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Abstract. Different partitions of the parameter space
of all linear semi-infinite programming problems with
a fixed compact set of indices and continuous right
and left hand side coefficients have been considered
in this paper. The optimization problems are classified
in a different manner, e.g., consistent and inconsistent,
solvable (with bounded optimal value and nonempty
optimal set), unsolvable (with bounded optimal value
and empty optimal set) and unbounded (with infinite
optimal value). The classification we propose generates
a partition of the parameter space, called second general
primal-dual partition. We characterize each cell of the
partition by means of necessary and sufficient, and
in some cases only necessary or sufficient conditions,
assuring that the pair of problems (primal and dual),
belongs to that cell. In addition, we show non emptiness
of each cell of the partition and with plenty of examples
we demonstrate that some of the conditions are only
necessary or sufficient. Finally, we investigate various
questions of stability of the presented partition.

Keywords. Linear semi-infinite programming, parameter
space of continuous problems, primal-dual partition,
stability properties.

1 Introduction

For a given infinite compact Hausdorff topological
space T and n ∈ N, we associate with each
triple π = (a, b, c) ∈ Π := C(T )n × C(T ) × Rn,
where C(T ) is the Banach space of all continuous
functions over the compact T , a continuous linear

semi-infinite programming problem:

P : min
x∈Rn

c′x ,

s.t. a ′tx ≥ bt, t ∈ T ,

and its corresponding Haar’s dual problem:

D : max
λ∈R(T )

+

∑
t∈T

λtbt

s.t.
∑
tεT

λtat = c,

where R(T )
+ is the set of nonnegative functions λ,

and λ : T → R+ such that λt 6= 0 for at most a
finite number of indices belonging to T .

Among the recent applications of continuous
linear semi-infinite programming (LSIP), let us
mention that the primal problem P arises in
functional approximation [5, 6], finance [12],
Bayesian statistics [14], and the design of
telecommunications networks [4, 13, 16], whereas
the dual D has been used in robust Bayesian
analysis [3] and optimization under uncertainty [1].

We denote the feasible (optimal) set of P and D
by F (F ∗) and Λ (Λ∗), respectively. In the space
of parameters Π we consider the topology of the
uniform convergence generated by the following
extended distance: for given πi = (ai, bi, ci) ∈ Π,
i = 1, 2, the distance between π1 and π2 is:

d(π1,π2) :=

= max

{
||c1 − c2||∞ , max

t∈T

∣∣∣∣∣∣∣∣(a1
t

b1t

)
−
(
a2
t

b2t

)∣∣∣∣∣∣∣∣
∞

}
.
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By ΠP
C , ΠP

IC , ΠP
B and ΠP

UB , (ΠD
C , ΠD

IC , ΠD
B and

ΠD
UB) we denote the sets of parameters providing

primal (dual) consistent, inconsistent, bounded,
(with finite optimal value), and unbounded, (with
unbounded optimal value) problem, respectively.

In ordinary linear programming (LP), if the primal
problem is solvable then the dual problem is also
solvable and the optimal values of both problems
coincide. In LSIP these properties fail in general.
The continuity property of π = (a, b, c) ensures nice
theoretical properties (e.g., in the duality context)
and has computational implications (for instance,
continuity guarantees the convergence of LSIP
discretization algorithms). In particular, Goberna,
Lopez, Todorov, Ochoa and Vera de Serio, among
others, have investigated conditions under which
the primal-dual pair in LSIP satisfies some of the
above mentioned properties (see [7, 10, 11, 15]).

In [11], Goberna and Todorov have considered
the consistency of the primal and dual problems,
and have presented a characterization of the sets
of the primal partition {ΠP

IC , ΠP
B , ΠP

UB}, the sets
of the dual partition {ΠD

IC , ΠD
B , ΠD

UB} and the sets
(or states) of the primal-dual partition, formed by
the intersections of the corresponding states of the
primal and dual partitions. The stability properties
of the different states have been studied, as well.

In [10], Goberna and Todorov divided the set
of parameters with bounded primal (dual) problem
ΠP
B (ΠD

B ) into sets of parameters that have solvable
primal (dual), problem with bounded optimal set
ΠP
S (ΠD

S ) and a set of parameters that have
unsolvable primal (dual), problem or unbounded
optimal set ΠP

N (ΠD
N ). This generates what we call a

first general primal partition {ΠP
IC , ΠP

S , ΠP
N , ΠP

UB},
a first general dual partition {ΠD

IC , ΠD
S , ΠD

N , ΠD
UB},

and a first general primal-dual partition. In the
same article, Goberna and Todorov characterized,
by means of necessary and sufficient conditions,
when a given parameter belongs to a certain state
of the above partitions.

They have also studied several topological and
stability properties of each cell of the partitions.
Later on, Ochoa and Vera de Serio reconsidered
the characterizations presented in [11], and
investigated the stability of the states in the general
case [15], i.e., without continuity properties of the
functions involved in LSIP problems.

In this paper we present a more natural
primal-dual partition in continuous LSIP than the
one given in [10]. The new partition is generated by
dividing the set of bounded primal (dual) problems
ΠP
B (ΠD

B ) in two: the set of parameters that
have solvable primal (dual) problem ΠP

s (ΠD
s ),

and the set of parameters that have unsolvable
primal (dual) problem ΠP

n (ΠD
n ). Formally,

we consider the partitions {ΠP
IC , ΠP

s , ΠP
n , ΠP

UB}
({ΠD

IC , ΠD
s , ΠD

n , ΠD
UB}) of Π from the primal (dual)

perspective, and the primal-dual {ΠP
s ∩ ΠD

s , ΠP
n ∩

ΠD
s , ΠP

s ∩ ΠD
n , ΠP

n ∩ ΠD
n } of the set of parameters

with primal and dual bounded problems.

We have obtained some necessary and some
sufficient conditions showing that a certain
element of the space of parameters belongs to
certain subset generated by the second general
primal-dual partition. Intersecting the nonempty
pairs of the new general primal and dual partitions
we obtain the second general primal-dual partition.
By means of suitable examples we demonstrate
that each subset of the second general primal-dual
partition is nonempty. Only in a few cases we
have succeeded to find necessary and sufficient
conditions. If it is not the case, we provide
counterexamples showing that given conditions are
only necessary or sufficient. Finally, we investigate
several topological and stability properties of the
cells in the second general primal-dual partition.

This paper is organized as follows. In Section
2, we introduce the necessary notations, recall
the basic results on LSIP which are frequently
used throughout this article, and summarize
the conditions presented in [10] and [11] that
characterize the states of the primal-dual partition
and the first general primal-dual partition. Section
2.1 provides new conditions which are either
necessary of sufficient guaranteeing that a given
parameter belongs to a certain element of the
second general primal-dual partition. Finally, we
study some topological properties of the states of
the second general primal-dual partition in Section
2.1.1. More precisely, we prove that the interior of
certain cells is nonempty and provide some density
results.

The results of this paper are partially announced
without proofs in [2].
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2 Preliminaries

Let us introduce the necessary notations for this
paper. The symbol 0n denotes the null-vector in
Rn, the j-th element of the canonical basis of Rn is
ej . Given a nonempty set X ⊂ Rn, convX and
coneX are the convex and the canonical hull of
X, respectively (cone∅ = {0n}). If X is a convex
set, dimX (dim∅ = −1) denotes its dimension.
From the topological side, if X is a subset of any
topological space, intX, clX and bdX represent
the interior, the closure and the boundary of X,
respectively.

We recall some concepts and basic results on
LSIP, we shall use (all the proofs and references
can be found in [9] and [17]). We associate
with each triple π = (a, b, c) the first and second
moment cones of π :

M = cone {at : t ∈ T},

and

N = cone

{(
at
bt

)
: t ∈ T

}
,

as well as its characteristic cone

K = cone

{(
at
bt

)
: t ∈ T ;

(
0n
−1

)}
.

The Existence Theorem establishes that P is
consistent if and only if (0n, 1)′ /∈ clN . In such
a case, the non-homogeneous Farkas Lemma
establishes that the inequality c′x ≥ d holds for all
x ∈ F , if and only if (c, d) ∈ clK. For the dual
problem, D is consistent if and only if c ∈M .

When various triples are simultaneously consi-
dered, they and their associated feasible, optimal,
etc. sets will be distinguished by means of
superscripts or subscripts: πi, Pi, Di, Fi, F ∗i , Λi,
Λ∗i , Mi, Ni, Ki.

We denote by vP (π) and vD(π) the optimal value
of P and D, defining as usual:

vP (π) = +∞ and vD(π) = −∞

respectively, when the corresponding problem is
inconsistent.

If we consider different primal-dual states of the
LSIP problems, since P and D can be either

inconsistent (IC), bounded (B), or unbounded
(UB), crossing both criteria, we get nine possible
duality states, which are reduced to six by
the Weak Duality Theorem: vD(π) ≤ vP (π).
The primal-dual partition is presented in Table 1
(according to the Duality Theorem, the duality
states 5 and 6 are impossible in LP [8], Proposition
4.2):

Table 1. Primal-dual partition

D \ P IC B UB

IC Π4 Π5 Π2

B Π6 Π1

UB Π3

where Π1 = ΠP
B ∩ ΠD

B , Π2 = ΠP
UB ∩ ΠD

IC ,
Π3 = ΠP

IC∩ΠD
UB , Π4 = ΠP

IC∩ΠD
IC , Π5 = ΠP

B∩ΠD
IC ,

and Π6 = ΠP
IC ∩ΠD

B .

The next Lemma describes the characterization
of the duality states Πi, i = 1, ..., 6 in terms of M ,
N , and K. This characterization appears in [11].

Lemma 2.1. The following assertions hold:
(i) π ∈ Π1 if and only if (0n, 1)′ /∈ clN and c ∈M .
(ii) π ∈ Π2 if and only if (0n, 1)′ /∈ clN and ({c} ×
R) ∩ cl N = ∅.
(iii) π ∈ Π3 if and only if {c} × R ⊆ K.
(iv) π ∈ Π4 if and only if (0n, 1)′ ∈ cl N and c /∈M .
(v) π ∈ Π5 if and only if c /∈M , (0n, 1)′ /∈ clN and
({c} × R) ∩ clN 6= ∅.
(vi) π ∈ Π6 if and only if (0n, 1)′ ∈ clN , c ∈ M
and {c} × R * K.

Corollary 2.2. [[9], Corollary 9.3.1] Given a
consistent problem P in LSIP, the next statements
are equivalent.
(i) F ∗ is nonempty and bounded;
(ii) c ∈ intM .
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The next results are valid in continuous LSIP,
where the Slater Condition plays a crucial role.
Recall that π = (a, b, c) satisfies the Slater
Condition if there exists x ∈ Rn such that a ′tx > bt,
for all t ∈ T . π satisfies the Slater Condition if and
only if π ∈ int ΠP

C (This result can be found in [9]).

Theorem 2.3. [[9], Theorem 9.8] If P is a
consistent LSIP problem with consistent dual
problem D, then the next statements are
equivalent.
(i) Λ∗ is nonempty and bounded;
(ii) π satisfies the Slater Condition.

We will use the next characterization of ΠP
S and

ΠD
S .

Lemma 2.4. [[10], Lemma 2.2]
(i) π ∈ ΠP

S if and only if
(
0n
1

)
/∈ clN and c ∈ intM .

(ii) π ∈ ΠD
S if and only if c ∈ M and π satisfies the

Slater Condition.

If we consider the parameter space Π, P
and D can be either consistent, inconsistent,
bounded or unbounded. Now, if in addition
to the boundedness we consider the solvability,
the bounded problems can be either solvable
with optimal set nonempty and bounded (S) or
unsolvable (N). In the latter case we include
the problems that have optimal set unbounded.
With this classification we obtain the first general
primal partition {ΠP

IC , ΠP
S , ΠP

N , ΠP
UB} and the first

general dual partition {ΠD
IC , ΠD

S , ΠD
N , ΠD

UB} of the
optimization problems space. Crossing both
partitions, we get the first general primal-dual
partition, which is presented in Table 2:

where Π1
1 = ΠP

S ∩ ΠD
S , Π2

1 = ΠP
S ∩ ΠD

N ,
Π3

1 = ΠP
N ∩ΠD

S and Π4
1 = ΠP

N ∩ΠD
N .

In [10], Goberna and Todorov showed that ΠP
S ∩

ΠD
IC and ΠP

IC ∩ ΠD
S are empty sets, for this reason

the corresponding boxes do not appear numbered.
The next Theorem confirms that Πi

1, i = 1, ..., 4 are
nonempty.

Theorem 2.5. [[10], Theorem 3.1] Πi
1 6= ∅,

i = 1, ..., 4.

Table 2. First general primal-dual partition

D \ P IC B
S N

UB

IC Π4 Π5 Π2

B

S

N Π6

Π1
1 Π3

1

Π2
1 Π4

1

UB Π3

The states Πi
1 6= ∅, i = 1, ..., 4, in continuous

LSIP, are characterized by Goberna and Todorov in
the next Theorem.

Theorem 2.6. [[10], Theorem 3.3]
(i) π ∈ Π1

1 if and only if c ∈ intM and π satisfies
the Slater Condition.
(ii) π ∈ Π2

1 if and only if
(
0n
1

)
/∈ clN , c ∈ intM and

π does not satisfy the Slater Condition.
(iii) π ∈ Π3

1 if and only if c ∈ M \ intM and π
satisfies the Slater Condition.
(iv) π ∈ Π4

1 if and only if
(
0n
1

)
/∈ clN , c ∈M \ intM

and π does not satisfy the Slater Condition.

2.1 Second Refined Primal-dual Partition

In this section we present a refinement of Table
1, different to the refinement of Goberna and
Todorov, presented in Table 2. To do this, we
separate the parameter set with bounded primal
problem ΠP

B , into two parameter sets. The first
one, with solvable primal problem ΠP

s and the
other with unsolvable primal problem ΠP

n . The
same classification is made with respect to the
dual problem. Having in mind the new notations,
we get the second general primal partition
{ΠP

IC , ΠP
s , ΠP

n , ΠP
UB} and the second general dual

partition {ΠD
IC , ΠD

s , ΠD
n , ΠD

UB} of the parameter
space. Crossing both partitions we obtain the
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second general primal-dual partition. The possible
duality states in continuous linear optimization are
enumerated in Table 3:

Table 3. Possible duality states in continuous linear
optimization

D \ P IC B
s n

UB

IC Π4 Π̂1
5 Π̂2

5 Π2

B

s

n

Π̂1
6

Π̂2
6

Π̂1
1 Π̂3

1

Π̂2
1 Π̂4

1

UB Π3

where Π̂1
1 = ΠP

s ∩ ΠD
s , Π̂2

1 = ΠP
s ∩ ΠD

n , Π̂3
1 = ΠP

n ∩
ΠD
s , Π̂4

1 = ΠP
n∩ΠD

n , Π̂1
5 = ΠP

s ∩ΠD
IC , Π̂2

5 = ΠP
n∩ΠD

IC ,
Π̂1

6 = ΠP
IC ∩ΠD

s and Π̂2
6 = ΠP

IC ∩ΠD
n .

Lemma 2.7. Π̂1
1 ! Π1

1 and Π̂4
1  Π4

1.

Theorem 2.8. Let π ∈ Π with primal and
dual problems be consistent and bounded. The
following assertions are true:
(i) If c ∈ intM and π satisfies Slater Condition, then
π ∈ Π̂1

1;
(ii) If π ∈ Π̂2

1, then π does not satisfy the Slater
Condition;
(iii) If π ∈ Π̂3

1, then c ∈M\ intM ;
(iv) If π ∈ Π̂4

1, then c ∈ M \ intM and π does not
satisfy the Slater Condition.

Proof. i) Suppose that c ∈ intM and π satisfies the
Slater Condition. First, if c ∈ intM , then F ∗ 6= ∅
and F ∗ is bounded [Corollary 2.2]. On the other
hand, if π satisfies the Slater Condition, then Λ∗ 6=
∅ and Λ∗ is bounded [Theorem 2.3]. Therefore, if
c ∈ intM and π satisfies the Slater Condition, then
π ∈ Π̂1

1.

ii) If π ∈ Π̂2
1, then Λ∗ = ∅, by Theorem 2.3 π

does not satisfy the Slater condition.

iii) If π ∈ Π̂3
1, then F ∗ = ∅, by Corollary 2.2 c /∈

intM , in addition from hypothesis c ∈ M . So, we
conclude that c ∈M \ intM .

iv) If π ∈ Π̂4
1, then F ∗ = ∅ and Λ∗ = ∅ this

implies c ∈ M \ intM and π does not satisfy the
Slater Condition.

With the following examples, we show that
the above conditions, are only sufficient or
necessary, respectively. The examples also show
that Π̂i

1 6= ∅ for i = 1, 2, 3, 4, which justifies the
previous partition and Theorem. In ordinary linear
programming we have Π̂2

1 = Π̂3
1 = Π̂4

1 = ∅,
according to the Duality Theorem [[8], Theorem
4.4].

In the Example 2.9, π1 ∈ Π̂2
1 and π1 does not

satisfy the Slater Condition, while in the Example
2.10, π2 does not satisfy the Slater Condition and
π2 /∈ Π̂2

1. This shows that the condition (ii), stated
in Theorem 2.8, is not a sufficient one.

Example 2.9. Consider the optimization problem
in R2

P1 : min
x∈R2

x2

s.t. x1 + rx2 ≥ −r2, r ∈ [0, 1],
−x1 + sx2 ≥ −s2, s ∈ [0, 1].

If r = 0 = s, then x1 ≥ 0 and −x1 ≥ 0,
we conclude that x1 = 0. Now, as x1 = 0,
if r, s ∈ (0, 1] then rx2 ≥ −r2 y sx2 ≥ −s2,
i.e., x2 ≥ −r y x2 ≥ −s, it follows that x2 ≥ 0.
Therefore:

F1 =

{(
0

x2

)
∈ R2 : x2 ≥ 0

}
, vP (π1) = 0,

and F ∗1 = {
(
0
0

)
}. As dimF1 = 1, F1 ⊂ R2 and π1

is continuous, we have that π1 does not satisfy the
Slater Condition. In Figure 1, we show F1:

The dual problem of P1 is:

D1 : max
λ, γ∈R([0, 1])

+

( ∑
r∈[0, 1]

−λrr2 +
∑

s∈[0, 1]

−γss2
)

,
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Fig. 1. Feasible set of P1

s.t.
∑

r∈[0, 1]

λr

(
1

r

)
+

∑
s∈[0, 1]

γs

(
−1

s

)
=

(
0

1

)
,

which is equivalent to:

−
(

min
λ, γ∈R([0, 1])

+

( ∑
r∈[0, 1]

λrr
2 +

∑
s∈[0, 1]

γss
2

))
,

s.t.
∑

r∈[0, 1]

λr

(
1

r

)
+

∑
s∈[0, 1]

γs

(
−1

s

)
=

(
0

1

)
.

If:

v1 := min
λ, γ∈R([0, 1])

+

{ ∑
r∈[0, 1]

λrr
2 +

∑
s∈[0, 1]

γss
2

∣∣∣∣∣,
∑

r∈[0, 1]

λr

(
1

r

)
+

∑
s∈[0, 1]

γs

(
−1

s

)
=

(
0

1

)}
,

we have 0 ≤ v1. Now, if t0 ∈ (0, 1], then
θ
0

= (λ0; γ0) is in Λ1, if and only if:

λ0t0

(
1

t0

)
+ λ0t0

(
−1

t0

)
=

(
0

1

)
,

where λ0t0 = γ0t0 and λ0r = 0 = γ0s for all
r, s ∈ [0, 1] \ {t0}. I.e., λ0t0 has to satisfy the
equality:

1 = λ0t0 t0 + λ0t0 t0.

So, we conclude thatθ
0 ∈ Λ1, if and only if

λ0t0 = 1
2t0

. Then:

v1 ≤
∑

r∈[0, 1]

λ0rr
2 +

∑
s∈[0, 1]

γ0ss
2 =

t20
2t0

+
t20
2t0

= t0.

(1)

If t0 approaches to zero in (1), we have
v1 ≤ 0. Therefore vD(π1) = 0. On
the other hand, vD(π1) = 0, if and only if
λrr

2 = 0 = λss
2, for all (r, s) ∈ [0, 1] × [0, 1].

Then, the only possible optimal solutions have
the form θ

1
= (λ1; γ1), where λ10, γ10 ∈ R+ and

λ1r = 0 = γ1s for all r, s ∈ (0, 1], but θ
1
/∈ Λ1,

because:

λ10

(
1

0

)
+ γ10

(
−1

0

)
=

(
0

1

)
,

is impossible. Therefore Λ∗1 = ∅. All these show
that π1 ∈ Π̂2

1 and Π̂2
1 6= ∅.

Example 2.10. We consider, the following pro-
blem:

P2 : min
x∈R2

x2

s.t. x1 ≥ 0,
−x1 ≥ 0,
x2 ≥ 0.

In Figure 2, we show the feasible set of P2.

Fig. 2. Feasible set of P2

We observe that P2 is consistent, vP (π2) = 0 and
F ∗2 = {

(
0
0

)
}. In addition, as dimF2 = 1 and

F2 ⊂ R2, we have that π2 does not satisfy the
Slater Condition.

The dual problem of P2 is:

D2 : max
λ1,λ2,λ3≥0

(λ10 + λ20 + λ30),

s.t. λ1
(
1
0

)
+ λ2

(−1
0

)
+ λ3

(
0
1

)
=
(
0
1

)
.
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From the problem it follows that vD(π2) = 0. Now,
λ = (λ1,λ2,λ3)

′
with λ1,λ2,λ3 ≥ 0 is in Λ2 = Λ∗2, if

and only if:

λ1

(
1

0

)
+ λ2

(
−1

0

)
+ λ3

(
0

1

)
=

(
0

1

)
,

i.e., 0 = λ1−λ2 and 1 = λ3, or equivalently λ1 = λ2
and 1 = λ3. Then:

Λ2 = Λ∗2 = {(λ1,λ1, 1)
′
∈ R3 : λ1 ≥ 0}.

Therefore, π2 /∈ Π̂2
1.

In the Example 2.11, π3 ∈ Π̂3
1 and c3 ∈ M3 \

intM3. While, in the Example 2.12, π4 /∈ Π̂3
1 and

c4 ∈M4\int M4. This shows that the condition (iii),
stated in Theorem 2.8, is not a sufficient condition.

Example 2.11. Consider in R2 the problem:

P3 : min
x∈R2

x1,

s.t. x1 + t2x2 ≥ 2t, t ∈ [0, 1].

In Figure 3, we show the feasible set of P3:

Fig. 3. Feasible set of P3

π3 satisfies the Slater Condition and
(
2
2

)
is a Slater

point. In fact 1 + t2 > t for all t ∈ [0, 1] if and only if
2 + 2t2 > 2t for all t ∈ [0, 1], so, P3 is consistent. In
Figure 3, we observe that vP (π3) = 0 but F ∗3 = ∅,
i.e., P3 is not solvable. Moreover, in Figure 4, we
show that c3 ∈M3 \ intM3.

Fig. 4. First moment cone of P3

The dual problem of P3 is:

D3 : max
λ∈R([0,1])

+

∑
t∈[0,1]

λt2t,

s.t.
∑

t∈[0,1]
λt
(
1
t2

)
=
(
1
0

)
.

The function λ ∈ R([0,1])
+ defined as:

λt :=

 1, if t = 0,

0, if t ∈ (0, 1],

is a feasible solution for the problem D3 with
vD(π3) = 0. It follows that D3 is solvable.
Therefore, π3 ∈ Π̂3

1 and Π̂3
1 6= ∅.

Example 2.12. The primal problem P4 is formula-
ted as follows:

P4 : min
x∈R2

x1,

s.t. x1 + t2x2 ≥ 0, t ∈ [0, 1].

In Figure 5, we show the feasible set of P4.

Since π4 satisfies the Slater Condition, then P4 is
consistent. We observe that vP (π4) = 0 and F ∗4 =
{0} × R+, therefore P4 is solvable. On the other
hand, as in the above example, c4 ∈M4 \ intM4.

The dual problem of P4 is now:

D4 : max
λ∈R([0,1])

+

∑
t∈[0,1]

λt0,

s.t.
∑

t∈[0,1]
λt
(
1
t2

)
=
(
1
0

)
.
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Fig. 5. Feasible set of P4

Again, we have that the function λ ∈ R([0,1])
+ defined

as:

λt :=

 1, if t = 0,

0, if t ∈ (0, 1],

is a feasible solution of the problem D4 with
vD(π4) = 0. Thus, we conclude that D4 is solvable.

Observation 2.13. With the previous example we
also show that Π̂1

1 6= ∅. In the same example
π4 ∈ Π̂1

1 and c4 /∈ intM . On the other hand,
in the Example 2.10 π2 ∈ Π̂1

1 and π2 does not
satisfy the Slater Condition. This means that both
c ∈ intM and the Slater Condition are not
necessary conditions for π ∈ Π̂1

1.

In the next Example 2.14, π5 ∈ Π̂4
1, c5 ∈ M5 \

intM5 and π5 does not satisfy the Slater Condition.
Later on, in the Example 2.15, π6 ∈ Π̂1

1,
(
0n
1

)
/∈

clN6, c6 ∈ M6 \ intM6 and π6 does not satisfy
Slater Condition. This shows two things. First
the condition (i) in Theorem 2.8 is not a necessary
condition, and second the condition (iv), stated in
Theorem 2.8, is not a sufficient one.

Example 2.14. Consider in R3 the primal problem,
with α > 0:

P5 : min
x∈R3

(x1 + αx3),

s.t. x1 + t2x2 ≥ 2t, t ∈ [0, 1],
sx3 ≥ −s2, s ∈ [0, 1],
−rx3 ≥ −r2, r ∈ [0, 1].

If s, r ∈ (0, 1] then x3 ≥ −s and x3 ≤ r, which
means that x3 = 0. So, dimF5 ≤ 2. We can look

at F5 in R2, as the feasible set of P3. Therefore,
vP (π5) = 0 and F ∗5 = ∅. In addition, as dimF5 = 2
and F5 ⊂ R3, we have that π5 does not satisfy the
Slater condition. On the other hand, c5 ∈ M5 \
intM5. In fact: 1

0
α

 = 1

 1
0
0

+ α

 0
0
1

 ,

and, for all ε > 0: 1
− ε

2
α

 /∈M5,

and: ∥∥∥∥∥
 1

0
α

−
 1
− ε

2
α

∥∥∥∥∥
2

=
ε

2
< ε.

Therefore, c5 ∈M5 \ intM5.

The dual problem of P5 is:

D5 : max
λ,β,γ∈R([0,1])

+

( ∑
t∈[0,1]

λt2t+
∑

s∈[0,1]
βs(−s2) +

∑
r∈[0,1]

γr(−r2)

)
,

s.t.
∑

t∈[0,1]
λt

 1
t2

0

+
∑

s∈[0,1]
βs

 0
0
s

+

∑
r∈[0,1]

γr

 0
0
−r

 =

 1
0
α

 .

This is equivalent to:

−
(

min
λ,β,γ∈R([0,1])

+

(
−
( ∑
t∈[0,1]

λt2t

)
+

∑
s∈[0,1]

βss
2 +

∑
r∈[0,1]

γrr
2

))
,

s.t.
∑

t∈[0,1]
λt

 1
t2

0

+
∑

s∈[0,1]
βs

 0
0
s

+

∑
r∈[0,1]

γr

 0
0
−r

 =

 1
0
α

 .
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From the above equality system, we have that:(
1

0

)
=
∑
t∈[0,1]

λt

(
1

t2

)
where λ ∈ R([0,1])

+ .

The only solution of the equation above is
λ0 ∈ R([0,1])

+ with λ00 = 1 and λ0t = 0, for all t ∈ (0, 1].
Then, feasible points of D5 have the form:

θ = (λ0;β; γ),

where β, γ ∈ R([0,1])
+ . If we evaluate the objective

function of the last problem at the points that have
the above form, the problem will be reduced to:

−
(

min
β,γ∈R([0,1])

+

( ∑
s∈[0,1]

βss
2 +

∑
r∈[0,1]

γrr
2

))
,

s.t.
∑

s∈[0,1]
βss−

∑
r∈[0,1]

γrr = α.

(2)
From (2) it follows that:

v5 := min
β,γ∈R([0,1])

+

{ ∑
s∈[0,1]

βss
2 +

∑
r∈[0,1]

γrr
2

∣∣∣∣,
∑

s∈[0,1]
βss−

∑
r∈[0,1]

γrr = α
}
≥ 0.

Note that for each i ∈ (0, 1]:

θ0 := (β0; γ0),

where β0, γ0 ∈ R([0,1])
+ , β0

i = α
i , β0

s = 0 for all
s ∈ [0, 1] \ {i} and γ0r = 0 for all r ∈ [0, 1], is
a feasible point of (2). Moreover, if we evaluate∑
s∈[0,1]

βss
2 +

∑
r∈[0,1]

γrr
2 in θ0, we have that:

v5 ≤
∑
s∈[0,1]

β0
ss

2 +
∑
r∈[0,1]

γ0rr
2 = αi. (3)

If i → 0 in (3), we have that v5 ≤ 0. Therefore
vD(π5) = 0. On the other hand, if a feasible point of
the problem D5 is an optimal solution, the objective
function evaluated at this point must satisfy:∑

s∈[0,1]

βss
2 +

∑
r∈[0,1]

γrr
2 = 0.

Then, the possible optimal solutions of problem D5

have the following form: θ
0

= (λ0;β1; γ1), where
λ0,β1, γ1 ∈ R([0,1])

+ , λ00 = 1, λ0t = 0 for all t ∈ (0, 1],
β1
0 ∈ R+, β1

s = 0 for all s ∈ (0, 1], γ10 ∈ R+ and
γ1r = 0 for all r ∈ (0, 1]. But θ

0
/∈ Λ5, because

it implies α = 0, which is a contradiction with the
hypothesis α > 0. Therefore, Λ∗5 = ∅.

Example 2.15. Consider the following problem in:
R2

P6 : min
x∈R2

x1,

s.t. x1 ≥ 0,
−x1 ≥ 0,
x2 ≥ 0.

The feasible set of P6 is the same as the feasible
set of the Example 2.10. Then vP (π6) = 0 and
F ∗6 = {0} × R+ in addition, since dimF6 = 1 and
F6 ⊂ R2, we have that π6 does not satisfy the
Slater Condition. On the other hand, in Figure 6,
we show that c6 ∈M6 \ intM6.

Fig. 6. First moment cone of P6

The dual problem of P6 is:

D6 : max
λ1,λ2,λ3≥0

(λ10 + λ20 + λ30),

s.t.
(
1
0

)
= λ1

(
1
0

)
+ λ2

(−1
0

)
+ λ3

(
0
1

)
.

From the problem it follows that, vD(π6) = 0. Now:

λ =

( λ1
λ2
λ3

)
∈ Λ6 = Λ∗6,

if and only if:(
1

0

)
= λ1

(
1

0

)
+ λ2

(
−1

0

)
+ λ3

(
0

1

)
,
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i.e., 1 = λ1 − λ2 and 0 = λ3, or equivalently,
λ1 = 1 + λ2 and λ3 = 0. Then:

Λ6 = Λ∗6 =

{(
1 + λ2
λ2
0

)
∈ R3 : λ2 ≥ 0

}
,

which implies that Λ∗6 6= ∅. Therefore, π6 /∈ Π̂4
1.

Remember that in the first refined primal-dual
partition, the sets ΠP

S ∩ ΠD
IC and ΠP

IC ∩ ΠP
S

are empty. However, we will show that the sets
ΠP
s ∩ΠD

IC = Π̂1
5 and ΠP

IC ∩ΠD
s = Π̂1

6, in the second
general primal-dual partition, are nonempty. We
shall present some necessary conditions for the
fact that a given parameter π belongs to the state
Π̂2

5 = ΠP
n ∩ ΠD

IC and Π̂2
6 = ΠP

IC ∩ ΠD
n , respectively.

Using also the definitions of the states, we shall
characterize the cells Π̂1

5 and Π̂1
6.

Proposition 2.16. π ∈ Π̂1
5, if and only if c /∈M and

F ∗ is not bounded.

Proof. Suppose that π ∈ Π̂1
5 and c ∈ M or F ∗ is

bounded. First, if c ∈M , we have the contradiction
Λ 6= ∅. Second, if F ∗ is bounded, then π ∈ ΠP

S ∩
ΠD
IC and again we get to a contradiction. On the

other hand, if c /∈ M and F ∗ is not bounded, then
Λ = ∅ and F ∗ 6= ∅. Therefore, π ∈ Π̂1

5.

Now, Π̂i
5 ⊂ Π5 for i = 1, 2. Then, for the Lemma

2.1:

c /∈M , (0n, 1)′ /∈ clN and ({c} × R) ∩ clN 6= ∅

, is a necessary condition for π belongs to Π̂i
5 for

i = 1, 2, respectively.

Proposition 2.17. π ∈ Π̂1
6, if and only if

(
0n
1

)
∈ clN

and Λ∗ is not bounded.

Proof. Suppose that π ∈ Π̂1
6 and

(
0n
1

)
/∈ clN or

Λ∗ is bounded. First, if
(
0n
1

)
/∈ clN , we have the

contradiction F 6= ∅. Second, if Λ∗ is bounded,
then π ∈ ΠP

IC ∩ ΠD
S and also we get again to a

contradiction. On the other hand, if
(
0n
1

)
∈ clN

and Λ∗ is not bounded, then F = ∅ and Λ∗ 6= ∅.
Therefore, π ∈ Π̂1

6.

Again, Π̂i
6 ⊂ Π6 for i = 1, 2. Then, by the Lemma

2.1:

(0n, 1)′ ∈ clN , c ∈M and {c} × R * K

, is a necessary condition for π belongs to Π̂i
6 for

i = 1, 2, respectively.

With the following examples, we will show that
the conditions (v) and (vi), presented in Lemma
2.1, are only necessary. We will also show that
in continuous LSIP Π̂i

j 6= ∅ for i = 1, 2 and j = 5, 6.
However, in ordinary linear programming all these
sets are empty [[8], Proposition 4.2].

Example 2.18. Consider, in R2, the optimization
problem:

P7 : min
x∈R2

x2,

s.t. t2x1 + tx2 ≥ t, t ∈ [0, 1].

The feasible set of P7 is presented in the Figure 7.

Fig. 7. Feasible set of P7

Figure 7, shows that P7 is consistent and bounded,
with an optimal value vP (π7) = 1, and an optimal
set:

F ∗7 =

{(
x1
x2

)
∈ R2 : x1 ≥ 0 and x2 = 1

}
.

From the previous equality it follows that F ∗7 is
unbounded. The cone M7 of P7, is shown in the
Figure 8.

As c7 =
(
0
1

)
, we have that c7 ∈ clM7 \M7, then the
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Fig. 8. First moment cone of P7

dual problem D7 is inconsistent. We conclude that
π7 ∈ Π̂1

5, therefore Π̂1
5 6= ∅.

Example 2.19. Consider now, the next problem in:
R2:

P8 : min
x∈R2

x1,

s.t. tx1 + t3x2 ≥ t2, t ∈ [0, 1].

The feasible set of P8 is shown in the Figure 9.

Fig. 9. Feasible set of P8

Figure 9, shows that P8 is consistent and bounded,
with optimal value vP (π8) = 0, however F ∗ = ∅,
i.e., P8 is unsolvable. The cone M8 of P8, is
presented in the Figure 10:

As c8 =
(
1
0

)
, we have that c8 ∈ clM8 \ M8,

whereby the dual problem D8 is inconsistent. So,
we observe that π8 ∈ Π̂2

5, therefore Π̂2
5 6= ∅.

Fig. 10. First moment cone of P8

Observation 2.20. In the Example 2.19, c8 /∈ M8,
(0n, 1)′ /∈ clN8 (P8 is consistent), also ({c8} ×
R) ∩ clN8 6= ∅ (P8 is bounded), but π8 /∈ Π̂1

5. It
shows that c /∈M , (0n, 1)′ /∈ clN and ({c}×R)∩
clN 6= ∅ is not a sufficient condition for π ∈ Π̂1

5.
On the other hand, in the Example 2.18, c7 /∈ M7,
(0n, 1)′ /∈ clN7, and ({c7} × R) ∩ clN7 6= ∅, but
π7 /∈ Π̂2

5. It shows that c /∈ M , (0n, 1)′ /∈ clN and
({c}×R)∩ clN 6= ∅ is not a sufficient condition for
π ∈ Π̂2

5, as well.

Example 2.21. We now study the following
problem in R2:

P9 : min
x∈R2

x1,

s.t. x1 + t2x2 ≥ 2t, t ∈ [0, 1],
−x1 ≥ 0.

We observe that for each t ∈ (0, 1]:[
1

2t

(
1
t2

2t

)
+

1

2t

( −1
0
0

)]
=

(
0
t
2
1

)
, (4)

is an element of N9. If t → 0 in (4), we have that
(02, 1)

′ ∈ clN9. Therefore P9 is inconsistent.

The dual problem of P9 is:

D9 : max
λ∈R([0,1])

+ ,γ∈R+

∑
t∈[0,1]

λt2t,

s.t.
∑

t∈[0,1]
λt
(
1
t2

)
+ γ
(−1

0

)
=
(
1
0

)
.
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we have that θ = (λ0; γ), where γ ∈ R+ and
λ0 ∈ R([0,1])

+ defined as:

λ0t :=

 1 + γ, if t = 0,

0, if t ∈ (0, 1],

is a feasible point of D9. Then vD(π9) = 0 and Λ∗

is unbounded. This means that π9 ∈ Π̂1
6. Therefore

Π̂1
6 6= ∅.

Example 2.22. Consider, in R2, the following
problem:

P10 : min
x∈R2

x2,

s.t. t2x1 ≥ t, t ∈ [0, 1]
sx2 ≥ −s2, s ∈ [0, 1],

We observed that for each t ∈ (0, 1]:[
1

t

(
t2

0
t

)]
=

(
t
0
1

)
, (5)

is an element of N10. If t → 0 in (5), we observe
that (02, 1)

′ ∈ clN10. Therefore, P10 is inconsistent.
The dual problem of P10 is:

D10 : max
λ, γ∈R([0, 1])

+

( ∑
t∈[0, 1]

λtt+
∑

s∈[0, 1]
γs(−s2)

)
,

s.t.
∑

t∈[0, 1]
λt
(
t2

0

)
+

∑
s∈[0, 1]

γs
(
0
s

)
=
(
0
1

)
.

From the system above, we have that:

0 =
∑
t∈[0,1]

λtt
2 con λ ∈ R([0,1])

+ ,

whose solutions have the form λ0 ∈ R([0,1])
+ with

λ00 ∈ R+ and λ0t = 0 for all t ∈ (0, 1]. Then, the
feasible points of (D10) look like:

θ10 = (λ0; γ),

where γ ∈ R([0,1])
+ . If we evaluate the objective

function of the dual problem in points that have the
above form, the problem is reduced to:

max
γ∈R([0, 1])

+

∑
s∈[0, 1]

γs(−s2),

s.t.
∑

s∈[0, 1]
γss = 1,

which is equivalent to:

− min
γ∈R([0, 1])

+

∑
s∈[0, 1]

γss
2,

s.t.
∑

s∈[0, 1]
γss = 1.

we have that:

v10 := min
γ∈R([0, 1])

+

{ ∑
s∈[0, 1]

γss
2

∣∣∣∣ ∑
s∈[0, 1]

γss = 1

}
≥ 0.

Now, if s0 ∈ (0, 1], then γ0 ∈ R([0, 1])
+ satisfies:∑

s∈[0, 1]

γ0ss = 1,

where γ0s0 = 1
s0

and γ0s = 0 for all s ∈ [0, 1] \ {s0}.
Hence:

v10 ≤
∑

s∈[0, 1]

γ0ss
2 =

1

s0
s20 = s0. (6)

If s0 → 0 in (6), we have v10 ≤ 0. Therefore,
vD(π10) = 0. On the other hand, vD(π10) = 0, if
and only if:∑
t∈[0,1]

λ0t t =
∑
s∈[0,1]

γss
2, for all θ10 = (λ0; γ) ∈ Λ10,

but, if θ10 ∈ Λ10,

0 =
∑
t∈[0,1]

λ0t t,

it follows that:

0 =
∑
s∈[0,1]

γss
2 for all θ10 = (λ0; γ) ∈ Λ10.

So, the possible optimal solutions of D10, have
the form θ

0

10 = (λ0; γ1), where λ0, γ1 ∈ R([0, 1])
+ ,

λ00, γ10 ∈ R+ and λ0t = 0 = γ1s for all t, s ∈ (0, 1]. If
θ
0

10 ∈ Λ10, then:(
0

1

)
= λ00

(
0

0

)
+ γ10

(
0

0

)
,

which is impossible. Therefore, θ
0

10 /∈ Λ10, whereby
Λ∗10 = ∅. So, we conclude that π10 ∈ Π̂2

6, and thus
Π̂2

6 6= ∅.
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Observation 2.23. We see in Example 2.22 that
(0n, 1)′ ∈ clN10 (P10 is inconsistent), c10 ∈ M10

(θ10 = (λ0; γ0) ∈ Λ10, i.e, D10 is consistent) and
{c10}×R * K10 (vD(π10) = 0, i.e, D10 is bounded),
but π10 /∈ Π̂1

6. This shows that (0n, 1)′ ∈ clN ,
c ∈M and {c}×R * K is not a sufficient condition
for π ∈ Π̂1

6. On the other hand, in the Example
2.21, (0n, 1)′ ∈ clN9, c9 ∈M9 and {c9}×R * K9,
but π9 /∈ Π̂2

6. It demonstrates that (0n, 1)′ ∈ clN ,
c ∈M and {c}×R * K is not a sufficient condition
for the following statement π ∈ Π̂2

6.

2.1.1 Some Topological Properties of the Sets
Generated by the Second General
Primal-dual Partition

In [11], Goberna and Todorov presented the
characterization of the interior of the sets Π2, Π3

and Π4. They also studied the density properties
and the interior of these and other sets of the first
general primal-dual partition. In this section, we
shall study some topological properties of the sets
Π̂1

1, Π̂2
1, Π̂3

1, Π̂4
1, Π̂1

5, Π̂2
5, Π̂1

6 and Π̂2
6. In particular, we

investigate the interior and some density properties
of the mentioned sets of the new second general
primal-dual partition.

Theorem 2.24. Π̂1
1 is dense in Π1.

Proof. Since Π1
1 ⊆ Π̂1

1 and Π1
1 is dense in Π1 [[10],

Theorem 3.3], hence Π̂1
1 is dense in Π1.

Theorem 2.25. The sets Π̂i
1, i = 1, 2, 3, 4 are

neither closed nor open.

Proof. Since these sets are cones with the null
triplet belonging to Π̂1

1, only Π̂1
1 could be closed:

Π̂1
1 is not closed. In fact, consider the sequence

{πr} in Π̂1
1, where πr := ( 1

r e1, 1, e1), obviously:

lim
r→∞

πr = (0n, 1, e1),

but (0n, 1, e1) ∈ Π4. Therefore, Π̂1
1 is not closed.

Π̂1
1 is not open. Indeed, consider π := (0n, 0, 0n)

in Π̂1
1. Let r > 0, we define πr := (0n, 0, r2e1). It

is easy to see that, for all r > 0, πr ∈ Π2 and
d(π,πr) = r

2 < r. This implies that Π̂1
1 is not open.

We shall prove that the sets Π̂i
1, i = 2, 3, 4 are

not open. Since Π̂i
1 ⊂ Π1, then int Π̂i

1 ⊂ int Π1, but
int Π1 = Π1

1 [[10], Theorem 2], as Π1
1 ⊂ Π̂1

1, so it
follows that int Π̂i

1 ⊂ Π̂1
1. However Π̂i

1 ∩ Π̂1
1 = ∅,

and, the above inclusion is only possible if int Π̂i
1 =

∅. Since Π̂i
1 6= ∅ it follows that Π̂i

1 is not open for
every i = 2, 3, 4.

Corollary 2.26. int Π̂i
1, i = 2, 3, 4 are empty.

Theorem 2.27. int Π̂1
1 6= ∅.

Proof. Since Π1
1 ⊂ Π̂1

1 then int Π1
1 ⊂ int Π̂1

1.
but:

int Π1
1 = Π1

1,

and:
Π1

1 6= ∅ [Theorem 2.5],

we conclude that int Π̂1
1 6= ∅.

Theorem 2.28. int Π̂1
1 is dense in Π1.

Proof. Since Π1
1 ⊂ Π̂1

1 ⊂ Π1, then:

int Π1
1 ⊂ int Π̂1

1 ⊂ int Π1,

it follows:

int Π1
1 ⊂ int Π̂1

1 ⊂ int Π1.

As int Π1
1 is dense on Π1 [[10], Theorem 3.3] and

int Π1 is dense on Π1 [[11], Theorem 2], we have
that int Π̂1

1 = Π1. Therefore, int Π̂1
1 is dense in Π1.

Theorem 2.29. int Π̂1
1 = Π1

1.

Proof. Since Π1
1 is open [[10], Theorem 3.3],

it follows Π1
1 ⊂ int Π̂1

1. We will only show that
int Π̂1

1 \ Π1
1 = ∅. Suppose the contrary, i.e.,

int Π̂1
1 ∩ (Π1

1)c 6= ∅. Then, there exists π ∈ int Π̂1
1,

such that π /∈ Π1
1, so it follows that c /∈ intM or

π does not satisfy the Slater Condition [Theorem
2.6].
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First, c /∈ intM implies that c ∈ M \ intM

because, by hypothesis π ∈ int Π̂1
1, but:

int Π̂1
1 ⊂ Π̂1

1 ⊂ Π1.

In addition, c /∈ intM implies M 6= Rn. From
the above two implications, we conclude that, there
exists a sequence {cr} from Rn \M such that:

lim
r→∞

cr = c.

We define πr := (a, b, cr). The sequence {πr} is in
ΠD
IC and satisfies:

lim
r→∞

πr = π.

This is a contradiction, because, by hypothesis, π ∈
int Π̂1

1.

Second, if π does not satisfy the Slater
Condition, then π /∈ int ΠP

C . Now, by hypothesis
π ∈ int Π̂1

1, we have π ∈ ΠP
C . So, if π does not

satisfy the Slater Condition and the hypothesis is
true, π ∈ bd ΠP

C . Therefore there exists a sequence
{πr} on ΠP

IC such that:

lim
r→∞

πr = π.

This is a contradiction, because π ∈ int Π̂1
1.

It follows that int Π̂1
1 \ Π1

1 = ∅, or equivalently
int Π̂1

1 = Π1
1.

Observation 2.30. Since int Π5 = ∅ and int Π6 =
∅ [[11], Theorem 2], we conclude that int Π̂i

j = ∅
for i = 1, 2 and j = 5, 6.

We have proved that all parameters in Π1 can
be approached by parameters in Π̂1

1. In addition,
we have shown that the sets Π̂1

1, Π̂2
1, Π̂3

1 and Π̂4
1

are neither closed nor open, and that the interior
of the sets Π̂2

1, Π̂3
1 and Π̂4

1 are empty. The
characterization of int Π̂1

1 follows from the equality
int Π̂1

1 = Π1
1 which was also proved in this section.

3 Conclusion and Future Work

To conclude, we would like to mention that
the lack of necessary and sufficient conditions,
characterizing the majority of the states of the
second general primal-dual partition has, in some
sense, its justification. Namely, there are
no necessary and sufficient conditions for the
solvability, neither for the primal nor for the dual
linear semi-infinite optimization problems. On
the contrary, for the solvability, considered in the
first general primal-dual partition, the conditions
could be found in lemma 2.4. Anyway, finding
such necessary and sufficient conditions is still a
challenging problem. Another open question is
how will apply the developed theory in this article
removing the continuity in the LSIP.
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