaje, etc.), adapta el JSE a
SaCI, llamando al GM.

Para ello, el AJSE interactúa con los agentes
de SaCI: Gestor del Repositorio de Objeto de

Fig. 11. El videojuego de domino “Combinado”

Tabla 6. Estado de Agente Difuso

 Variables Valores posibles

Entradas

Evento

CJ fracciones

EF movimientos de los
números (dominós)

Salida

Acciones AA realizar un cálculo

AM moverse

Tabla 7. Ejemplo de Reglas Genéricas

N° Regla

R1 Si <CJ=matemáticas> entonces
<AA=calcular>

R2 Si <AA=calcular> entonces <EF=dato>

R3 Si < EF =dato>entonces <AM=mover>

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1042

ISSN 2007-9737

Aprendizaje (ROA), Sistema Académico (SA),
Sistema Recomendador (RS) de Recursos
Educacionales y el Entorno Virtual de Aprendizaje
(VLE, por sus siglas en inglés) (ver figura 9) [18].

4.2 Contexto dinámico pedagógico para
analizar el comportamiento del SAV

Una vez en el SaCI, se parte de la hipótesis que
se está en una clase de matemáticas y se requiere
definir un JSE con el objetivo de explicar y resolver
problemas con fracciones. En [8], se muestra
cómo se genera inicialmente el JSE usando los
componentes del MJSE, para explicar la clase de
fracciones. En particular, se usa el repositorio de
objetos de aprendizaje agrega (ver,
http://www.proyectoagrega.es/), y se seleccionan
tres videojuegos del domino en fracciones
compatible con el tema de aprendizaje (ver
figura 10).

Se supone que inicialmente el SEV propone
como JSE inicial el videojuego domino
“Combinado” (ver figura 11):

El videojuego de domino “Combinado” consiste
en que cada uno de los dominós tiene dos zonas
opuestas entre sí, ya sea izquierda (arriba) o
derecha (abajo). Estas zonas van a tener una
figura, fracción, porcentaje, etc., que va a dar un
resultado de fracciones matemáticas, el cual debe
ser igual al espacio vacío adyacente a alguna
pieza de domino. Por ejemplo, en la figura 11 el
círculo rojo señala la zona izquierda del domino
que tiene como valor 12/32, este debe ser
colocado en una zona vacía que tenga el mismo
resultado, que es √9/64 = 0,375, que se encuentra

en el espacio vacío abajo a la izquierda.
A continuación, se explica cómo SaCI usa el

SAV para cada tipo de emergencia:

Adecuación por Emergencia Fuerte de
Estrategia:

a. Eventos y Acciones: mediante el SCD se
establecen los diferentes tipos de eventos y
acciones que pueden suceder en el juego (ver
tabla 6), con sus respectivos valores. Por
ejemplo, en el caso de CJ, el contexto
educativo es utilizar fracciones de las
matemáticas. En el caso de EF, los
movimientos de los números (en este caso, los
dominós). En el caso de las acciones, las

Fig. 12. Comienzo

Fig. 13. Coloca Domino (12/32│3/8)

Fig. 14. Colocación del Domino 1/6│1/2

Fig. 15. Coloca Domino 2x3/4x4│1/4

Fig. 16. Cinco JSE seleccionados de Eduplay

c

a

b

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1043

ISSN 2007-9737

posibles son realizar un cálculo AA o
moverse AM.

b. Estrategias: se establecen los tipos de reglas
para el contexto del JSE (según CJ). Como es

resolver fracciones matemáticas, se deben
establecer reglas genéricas alrededor de esa
temática. La tabla 7 muestra algunos ejemplos
de dichas reglas. La regla 1 establece que por
el dominio, entonces se debe realizar una
acción de calcular. La regla 2 indica que
después de calcular, entonces ocurre el
evento EF=dato. Finalmente, la regla 3 indica
que al llegar ese evento, entonces ocurre la
acción AM=mover ocurre.

c. Ejecución del JSE: a continuación, se
muestra parte del desarrollo del JSE:

1er paso: se activa la regla R1, tal que la
primera acción es AA=calcular, la cual puede
ser: sumar, restar, dividir, etc.

2do paso: se activa la regla R2, que es
AA=calcular el primer domino de arriba hacia
abajo, con el dato=12/32│3/8, comparando con
los datos de los 3 espacios vacíos que se
observan en la figura 12.

En este caso, se generan los EFs= 𝐸𝐹𝑎1,
𝐸𝐹𝑎2, 𝐸𝐹𝑏1, 𝐸𝐹𝑏2, 𝐸𝐹𝑐1, 𝐸𝐹𝑐2 y la información
generada se usa de diferentes maneras; por
ejemplo: la zona izquierda (12/32) del domino
se compara con la figura (3/8) de la parte de
arriba del espacio vacío que señala la flecha a,
y (3/8) de la zona derecha del domino se
compara con 3x(3/12) de la zona de abajo del
espacio vacío de la flecha a, dando como
resultado que es falso=F, como se muestra en
la tabla 8, y así sucesivamente para cada
domino y espacio vacío (fila de la tabla 8).

3er paso: en la tabla 8, generada por R2, se
observa que existen 6 posibles soluciones
para el domino con el dato =12/32│3/8, pero
solo 2 validas (c1 o c2). Con las validas, se
dispara la regla R3, para mover el dato
=12/32│3/8 según lo permitido por 𝐸𝐹𝑐1 o 𝐸𝐹𝑐2,
con lo cual, revisa todas las opciones,
colocando el domino en 2 posiciones posibles
12/32│3/8 o viceversa 3/8│12/32, que es el
mismo resultado de la zona izquierda del

domino colocado en la mesa √9/64 = 12/32 =

3/8 = 0,375, tanto en el espacio derecho como
izquierdo y null (vacío), dando como resultado
más o menos = MM, para luego moverse como
indica la flecha roja en la figura 13 (se escogió

Fig. 17. Grafo del JSE inicial con los 5 JSE de Eduplay

Tabla 8. Listados de pruebas difusas para el

domino12/32│3/8

EF Dato= 12/32│3/8 AA

A

1
(3/8=12/32)=F y
(3/8=3x(3/12))=F

Falso

2
(3/8=3/8)=V y

(12/32=3x(3/12))=F
Falso

B
1 (1/6=12/32)=F y (3/8=1/2)=F Falso

2 (1/6=3/8)=F y (12/32=1/2)=F Falso

C

1
(null=12/32)=MM y

(3/8=√𝟗/𝟔𝟒)=V
Verdadero

2
(null=3/8)=MM y

(12/32=√9/64)=V
Verdadero

Tabla 9. Listados de pruebas difusa para 1/6│1/2

EF Dato= 1/6│1/2 AA

D
1 (1/6=2x1/4)=F y (1/6=1/2)=F Falso

2 (1/6=1/6)=V y (2x1/4=1/2)=V Verdadero

E
1 (3/8=1/6)=F y (2x1/4=3x3/12)=F Falso

2 (3/8=2x1/4)=F y (1/6=3x3/12)=F Falso

Tabla 10. Listados de pruebas para 2x3/4x4│1/4

E Dato= 2x3/4x4│1/4 AA

J

1
(03/8=2x3/4x4)=V y

(1/4=3x(3/12))=V
Verdadero

2 (3/8=2x3/4x4)=F y (1/4=3x(3/12))=F Falso

Tabla11. Nueva Regla Generada por el SCD

N° Regla

R4
Si CJ=matemáticas es A y AA=calcular es A
entonces
EF=dato es V y AM=mover es A

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1044

ISSN 2007-9737

una de las dos soluciones al azar).

Siguientes Pasos: se evalúan nuevas
iteraciones que aparecen en el juego, debido a
los movimientos en el mismo. Por ejemplo,
después del último movimiento, la regla R2
genera la tabla 9.

Como se observa en la tabla 9, existen 4
posibles soluciones (𝐸𝐹𝑑1, 𝐸𝐹𝑑2, 𝐸𝐹𝑒1 y 𝐸𝐹𝑒2),

con una sola valida 𝐸𝐹𝑑2.

Posteriormente, se dispara la regla R3, para
realizar el siguiente movimiento según 𝐸𝐹𝑑2 ,
donde la flecha roja indica hacia donde se movió
la pieza, quedando como se observa en la
figura 14.

En la siguiente iteración, de nuevo se vuelve a
activar R2, generando la tabla 10. Como se

observa en la tabla 10, existen 2 posibles
soluciones (𝐸𝐹𝑗1, 𝐸𝐹𝑗2) con una sola valida 𝐸𝐹𝑗1.

Al final, se realiza el último movimiento según
lo establecido por 𝐸𝐹𝑗1, moviéndose en la pieza en

dirección que apunta la flecha roja, en la figura 15.

d. Actualización de la regla: basado en las reglas
R1, R2 y R3, el SCD puede producir un
proceso de generación de nuevas reglas
(estrategias). Por ejemplo, la tabla 11 muestra
una posible nueva regla R4 generada
con ellas.

Una vez actualizada las reglas, se iniciaría un
nuevo ciclo (iteración) del SCD para validar las
estrategias definidas en el JSE.

Adecuación por Emergencia Fuerte de
Secuencia

Si se da el caso de que el JSE de domino
“combinado” no cumple con las expectativas del
profesor que está explicando la clase en el SaCI,
entonces se podría utilizar la emergencia fuerte
por secuencia. Para ello, se busca en otros
repositorios de aprendizaje, nuevas tramas o JSE,
que permiten explicar de mejor forma las
fracciones en la clase de matemáticas del SaCI.
Debido a todo esto, se realizan los
siguientes pasos:

a. Seleccionar nuevos repositorios: en este
caso de estudio se escoge (http://www.

educaplay.com), eligiendo varios JSE que
pueden ser utilizados para el tema, como se
observa en la figura 16.

b. Búsqueda de nuevas tramas: se extraen los
metadatos de los JSE o tramas seleccionadas,
como se observa en la tabla 12, en la cual se
da un ejemplo de un metadato para una de las
tramas.

c. Generación del nuevo JSE: se construye
primero un subgrafo que representa las tramas
del JSE inicial “Combinado”, al cual se le
agregan las nuevas tramas de los 5 JSE
nuevos de eduplay de la figura 16, para
conformar el grafo que se usa para construir un
nuevo JSE (figura 17).

Tabla 12. Metadatos

LOM
Tema

Deseado
Puntuación

Title
Fracciones

Equivalentes
(VLE)

1

Language es (SA) 1

Description
fracciones

(VLE)
0.91

Keyword
fracciones

(VLE)
1

Coverage universal (SA) 1

Format
javascript, html
5 o flash (ROA)

1

typicalAgeRange 15 (SA) 0,42

Difficulty very high (SA) 1

Duration
30 minutos

(VLE)
0,43

interactivityLevel very high 1

semanticDensity very high (SA) 0,53

intendedEndUserRole learner(SA) 1

Context
schoolmate

(SA)
1

cognitiveProcess practise (SA) 1

Total 12,39/15=0,826

Tabla 13. Población inicial

Ind P1 P2 P3 P4 FO

JSE1 5 5 10 10 FO1

JSE2 2 1 2 8 FO2

JSE3 4 5 10 6 FO3

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1045

ISSN 2007-9737

En ese grafo, se interconectan todos los nodos
de las tramas, con las subtramas del JSE inicial,
para formar el grafo que ACO usa en su proceso.

A partir del grafo inicial, empieza a actuar el
algoritmo ACO (ver figura 18). El proceso que se
sigue es el mismo explicado en [6, 22].

La figura 18 muestra el JSE nuevo generado, el
cual está conformado por tres subtramas. Una
subtrama es “Fracciones Equivalentes”, la cual
posee 0.826 de puntuación de metadatos, le sigue
“Ecuación con Fracciones Algebraicas” con 0.817
y el Domino “Combinado” con 0.804 se observa
que sigue utilizando este domino por su
alta puntuación.

La figura 19 sintetiza los pasos seguidos el
proceso de emergencia por secuencia,
antes narrados.

Adecuación por Emergencia Fuerte de
Propiedad:

Determina los valores idóneos de los
parámetros del JSE. Para determinar el SAV sigue
las siguientes fases:

a. Población inicial: son las diferentes
ejecuciones de este JSE, dado por diferentes
grupos de estudiantes en el SaCI. Cada
ejecución del juego se realiza con un conjunto
de valores específicos de los parámetros del
JSE. A partir de las ejecuciones del JSE, se
optimizan sus parámetros. Para este JSE, sus
parámetros son: P1= fichas iniciales que tiene
el jugador, P2=fichas iniciales en el tablero,
P3= penalización por mala jugada, y P4=
cuantas rondas se juegan en total. La tabla 13

Fig. 18. Nuevo JSE

Fig. 19. Síntesis de los pasos del JSE

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1046

ISSN 2007-9737

muestra la población inicial, suponiendo 3
estudiantes que jugaron. Las figuras 20 y 21
muestran un momento del juego, para JSE1
y JSE3.

b. Función Objetivo: para dar un ejemplo del
cálculo de esta función, se emplea la Ec. (8) en
uno de los individuos de la tabla 13. En este
caso en particular, se supone a = 0.1 y b = 1
Además, se supone que los estudiantes
jugaron 1 vez el JSE, y las puntuaciones
obtenidas por cada una fueron: PA1=2386,
PA2= 2663 y PA3= 2556, con una duración en
cada juego en tiempo de LE1 = 80, LE2 = 90, y
LE3 = 70 segundos. Ahora se puede calcular el
FOi de cada uno. Por ejemplo, para el primer
individuo sería:

𝐹𝑂 = 2386 ∗ .01 − 80 = 158.6

Esto mismo se hace para el resto de individuos.
Ese individuo en particular tendrá la estructura
mostrada en la tabla 14.

c. Espacio de Creencias: en este ejemplo, solo
se utilizan dos conocimientos, el situacional y el
normativo. La tabla 15 muestra el conocimiento
situacional después que los 3 estudiantes
jugaron, Vj son los valores con los que se ha
usado hasta ahora el parámetro j en esos
juegos realizados, con sus respectivos índice
de ocurrencias (IOj) y calidad del mismo (Cj).

Por otro lado, la tabla 16 muestra el
conocimiento normativo después que los 3
estudiantes jugaron.

d. Protocolo Comunicación: los JSE actualizan
el conocimiento en el espacio de creencia de la
siguiente forma:

i. Función de Aceptación: los valores de
IOj, Cj, LI y LS, de las tablas 15 y 16, se van
actualizando a través de las generaciones,
usando las Ecs 9, 10, 11 y 12,
respectivamente. En este sentido, a
medida que vayan jugando los estudiantes,
esos conocimientos se van actualizando
usando esas ecuaciones.

ii. Función de Influencia: se aplica la
mutación dirigida por usar el conocimiento
en el espa3cio de creencia en la población.
La mutación se aplica a la población con
cierta probabilidad, y usa aleatoriamente

uno de los dos conocimientos
definidos previamente.

Ahora bien, el AC usa también otros
operadores genéticos en la fase de reproducción
de nuevos individuos en la población, éstos son el
operador de cruce y de mutación clásico.

A continuación, presentamos en la tabla 17,
una posible evolución del AC en el tiempo, con los
3 jugadores que repiten varias veces e JSE, para
terminar de aprender las fracciones en el curso
de SaCI.

Supongamos que se cruzan los individuos del
circulo amarillo (JSE1 y JSE2) de la Tabla anterior.

Fig. 20. Domino “Combinado” JSE1

Fig. 21. Domino “Combinado” JSE3

Tabla 14. Ejemplo de Individuo

P1 P2 P3 P4 FO

5 5 10 10 158,6

Tabla 15. Conocimiento Situacional para P3

Vj IOj Cj

10 2 170,6

2 1 176,3

Tabla 16. Conocimiento Normativo del JSE bajo estudio

P1 P2 P3 P4

1 5 1 8 2 100 5 100

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1047

ISSN 2007-9737

Si se supone que el punto de cruce es la mitad, en
la siguiente iteración se producen dos nuevos
individuos (instancias del JSE, ver Tabla 18).

Así va evolucionando el juego, y para cada
nuevo juego realizado por los estudiantes con las
nuevas inicializaciones de parámetros en el JSE,
se actualiza el conocimiento en el espacio de
creencias, hasta un momento en que convergen

esos valores (dejan de cambiar. En ese momento,
se han obtenidos los valores y rangos de los
parámetros con los que los estudiantes aprenden
mejor las fracciones usando ese JSE.

Por ejemplo, si suponemos que es a la iteración
n-ava, el mejor valor de P1 será 1, y su rango entre
1 y 7, y así para el resto de los parámetros.

Tabla 17. Evolución en el tiempo

#Iters
Población (3 individuos)

JSE P1 P2 P3 P4 FO

1ra

1 5 5 10 10 158,6

2 2 1 2 8 176,3

3 4 5 5 6 185,6

n_ava

1 5 1 2 10 145,9

2 2 5 5 8 156,6

3 6 5 10 4 92,5

Espacio de Creencias Conocimiento Situacional

 Pj Vj IOj Cj

1ra

1

5 1 158,6

2 1 176,3

4 1 185,6

2
1 1 176,3

5 2 170,6

3
10 2 170,6

2 1 176,3

4

10 1 158,6

8 1 176,3

6 1 185,6

n-ava 1

1 5 181,4

2 4 124,2

3 6 151,1

4 4 143,5

5 5 101,6

6 4 122,1

7 2 94,5

Conocimiento Normativo

 P1 P2 P3 P4

1ra 1 5 1 8 2 100 5 100

n_ava 1 7 4 10 3 75 3 60

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1048

ISSN 2007-9737

5. Comparación con otras propuestas

En esta sección, se compara nuestro trabajo
con otros. La comparación que se propone realizar
es basada en los tipos de comportamientos
emergentes que permiten los MJSE (ver tabla 19).

En el JE Metrópolis [3, 4, 21], existen ciudades
auto-gestionadas, donde aparecen 2 tipos de
emergencia: la final y la de propiedad.

Por ejemplo: patrones urbanísticos que indican
cuando debe finalizar el juego (emergencia del
final), o la modificación de los radios de cobertura
de cada tipo de edificación, según las
características de los jugadores (emergencia
de propiedad).

Ahora, bien, en ese juego no se propone un
MJSE, sino simplemente ese juego tiene esas
dos emergencias.

En [13] proponen un JS para la rehabilitación
física basado en un Kinect de Xbox One, que
permite el seguimiento de articulaciones en un
pedal del timón. El sistema está construido para la
rehabilitación adaptativa, basada en la robótica,
cinemática inversa (IK), y reglas difusas del tipo
Mamdani's que definen las estrategias de
rehabilitación, las cuales se van adecuando de
acuerdo al jugador (emergencia de estrategia), y
sus variables de salida definen los parámetros del
JS, en función del rendimiento de la persona en la
terapia, y su nivel de habilidad física (emergencia
de propiedad).

En [14] se describen juegos gráficos con
incertidumbre estocástica, donde se utiliza sistema
de transición difusa (FTS, por sus siglas en inglés)
para hacer emerger estrategias. El objetivo de un

jugador es maximizar su valor para alcanzar
tareas, mientras que el rival apunta a lo contrario.

En [23] se propone un método de aprendizaje
reforzado para resolver tareas en escenarios
(emergencia de secuencia), compuesto de dos
etapas: primero, aprende a mapear videos de
múltiples fuentes con una representación en
común, siguiendo unos objetivos (es supervisado);
segundo, se utiliza un método para la exploración
de los escenarios propuestos en el mapeo, para
determinar si se imita la trayectoria de un jugador.

Para ello, se construye una función de
recompensa que alienta a un agente a imitar el
juego de uno o varios humanos.

En [24] se presenta un enfoque novedoso de
motor de juego de simulación avanzada.
Particularmente, los agentes inteligentes hacen
predicciones sobre su escenario para reajustarlos
(emergencia de secuencia).

Se hace uso como si fuera un JS, del famoso
juego Súper Mario Bros, para probar el enfoque.
Se demuestra la predicción de estados futuros en
escenarios de ese juego, usando redes
neuronales convolucionales (CNN).

Como se ha podido observar, ninguno propone
un MJSE, algunos proponen un MJ [24], otros
simplemente permiten que se den ciertos tipos de
emergencia durante el juego [3, 4, 13, 14, 23].
Además, permiten una o dos emergencias, y no se
adaptan a un contexto.

En cambio, el componente SAV del MJSE
propuesto en este trabajo, permite la emergencia
fuerte a nivel de: estrategias (para lo cual utiliza
SCD), secuencias (para lo cual utiliza ACO), y
propiedades (para lo cual utiliza AC), lo que
permite adecuar el JSE a un SaCI.

Tabla 18. Nuevos Individuos

Ind P1 P2 P3 P4

JSE2 2 1 10 6

JSE3 4 5 2 8

Tabla 19. Comparación con otros trabajos recientes

Comportamiento Emergente [3,4,21] [13] [14] [23] [24] Presente Trabajo

Estratégico X X X

Secuencia X X X

Propiedad X X X

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1049

ISSN 2007-9737

6. Conclusiones

En este artículo presentamos el componente
SAV para un MJSE, el cual permite la emergencia
fuerte, de tal manera de adaptar un JSE al proceso
al entorno. El componente SAV fue probado en un
aula inteligente, de tal manera de permitir al JSE
adecuarse al proceso de enseñanza-aprendizaje
que se esté dando en un momento dado en el
aula inteligente. Las opciones de adaptación que
posibilita el SAV sobre un JSE en un SaCI están
dirigidas a la emergencia de estrategias, en el
sentido de posibilitar nuevas formas, reglas, etc.,
de comportamiento en el JSE. Esto es realizado a
través del uso de SCDs que manipulan las
estrategias de acuerdo a sus usos durante el
juego. También, posibilita la emergencia de
secuencias, de tal forma de permitir nuevos
escenarios durante el juego, utilizando ACO para
dicha tarea. Finalmente, permite la emergencia de
propiedades, de tal manera de adecuar los
parámetros del JSE al contexto estudiantil de SaCI
en un momento dado, utilizando para ello los ACs.

Como proyecto futuro se realizarán pruebas del
MJSE en diferentes procesos de enseñanza-
aprendizaje, y se evaluara su impacto en los
mismos usando indicadores pedagógicos que
permitan mostrar su efectividad en
dichos procesos.

Referencias

1. Bellotti, F., Berta, R., & de Gloria, A. (2010).

Designing effective serious games: opportunities and
challenges for research. International Journal of
Emerging Technologies in Learning, Vol. 5, pp. 22–
35. DOI:10.3991/ijet.v5s3.1500.

2. Steven, J. (2008). Sistemas emergentes: o qué
tienen en común hormigas, neuronas, ciudades y
software. Ediciones Turner/Fondo de Cultura

Económica, España.

3. Aguilar, J., Altamiranda-Pérez, J., Díaz-Villarreal,
F., Cordero, J., Chávez, D., & Gutiérrez-de-Mesa,
J. (2019). Metropolis: an emerging serious game for
the smart city. DYNA, Vol. 86, No. 211, pp. 215–224.

DOI:10.15446/dyna.v86n211.80864.

4. Aguilar, J., Altamiranda, J., & Chávez, D. (2016).

Extensiones a metrópolis para una emergencia
fuerte. Revista Venezolana de Computación, Vol. 3,
No. 2, pp. 38–46.

5. Aguilar, J., Altamiranda, J., Díaz, F., & Mosquera,
D. (2016). Motor de juego serios en ARMAGAeco-c.

Revista Científica UNET, Vol. 28, No. 2, pp.
100– 110.

6. Aguilar, J., Altamiranda, J., & Díaz, F. (2018).

Design of a serious emerging games engine based
on the optimization algorithm of ant colony. DYNA,
Vol. 85, No. 206, pp. 311–320. DOI:10.15446/
dyna.v85n206.69881.

7. Aguilar, J., Menolascina, Y., & Rivas, F. (2005).

Compiler design for fuzzy classifier systems.
WSEAS Transactions on Systems, Vol. 4, No. 4, pp.

262–267.

8. Aguilar, J. & Cerrada, M. (2000). Un sistema

clasificador difuso para el manejo de fallas. Revista
Técnica de la Facultad de Ingeniería, Vol. 23, No. 2,
pp. 98–108.

9. Terán, J., Aguilar, J., & Cerrada, M. (2014).

Cultural learning for multi-agent system and its
application to fault management. Conference: IEEE
Congress on Evolutionary Computation (CEC).

DOI:10.1109/CEC.2014.6900438.

10. Brandão, R. & Neves, A.M. (2014). Design da

ludonarrativa: principios da narratología aplicados
ao game design para concepção de mecánicas.
Proc. XIII SBGames, pp. 112–119.

11. Bigogno, M., Réda, V., & La-Carreta, M. (2017).

Dissonância ludonarrativa x suspensão da
descrença: quando o gameplay desmente a
narrativa ou quando o jogador apenas a aceita. Proc.
SBGames, pp. 1068–1071.

12. Shafi, K. & Abbass, H.A. (2017). A survey of
learning classifier systems in games. IEEE
Computational intelligence magazine, Vol. 12, No. 1,
pp. 42–55, DOI:10.1109/MCI.2016.2627670.

13. Esfahlani, H.S., Cirstea, S., Sanaei, A., & Wilson,
G. (2017). An adaptive self-organizing fuzzy logic

controller in serious game for motor impairment
rehabilitation. IEEE 26th International Symposium on
Industrial Electronics (ISIE´17), pp. 1311–1318. DOI:
10.1109/ISIE.2017.8001435.

14. Pan, H., Li, Y., Cao, Y., & Li, D. (2017). Reachability

in fuzzy game graphs. Proceedings IEEE
Transactions on Fuzzy Systems, Vol. 25, No. 4, pp.
984–972.

15. Aguilar, J., Valdiviezo, P., Cordero, J., & Sánchez,
M., (2015). Conceptual design of a smart classroom
based on multiagent systems. Proc. International
Conference on Artificial Intelligence (ICAI'15), pp.

471–477.

16. Sánchez, M., Aguilar, J., Valdiviezo, P., Cordero,
J. (2015). A smart learning environment based on
cloud learning. International Journal of Advanced

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

José Aguilar, Junior Altamiranda, Francisco Díaz1050

ISSN 2007-9737

Information Science and Technology (IJAIST), Vol.
39, No. 39, pp. 36–49.

17. Cordero, J., Sánchez, M., Aguilar, J., &
Valdiviezo, P. (2015). Basic features of a reflective

middleware for intelligent learning environment in the
cloud (IECL). Asia-Pacific Conference on Computer
Aided System Engineering (APCASE), pp. 1–6.
DOI:10.1109/APCASE.2015.8.

18. Aguilar, J., Altamiranda, J., Díaz, F., (2020).

Specification of a managing agent of emergent
serious games for a smart classroom. IEEE Latin
America Transactions, Vol. 18, No. 1, pp. 51–58.
DOI:10.1109/TLA.2020.9049461.

19. Jin, X. & Reynolds, R.G. (1999). Using knowledge-

based evolutionary computation to solve nonlinear
constraint optimization problem: a cultural algorithm
approach. Proceedings Congress on Evolutionary
Computation (CEC´99), pp. 1672–1678. DOI:10.
1109/CEC.1999.785475.

20. Mitchell, M. (2002). An introduction to genetic

algorithms. MIT press.

21. Aguilar, J. (2014). Introducción a los Sistemas
Emergentes. Universidad de Los Andes.

22. Aguilar, J., Altamiranda, J., Diaz, F., Gutiérrez, J.,
& Pinto, A. (2019). Sistema adaptativo de tramas

para juegos serios emergentes basado en el
algoritmo de optimización de colonia de hormigas.
Proceedings XLV Latin American Computer
Conference (CLEI´19).

23. Aytar, Y., Pfaff, T., Budden, D., Le-Paine, T.,
Wang, Z., & de-Freitas, N. (2018). Playing hard

exploration games by watching YouTube.
Proceedings 32nd Conference on Neural Information
Processing Systems, pp. 1–15.

24. Guzdial, M., Li, B., & Ried, M. (2017). Game engine
learning from video. 26th International Joint
Conference on Artificial Intelligence (IJCAI'17), pp.
3707–3713. DOI:10.24963/ijcai.2017/518.

Article received on 31/03/2019; accepted on 08/01/2020.
Corresponding author is José Aguilar.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1029–1051
doi: 10.13053/CyS-24-3-3180

Sistema Adaptativo para la Generación de Comportamientos Emergentes en Juegos Serios Emergentes 1051

ISSN 2007-9737

