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Abstract. In this paper, we propose a heuristic algorithm 

that obtains the optimal solution for 5 instances of the set 
of instances Hard28, for the problem of packing objects 
in containers of a dimension (1DBPP). This algorithm is 
based on storage patterns of objects in containers. To 
detect how objects are stored in containers, the HGGA-
BP algorithm [8] was used. A tool for monitoring and 
analyzing the HGGA-BP algorithm was also developed. 
With the help of the user, this tool performs the 
monitoring and analysis of the intermediate solutions 
that are generated with the algorithm HGGA-BP [8]. The 
proposed algorithm uses the inherent characteristics of 
the objects, that is, the weight value of the objects of the 
set of instances Hard28 can be: a prime number, an 
even number or an odd number. As well as, the weights 
of some of the objects are bigger than half of the capacity 
of the containers. The set Hard28 consists of 28 
instances and the optimal value was found in 5 of them. 
For 19 instances, a container is missing to reach the 
optimum solution. For 3 instances, two containers were 
missing to reach the optimal solution and in one of the 
obtained solutions, 3 containers were missing to reach 
the optimal solution. For each of the optimal solutions 
found, the calculated time is less or equal than 
one millisecond. 

Keywords. 1DBPP, patterns, tool, heuristic, 

metaheuristic, container, instance, solution optimal. 

1 Introduction 

In real situations, it is necessary to place elements, 
always looking for an optimal way to do it. For this, 
some storage medium is used, such as bags, 
boxes, containers, among others. These elements, 
commonly called objects, are of different size or 

type. This feature allows storage to be a complex 
problem, since it is always necessary to place them 
in the best way to save space. For example: 
storage problems, loading problems and 
containers, the problem of change, assembly lines, 
business problems, cutting patterns, among 
others. In general, these types of problems are 
known as cutting and packing problems. These 
problems, are included in a family of combinatorial 
problems, which can be applied to different areas 
such as: Health, Financial, Technological 
Development, Textile, Metal, among others, and 
this has given rise to disciplines such as: Computer 
science, Engineering, Operations Research, 
among others, propose or develop new algorithms 
that allow to obtain good solutions. 

1.1 The One-Dimensional Bin Packing 
Problem (1DBPP) 

The pioneers in working on this cutting problem 
were Gilmore and Gomory, in 1961 formulated this 
family of problems, known as cutting stock or trim 
loss problems. Subsequently, Garey and Johnson 
in [1], defined the one-dimensional Bin Packing 
problem (1DBPP). 

The Bin Packing problem can be conceptually 
defined as follows: 

Given a set of objects O (of different sizes), two 
constants B (container size) and N (number of 
containers), it is possible to place all the objects 
inside the N containers, such that the sum of the 
objects does not exceed the Capacity of each of 
the containers. 
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The problem of 1DBPP is classified as NP-hard, 
see [1]. Given this complexity, it is difficult to 
develop algorithms that obtain optimal results, 
such as those reported by the specialized literature 
[2, 3, 4, 5, 6], or close to the optimum, and even 
better, in a polynomial time. Proof of this are the 
different approaches that have been used to solve 
the 1DBPP, some of them are: Heuristic 
algorithms, Metaheuristics and Exact methods. 
Next, the works that have reported the best results 
to solve the 1DBPP are presented. 

The section 2, describes the relevant works that 
solve some instances of the Hard28 set of 1DBPP 
and test sets that are difficult to solve. For its part, 
section 3, explains the characteristics of the 
analysis tool, through which the storage patterns of 
the objects are discovered. In section 4, the 
proposed algorithm that solves some instances of 
Hard28 of 1DBPP is detailed. The section 5, on the 
other hand, shows the experimental results and 
finally the conclusions and the work to be done are 
discussed in section 6. 

2 State of the Art 

To date, different algorithms have been proposed 
that solve the problem of 1DBPP, in this section, it 
evaluates those that have solved the largest 
number of instances of the Hard28 dataset, 
comparing the behavior of the algorithms and the 
quality of the solution. 

2.1 Algorithms that Solve the Problem of 
1DBPP 

According to the specialized literature, the work 
developed in [12, 13], has reported a set of 
algorithms that have proven to be the best to obtain 
optimal solutions from some of the most 
referenced instances in the state of the art. 
Particularly, the instances of the Hard28 set have 
been reported as those that have been the most 
difficult to solve by metaheuristic algorithms. 

The algorithm Hybrid Grouping Genetic 
Algorithm Bin Packing (HGGA-BP), discussed in 
[8], is a hybrid-genetic clustering algorithm. Which 
is inspired by the algorithm of Falkenauer, reported 
in [14]. The HGGA-BP uses heuristics (FFD, WFD, 
BFD, among others), to generate the initial 

population. Subsequently, it uses intensification 
and diversification to find the best individuals in the 
population, applying crosses and mutations to 
improve the quality of the solution. The HI-BP 
algorithm, reported in [7], is a hybrid metaheuristic 
algorithm, which has two stages: construction and 
improvement. In the first stage, it uses a hybrid 
heuristic and in the stage of improvement uses the 
tabu search algorithm reported in [11]. 

Weigth Anneling [9], is a metaheuristic algorithm 
that uses five steps to solve the 1DBPP problem. 
The first step generates an initial solution using the 
FFD heuristic. The second step distorts the sizes 
of objects; the third step performs local searches 
and exchanging objects between pairs of 
containers, in the fourth step reassigns weights 
and finally checks whether the stoppage criterion 
has been reached.  

On the other hand, Pert-SAWMBS developed in 
[10], proposes a method of solution oriented to the 
container, this is done by controlling the average 
weight of the objects that are inside each 
container. As well as using reduction methods for 
each of the solutions generated.  

The research work developed in [12], proposes 
a method based on patterns, data mining and 
iterative, to find the optimal values of the set of 
instances Hard28.  

It is important to highlight the method of solution 
that is posed by in [13], in it a new strategy is 
proposed that allows finding optimal values 
reported in the literature [12]. This work proposes 
an exploration strategy that uses different 
approaches to solve the instances of the Bin 
Packing problem. To do this, it uses a hybrid 
algorithm that takes as its main elements: a 
mathematical model, a heuristic, reduction criteria 
and finally a metaheuristic algorithm, the latter 
calculates the lower limit of an instance. One of the 
limitations of this work is the computation time that 
it uses to obtain the optimal values. 

2.2 1DBPP Instances  

To date, there is no consensus to determine which 
sets of instances are difficult to resolve. In the work 
developed in [12], several investigations have 
been reported in which sets of instances 
considered by the authors as difficult to solve are 
proposed.  
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For example, the datasets proposed in [14]: 
Uniform [OR Library] and Triplets [OR Library]. In 
the first, the files binpack1 to binpack4 consist of 
objects whose size are uniformly distributed in 
(20,100), to be packed in containers of Size 150. 
And in the second, the files binpack5 to binpack8 

consists of 'triplets' of objects distributed in (25, 
50), to be packaged in 100 size containers. 

The work reported in [15], proposes three sets 
of instances Data_Set_1, Data_Set_2 and 
Data_Set_3, each of these sets presents 
characteristics that make them difficult to solve. 

 

Fig. 1. How objects are distributed in containers with the HGGA-BP metaheuristic algorithm [8] 

 

Fig. 2. General scheme of the proposed algorithm 
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The first set consists of 720 instances, each one of 
which is constructed similarly to those used in [19]. 
The objective of set number two is to obtain an 
average of 3, 5, 7 and 9 objects per container and 
the last set has instances considered as hard, 
since the weights of the objects are widely 
dispersed and the values are obtained in the 
interval from 20,000 to 35,000. 

It is important to note that in [17], the data set 
Wae_Gau1 is proposed for the first time, which 
consists of 17, instances with different 
characteristics in each of them and which are 
considered as difficult to resolve by the authors.  

In the work developed in [16], the data sets 
Was_1 and Was_2 are proposed, which are 
considered difficult to solve. 

Finally, the research discussed in [18], proposes 
to the data set 53NIRUP and the data set Hard28. 
The set Hard28 consists of 28 instances, which 
have been considered as the most difficult to solve 
by the current metaheuristic algorithms. 

The following explains the elements that are 
used to detect the different storage patterns of 
objects in containers. 

3 Storage Patterns 

The next section presents the visualization tool that 
was used to discover the storage 
patterns developed. 

3.1 Visualization Tool 

Given the large amount of information generated 
by the metaheuristic algorithms applied to the 
1DBPP problem, the tool called MEVIZ was 
developed, which performs analysis and 
monitoring of the results generated by an 
algorithm. MEVIZ receives as input a set of 
instances and a metaheuristic algorithm. 

The metaheuristic algorithm that to date has 
solved more instances of the Hard28 dataset is the 
HGGA-BP, proposed in [8]. These two elements 
are the input data to the visualization tool. To 
perform the monitoring, a listening agent is 
embedded in the metaheuristic algorithm. 

Figure 1, shows an example of how objects are 
distributed within the containers by the HGGA-BP 
algorithm. And in Table 1, the total number of 

solutions generated by the same algorithm is 
shown.  

As this algorithm is genetic, it considers many 
solutions, since it depends on the size of the initial 
population. With the tool developed in the present 
investigation, it is possible to visualize the whole 
set of solutions generated by the metaheuristic 
algorithm. 

Table 1. Number of solutions generated by the HGGA-
BP algorithm 

Instance name 
Number of solutions 

generated 

hBPP14 537455 

hBPP832 533409 

hBPP40 842109 

hBPP360 545123 

hBPP645 831429 

hBPP742 548413 

hBPP766 538262 

hBPP60 544368 

hBPP13 536140 

hBPP195 531753 

hBPP709 534363 

hBPP785 541316 

hBPP47 539677 

hBPP181 546009 

hBPP359 546560 

hBPP485 541622 

hBPP640 543313 

hBPP716 551829 

hBPP119 532743 

hBPP144 528376 

hBPP561 528306 

hBPP781 530417 

hBPP900 531077 

hBPP175 544497 

hBPP178 539753 

hBPP419 567358 

hBPP531 553283 

hBPP814 541937 
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In Table 2, the segment of a solution generated 
by the HGGA-BP algorithm of the hBPP13 
instance of the Hard28 set is shown and based on 
these results storage patterns can be obtained. 

3.2 Pattern Discovery 

Next, the results generated by the metaheuristic 
algorithm through the MEVIZ tool are analyzed and 
it is possible to discover storage patterns of objects 
in containers and that are the basis of the algorithm 
proposed in this research work. 

Analyzing the solutions generated and taking as 
reference Table 2, container number  

11 is filled with 3 objects, two of which have a 
weight whose value are prime numbers (281 and 
29) and the other object has a weight whose value 
is an even number (690).  

This is also true for container number 14, at its 
maximum capacity. In container number zero, the 
weight of the three objects are even numbers (596, 
332 and 72), as well as container number six. 

Another common pattern that has been 
discovered is that of 2 objects with weight whose 
value is an odd number and an object with a weight 
whose value is an even number. 

It is important to mention that these patterns are 
meet whenever a container is full to its 
maximum capacity. 

From the results obtained by the tool, it has 
been found that these patterns are presented in the 
different solutions that are obtained for an instance 
of Hard28, as well as for all instances of the same 
dataset. All this allows to generalize the storage 
patterns of the objects in the containers for the data 
set Hard28. 

In the next section, we propose an algorithm 
that uses the properties of the natural numbers, 
this proposal reduces the dimensionality of the 
instances of the data set Hard28. Subsequently the 
FFD heuristic algorithm is applied and in this way 
the optimal is obtained for some of the instances of 
the Hard28, in practically negligible times. 

4 Proposed Algorithm 

After analyzing the results generated by the 
HGGA-BP algorithm and visualized with the 
MEVIZ tool, an algorithm is developed that reduces 
the dimensionality of the instances and, together 
with the FFD heuristic, allows to obtain the optimal 
value of some of the data set instances Hard28. 

A general scheme of the proposed algorithm is 
shown in Figure 2, it uses the storage pattern (2 
objects whose weight is a prime number and an 
object whose weight is an even number), to fill 
containers at their maximum capacity using only 
3 objects. 

One of the basic elements of the proposed 
algorithm is to divide the list of objects into sublists, 
this allows grouping objects that have common 
characteristics, without the need to perform excess 
combinations, as in the case of using a single list 
of objects. In addition, this reduces the 
dimensionality of instances. The general elements 
of the proposed algorithm are described below. 

Table 2. Extract of a solution generated by the HGGA-

BP algorithm applied to the HBPP13 instance 
 

Number 
of 

solution 
Container Objects 

Total 
Sum 

15513 0 -596-332-72 1000 

 1 -85-444-471 1000 

 2 -194-555-251 1000 

 3 -649-36-315 1000 

 4 -652-51-297 1000 

 5 -385-426-189 1000 

 6 -128-572-300 1000 

 7 -499-341-160 1000 

 8 -662-122-216 1000 

 9 -674-28-298 1000 

 10 -641-169-190 1000 

 11 -690-281-29 1000 

 12 -378-126-496 1000 

 13 -635-62-303 1000 

 14 -660-167-173 1000 

 15 -316-628-56 1000 

 16 -651-181-168 1000 

 17 -691-95-214 1000 

 18 -458-541-1 1000 

 19 -626-144-230 1000 

 20 -634-84-282 1000 
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Phase 1. Fill a container with 2 objects. One of 
the characteristics of the set of instances of the 
Hard28 is that the values of some objects are 
greater than half the capacity of the container, this 
allows to traverse the list of objects and fix them in 
containers.  

Subsequently, to be able to fill them to their 
maximum capacity the problem is reduced to using 

a search algorithm, i.e., takes the residual capacity 
of the container and searches that value in the list 
of free objects. This phase reduces the 
dimensionality of the instance. 

Phase 2. Fill a container with 3 objects. Based 
on the detected pattern, containers are filled with 3 
objects, of which the weight of 2 objects are prime 
numbers and the other object  is  an  even  number;  

Table 3. Percentage of objects with even values, odd, primes and total number of objects 

Name of 
instance 

Percentage of 
prime objects 

Percentage of 
odd objects 

Percentage of 
even objects 

Percentage of 
objects greater 
than half of the 

container 

Objects 

hbpp13 0.17 0.53 0.46 0.33 180 

hbpp14 0.20 0.48 0.51 0.31 160 

hbpp40 0.22 0.48 0.51 0.28 160 

hbpp47 0.22 0.51 0.48 0.35 180 

hbpp60 0.12 0.51 0.48 0.32 160 

hbpp119 0.19 0.44 0.54 0.30 200 

hbpp144 0.17 0.48 0.51 0.27 200 

hbpp175 0.15 0.43 0.56 0.36 200 

hbpp178 0.19 0.52 0.47 0.35 200 

hbpp181 0.17 0.47 0.52 0.34 180 

hbpp195 0.18 0.51 0.48 0.26 180 

hbpp359 0.17 0.50 0.49 0.34 180 

hbpp360 0.13 0.54 0.45 0.36 160 

hbpp419 0.14 0.54 0.45 0.34 200 

hbpp485 0.16 0.51 0.48 0.34 180 

hbpp531 0.16 0.48 0.51 0.38 200 

hbpp561 0.20 0.53 0.46 0.26 200 

hbpp640 0.14 0.60 0.39 0.37 180 

hbpp645 0.14 0.50 0.49 0.29 160 

hbpp709 0.09 0.61 0.38 0.28 180 

hbpp716 0.18 0.48 0.51 0.39 180 

hbpp742 0.17 0.5 0.5 0.35 160 

hbpp766 0.12 0.54 0.45 0.28 160 

hbpp781 0.18 0.47 0.52 0.31 200 

hbpp785 0.19 0.43 0.56 0.33 180 

hbpp814 0.17 0.52 0.47 0.38 200 

hbpp832 0.11 0.5 0.5 0.27 160 

hbpp900 0.19 0.47 0.52 0.32 200 
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Table 4. Results generated by the proposed strategy, compared with other algorithms 

Instance Optimal HI_BP WABP Pert-SAWMBS HGGA-BP Proposed Algorithm 

hBPP14.txt 62 62 62 62 62 62 

hBPP832.txt 60 61 61 61 61 61 

hBPP40.txt 59 60 60 60 60 60 

hBPP360.txt 62 63 63 63 62 63 

hBPP645.txt 58 59 59 59 59 59 

hBPP742.txt 64 65 65 65 64 65 

hBPP766.txt 62 63 63 63 63 63 

hBPP60.txt 63 64 64 64 64 64 

hBPP13.txt 67 68 68 68 68 68 

hBPP195.txt 64 65 65 65 65 65 

hBPP709.txt 67 68 68 68 68 68 

hBPP785.txt 68 69 69 69 69 69 

hBPP47.txt 71 72 72 72 71 72 

hBPP181.txt 72 73 73 73 73 73 

hBPP359.txt 76 76 76 76 76 76 

hBPP485.txt 71 72 72 72 72 72 

hBPP640.txt 74 75 75 75 74 77 

hBPP716.txt 76 76 76 76 76 76 

hBPP119.txt 77 77 77 77 77 77 

hBPP144.txt 73 74 74 74 74 74 

hBPP561.txt 72 73 73 73 73 73 

hBPP781.txt 71 72 72 72 72 73 

hBPP900.txt 75 76 76 76 76 76 

hBPP175.txt 84 84 84 84 84 84 

hBPP178.txt 80 81 81 81 81 81 

hBPP419.txt 80 81 81 81 81 81 

hBPP531.txt 83 84 84 84 83 85 

hBPP814.txt 81 82 82 82 81 83 

Total 5 5 5 5 11 5 

Table 5. Comparative table of the solution times 

Proposed Algorithm HGGA-BP HI_BP WA Pert-Saw MBS 

10 ms. 4.31 seg 0.48 seg. 0.59 seg. 0.24 seg. 
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this is valid because the capacity of the container, 
for the case of the set of instances Hard28, is an 
even number. Subsequently, the strategy of divide 
and conquer is used, this strategy is applied to the 
list of free objects of Phase 1.  

For this, the reduced list is divided into 3 
sublists; objects whose weight value is an even 
number and objects whose weight value are prime 
numbers. From this a combinatorial algorithm is 
developed, using the list of prime objects with the 
list of even objects. This fills some other containers 
and further reduces the dimensionality of the 
instance. 

Phase 3. Heuristic algorithm. The three lists of 
objects left over from phase 2: primes, pairs and 
odd are concatenated, and the FFD heuristic 
algorithm is applied. 

Next, the proposed algorithm is shown, which 
allows to obtain the optimum value of some 
instances of the dataset HARD28. 

Step 1. The instance is reduced by filling the 
containers with 2 objects 

For all objects in the instance: 

Let Oi and Oj be the weights associated with 
the i-th and the j-th object of the instance and 
let C be the capacity of the container 

If Oi + Oj = C then place them in a container 
and remove the Oi and Oj objects from the 
instance. 

Step 2. The instance is reduced by filling the 
containers with 3 objects 

Split the list into 3 sublists: 

List of even objects, 

List of prime objects, 

List of odd objects. 

For all objects in the list of primes and list of pairs. 

Let Ok, be an object that belongs to the list of 
even objects. 

Let Oi and Oj, be two objects belonging to the 
list of prime objects and C the capacity of the 
containe. 

If Oi + Oj + Ok = C then place them in a 
container and delete the objects Oi, Oj and Ok, 
from the instance. 

Step 3. Join the lists of even, odd and 
prime objects. 

Step 4. Apply to the First Fit Decreasing 
(FFD) algorithm. 

In the next section, the experimental results 
are discussed. 

5 Experimental Results 

The tests were performed using the C# 
programming language and the VS.NET 2010 IDE 
on an Intel Core i7 2.80 GHz computer with 4GB of 
RAM, using the Windows 7 operating system. 

Each of the instances of the Hard28 set 
contains different numbers of objects, 160, 180 or 
200. The range of weights is from 1 to 800, with a 
container capacity equal to 1000. 

Table 3 shows the percentage of objects that 
have a prime, even or odd value, as well as the 
percentage of objects that are above half the 
container capacity of the instances of the Hard28 
dataset. This percentage corresponds to the 
objects that were left, after filling the containers 
with 2 objects. 

Of the 28 instances of the Hard28 data set the 
optimum was found in 5 of them: hBPP14, 
hBPP359, hBPP716, hBPP119, hBPP175, as 
shown in Table 4. These same instances were 
solved with the algorithms: HI-BP [7], WA [9] and 
Pert-SAWMBS [10], but the time it took the 
algorithm proposed in this paper is less than the 
algorithms mentioned above. In the case of the 
HGGA-BP algorithm [8], it solves 6 more, but in a 
much longer time, as shown in Table 5, it shows 
the total time consumed by the HGGA-BP 
algorithms [8], HI- BP [7], WA [9] and Pert-
SAWMBS [10] in solving all set of 
instances Hard28. 

Although the optimal was not obtained for the 
remaining instances, the solution is close to the 
optimum (a container), except for instances 
hBPP814, hBPP531, hBPP640, hBPP781 whose 
difference is larger than a container. Particularly 
the instance hBPP640 is to 3 containers of the 
optimal value. 

6 Conclusions 

Many of the works that try to solve the problem 
1DBPP have focused on giving solution to the set 
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of instances Hard28, which have been reported in 
the specialized literature as the most difficult. 

The algorithm proposed in this research is 
novel and promising. Unlike the ones reported in 
the literature, the algorithm uses the characteristics 
of each of the weights of the objects to be located, 
that is, the weight of the objects can be: a prime 
number, an even number or an odd number. Also 
used is the fact that the weights of some of the 
objects have a value higher than half the capacity 
of the container. This type of patterns allows to 
reduce the dimensionality of instances. 

The first reduction of dimensionality is achieved 
by filling a container with two objects, depending 
on the size of the instance, but in general this 
allows to reduce the size of instances between 5% 
and 10%. 

One of the results that is important to highlight 
is the discovery of storage patterns of objects in 
containers. A container is filled with 3 objects: 2 
objects whose weight are prime numbers and an 
object whose weight is an even number, this is due 
to the implemented tool, MEVIZ, and that allowed 
to analyze the whole set of solutions generated by 
the algorithm HGGA-BP. 

The algorithm proposed in this paper finds the 
optimal value for 5 instances, reported in the 
specialized literature [6, 7, 8, 9], and the 
computation time was in milliseconds, which is 
practically negligible, see Table 5. 

The measured times for each of the instances 
are less than one millisecond, except for the 
instance hBPP14. But in instances hBPP716, 
hBPP119, hBPP175 and hBPP359 the 
computation time is one millisecond. For other 
instances, it is almost insignificant. In other related 
works, the reported times are in seconds 
and greater. 

The results generated, see Table 4, allow to 
continue in this line, that is, to work with the 
characteristics of the objects. Find patterns of 
combinations for three objects and make it unique; 
two odd and one pair, or three objects whose 
weight is an even value.  

As well as working with number theory and 
characterizing objects to determine three objects 
that must necessarily go together inside a 
container; two objects whose weight is a prime 
number and an object whose weight is an even 

number or three objects whose weight is an even 
number. 
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