
A Storage Pattern-based Heuristic Algorithm for Solving Instances
of Hard28 Datasets for the Bin Packing Problem

Joaquín Pérez1, Rafael de la Rosa1, Hilda Castillo2, Darnes Vilariño2

1 Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Morelos,
Mexico

2 Benemérita Universidad Autónoma de Puebla, Puebla,
Mexico

jpo_cenidet@yahoo.com.mx, rafa_elo31@hotmail.com, {castillo, darnes}@cs.buap.mx

Abstract. In this paper, we propose a heuristic algorithm

that obtains the optimal solution for 5 instances of the set
of instances Hard28, for the problem of packing objects
in containers of a dimension (1DBPP). This algorithm is
based on storage patterns of objects in containers. To
detect how objects are stored in containers, the HGGA-
BP algorithm [8] was used. A tool for monitoring and
analyzing the HGGA-BP algorithm was also developed.
With the help of the user, this tool performs the
monitoring and analysis of the intermediate solutions
that are generated with the algorithm HGGA-BP [8]. The
proposed algorithm uses the inherent characteristics of
the objects, that is, the weight value of the objects of the
set of instances Hard28 can be: a prime number, an
even number or an odd number. As well as, the weights
of some of the objects are bigger than half of the capacity
of the containers. The set Hard28 consists of 28
instances and the optimal value was found in 5 of them.
For 19 instances, a container is missing to reach the
optimum solution. For 3 instances, two containers were
missing to reach the optimal solution and in one of the
obtained solutions, 3 containers were missing to reach
the optimal solution. For each of the optimal solutions
found, the calculated time is less or equal than
one millisecond.

Keywords. 1DBPP, patterns, tool, heuristic,

metaheuristic, container, instance, solution optimal.

1 Introduction

In real situations, it is necessary to place elements,
always looking for an optimal way to do it. For this,
some storage medium is used, such as bags,
boxes, containers, among others. These elements,
commonly called objects, are of different size or

type. This feature allows storage to be a complex
problem, since it is always necessary to place them
in the best way to save space. For example:
storage problems, loading problems and
containers, the problem of change, assembly lines,
business problems, cutting patterns, among
others. In general, these types of problems are
known as cutting and packing problems. These
problems, are included in a family of combinatorial
problems, which can be applied to different areas
such as: Health, Financial, Technological
Development, Textile, Metal, among others, and
this has given rise to disciplines such as: Computer
science, Engineering, Operations Research,
among others, propose or develop new algorithms
that allow to obtain good solutions.

1.1 The One-Dimensional Bin Packing
Problem (1DBPP)

The pioneers in working on this cutting problem
were Gilmore and Gomory, in 1961 formulated this
family of problems, known as cutting stock or trim
loss problems. Subsequently, Garey and Johnson
in [1], defined the one-dimensional Bin Packing
problem (1DBPP).

The Bin Packing problem can be conceptually
defined as follows:

Given a set of objects O (of different sizes), two
constants B (container size) and N (number of
containers), it is possible to place all the objects
inside the N containers, such that the sum of the
objects does not exceed the Capacity of each of
the containers.

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546

doi: 10.13053/CyS-22-1-2777

mailto:jpo_cenidet@yahoo.com.mx
mailto:rafa_elo31@hotmail.com
mailto:castillo,%20darnes%7d@cs.buap.mx

The problem of 1DBPP is classified as NP-hard,
see [1]. Given this complexity, it is difficult to
develop algorithms that obtain optimal results,
such as those reported by the specialized literature
[2, 3, 4, 5, 6], or close to the optimum, and even
better, in a polynomial time. Proof of this are the
different approaches that have been used to solve
the 1DBPP, some of them are: Heuristic
algorithms, Metaheuristics and Exact methods.
Next, the works that have reported the best results
to solve the 1DBPP are presented.

The section 2, describes the relevant works that
solve some instances of the Hard28 set of 1DBPP
and test sets that are difficult to solve. For its part,
section 3, explains the characteristics of the
analysis tool, through which the storage patterns of
the objects are discovered. In section 4, the
proposed algorithm that solves some instances of
Hard28 of 1DBPP is detailed. The section 5, on the
other hand, shows the experimental results and
finally the conclusions and the work to be done are
discussed in section 6.

2 State of the Art

To date, different algorithms have been proposed
that solve the problem of 1DBPP, in this section, it
evaluates those that have solved the largest
number of instances of the Hard28 dataset,
comparing the behavior of the algorithms and the
quality of the solution.

2.1 Algorithms that Solve the Problem of
1DBPP

According to the specialized literature, the work
developed in [12, 13], has reported a set of
algorithms that have proven to be the best to obtain
optimal solutions from some of the most
referenced instances in the state of the art.
Particularly, the instances of the Hard28 set have
been reported as those that have been the most
difficult to solve by metaheuristic algorithms.

The algorithm Hybrid Grouping Genetic
Algorithm Bin Packing (HGGA-BP), discussed in
[8], is a hybrid-genetic clustering algorithm. Which
is inspired by the algorithm of Falkenauer, reported
in [14]. The HGGA-BP uses heuristics (FFD, WFD,
BFD, among others), to generate the initial

population. Subsequently, it uses intensification
and diversification to find the best individuals in the
population, applying crosses and mutations to
improve the quality of the solution. The HI-BP
algorithm, reported in [7], is a hybrid metaheuristic
algorithm, which has two stages: construction and
improvement. In the first stage, it uses a hybrid
heuristic and in the stage of improvement uses the
tabu search algorithm reported in [11].

Weigth Anneling [9], is a metaheuristic algorithm
that uses five steps to solve the 1DBPP problem.
The first step generates an initial solution using the
FFD heuristic. The second step distorts the sizes
of objects; the third step performs local searches
and exchanging objects between pairs of
containers, in the fourth step reassigns weights
and finally checks whether the stoppage criterion
has been reached.

On the other hand, Pert-SAWMBS developed in
[10], proposes a method of solution oriented to the
container, this is done by controlling the average
weight of the objects that are inside each
container. As well as using reduction methods for
each of the solutions generated.

The research work developed in [12], proposes
a method based on patterns, data mining and
iterative, to find the optimal values of the set of
instances Hard28.

It is important to highlight the method of solution
that is posed by in [13], in it a new strategy is
proposed that allows finding optimal values
reported in the literature [12]. This work proposes
an exploration strategy that uses different
approaches to solve the instances of the Bin
Packing problem. To do this, it uses a hybrid
algorithm that takes as its main elements: a
mathematical model, a heuristic, reduction criteria
and finally a metaheuristic algorithm, the latter
calculates the lower limit of an instance. One of the
limitations of this work is the computation time that
it uses to obtain the optimal values.

2.2 1DBPP Instances

To date, there is no consensus to determine which
sets of instances are difficult to resolve. In the work
developed in [12], several investigations have
been reported in which sets of instances
considered by the authors as difficult to solve are
proposed.

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546
doi: 10.13053/CyS-22-1-2777

Joaquín Pérez, Rafael de la Rosa, Hilda Castillo, Darnes Vilariño236

For example, the datasets proposed in [14]:
Uniform [OR Library] and Triplets [OR Library]. In
the first, the files binpack1 to binpack4 consist of
objects whose size are uniformly distributed in
(20,100), to be packed in containers of Size 150.
And in the second, the files binpack5 to binpack8

consists of 'triplets' of objects distributed in (25,
50), to be packaged in 100 size containers.

The work reported in [15], proposes three sets
of instances Data_Set_1, Data_Set_2 and
Data_Set_3, each of these sets presents
characteristics that make them difficult to solve.

Fig. 1. How objects are distributed in containers with the HGGA-BP metaheuristic algorithm [8]

Fig. 2. General scheme of the proposed algorithm

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546

doi: 10.13053/CyS-22-1-2777

A Storage Pattern-based Heuristic Algorithm for Solving Instances of Hard28 Datasets for the Bin Packing Problem 237

The first set consists of 720 instances, each one of
which is constructed similarly to those used in [19].
The objective of set number two is to obtain an
average of 3, 5, 7 and 9 objects per container and
the last set has instances considered as hard,
since the weights of the objects are widely
dispersed and the values are obtained in the
interval from 20,000 to 35,000.

It is important to note that in [17], the data set
Wae_Gau1 is proposed for the first time, which
consists of 17, instances with different
characteristics in each of them and which are
considered as difficult to resolve by the authors.

In the work developed in [16], the data sets
Was_1 and Was_2 are proposed, which are
considered difficult to solve.

Finally, the research discussed in [18], proposes
to the data set 53NIRUP and the data set Hard28.
The set Hard28 consists of 28 instances, which
have been considered as the most difficult to solve
by the current metaheuristic algorithms.

The following explains the elements that are
used to detect the different storage patterns of
objects in containers.

3 Storage Patterns

The next section presents the visualization tool that
was used to discover the storage
patterns developed.

3.1 Visualization Tool

Given the large amount of information generated
by the metaheuristic algorithms applied to the
1DBPP problem, the tool called MEVIZ was
developed, which performs analysis and
monitoring of the results generated by an
algorithm. MEVIZ receives as input a set of
instances and a metaheuristic algorithm.

The metaheuristic algorithm that to date has
solved more instances of the Hard28 dataset is the
HGGA-BP, proposed in [8]. These two elements
are the input data to the visualization tool. To
perform the monitoring, a listening agent is
embedded in the metaheuristic algorithm.

Figure 1, shows an example of how objects are
distributed within the containers by the HGGA-BP
algorithm. And in Table 1, the total number of

solutions generated by the same algorithm is
shown.

As this algorithm is genetic, it considers many
solutions, since it depends on the size of the initial
population. With the tool developed in the present
investigation, it is possible to visualize the whole
set of solutions generated by the metaheuristic
algorithm.

Table 1. Number of solutions generated by the HGGA-
BP algorithm

Instance name
Number of solutions

generated

hBPP14 537455

hBPP832 533409

hBPP40 842109

hBPP360 545123

hBPP645 831429

hBPP742 548413

hBPP766 538262

hBPP60 544368

hBPP13 536140

hBPP195 531753

hBPP709 534363

hBPP785 541316

hBPP47 539677

hBPP181 546009

hBPP359 546560

hBPP485 541622

hBPP640 543313

hBPP716 551829

hBPP119 532743

hBPP144 528376

hBPP561 528306

hBPP781 530417

hBPP900 531077

hBPP175 544497

hBPP178 539753

hBPP419 567358

hBPP531 553283

hBPP814 541937

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546
doi: 10.13053/CyS-22-1-2777

Joaquín Pérez, Rafael de la Rosa, Hilda Castillo, Darnes Vilariño238

In Table 2, the segment of a solution generated
by the HGGA-BP algorithm of the hBPP13
instance of the Hard28 set is shown and based on
these results storage patterns can be obtained.

3.2 Pattern Discovery

Next, the results generated by the metaheuristic
algorithm through the MEVIZ tool are analyzed and
it is possible to discover storage patterns of objects
in containers and that are the basis of the algorithm
proposed in this research work.

Analyzing the solutions generated and taking as
reference Table 2, container number

11 is filled with 3 objects, two of which have a
weight whose value are prime numbers (281 and
29) and the other object has a weight whose value
is an even number (690).

This is also true for container number 14, at its
maximum capacity. In container number zero, the
weight of the three objects are even numbers (596,
332 and 72), as well as container number six.

Another common pattern that has been
discovered is that of 2 objects with weight whose
value is an odd number and an object with a weight
whose value is an even number.

It is important to mention that these patterns are
meet whenever a container is full to its
maximum capacity.

From the results obtained by the tool, it has
been found that these patterns are presented in the
different solutions that are obtained for an instance
of Hard28, as well as for all instances of the same
dataset. All this allows to generalize the storage
patterns of the objects in the containers for the data
set Hard28.

In the next section, we propose an algorithm
that uses the properties of the natural numbers,
this proposal reduces the dimensionality of the
instances of the data set Hard28. Subsequently the
FFD heuristic algorithm is applied and in this way
the optimal is obtained for some of the instances of
the Hard28, in practically negligible times.

4 Proposed Algorithm

After analyzing the results generated by the
HGGA-BP algorithm and visualized with the
MEVIZ tool, an algorithm is developed that reduces
the dimensionality of the instances and, together
with the FFD heuristic, allows to obtain the optimal
value of some of the data set instances Hard28.

A general scheme of the proposed algorithm is
shown in Figure 2, it uses the storage pattern (2
objects whose weight is a prime number and an
object whose weight is an even number), to fill
containers at their maximum capacity using only
3 objects.

One of the basic elements of the proposed
algorithm is to divide the list of objects into sublists,
this allows grouping objects that have common
characteristics, without the need to perform excess
combinations, as in the case of using a single list
of objects. In addition, this reduces the
dimensionality of instances. The general elements
of the proposed algorithm are described below.

Table 2. Extract of a solution generated by the HGGA-

BP algorithm applied to the HBPP13 instance

Number
of

solution
Container Objects

Total
Sum

15513 0 -596-332-72 1000

 1 -85-444-471 1000

 2 -194-555-251 1000

 3 -649-36-315 1000

 4 -652-51-297 1000

 5 -385-426-189 1000

 6 -128-572-300 1000

 7 -499-341-160 1000

 8 -662-122-216 1000

 9 -674-28-298 1000

 10 -641-169-190 1000

 11 -690-281-29 1000

 12 -378-126-496 1000

 13 -635-62-303 1000

 14 -660-167-173 1000

 15 -316-628-56 1000

 16 -651-181-168 1000

 17 -691-95-214 1000

 18 -458-541-1 1000

 19 -626-144-230 1000

 20 -634-84-282 1000

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546

doi: 10.13053/CyS-22-1-2777

A Storage Pattern-based Heuristic Algorithm for Solving Instances of Hard28 Datasets for the Bin Packing Problem 239

Phase 1. Fill a container with 2 objects. One of
the characteristics of the set of instances of the
Hard28 is that the values of some objects are
greater than half the capacity of the container, this
allows to traverse the list of objects and fix them in
containers.

Subsequently, to be able to fill them to their
maximum capacity the problem is reduced to using

a search algorithm, i.e., takes the residual capacity
of the container and searches that value in the list
of free objects. This phase reduces the
dimensionality of the instance.

Phase 2. Fill a container with 3 objects. Based
on the detected pattern, containers are filled with 3
objects, of which the weight of 2 objects are prime
numbers and the other object is an even number;

Table 3. Percentage of objects with even values, odd, primes and total number of objects

Name of
instance

Percentage of
prime objects

Percentage of
odd objects

Percentage of
even objects

Percentage of
objects greater
than half of the

container

Objects

hbpp13 0.17 0.53 0.46 0.33 180

hbpp14 0.20 0.48 0.51 0.31 160

hbpp40 0.22 0.48 0.51 0.28 160

hbpp47 0.22 0.51 0.48 0.35 180

hbpp60 0.12 0.51 0.48 0.32 160

hbpp119 0.19 0.44 0.54 0.30 200

hbpp144 0.17 0.48 0.51 0.27 200

hbpp175 0.15 0.43 0.56 0.36 200

hbpp178 0.19 0.52 0.47 0.35 200

hbpp181 0.17 0.47 0.52 0.34 180

hbpp195 0.18 0.51 0.48 0.26 180

hbpp359 0.17 0.50 0.49 0.34 180

hbpp360 0.13 0.54 0.45 0.36 160

hbpp419 0.14 0.54 0.45 0.34 200

hbpp485 0.16 0.51 0.48 0.34 180

hbpp531 0.16 0.48 0.51 0.38 200

hbpp561 0.20 0.53 0.46 0.26 200

hbpp640 0.14 0.60 0.39 0.37 180

hbpp645 0.14 0.50 0.49 0.29 160

hbpp709 0.09 0.61 0.38 0.28 180

hbpp716 0.18 0.48 0.51 0.39 180

hbpp742 0.17 0.5 0.5 0.35 160

hbpp766 0.12 0.54 0.45 0.28 160

hbpp781 0.18 0.47 0.52 0.31 200

hbpp785 0.19 0.43 0.56 0.33 180

hbpp814 0.17 0.52 0.47 0.38 200

hbpp832 0.11 0.5 0.5 0.27 160

hbpp900 0.19 0.47 0.52 0.32 200

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546
doi: 10.13053/CyS-22-1-2777

Joaquín Pérez, Rafael de la Rosa, Hilda Castillo, Darnes Vilariño240

Table 4. Results generated by the proposed strategy, compared with other algorithms

Instance Optimal HI_BP WABP Pert-SAWMBS HGGA-BP Proposed Algorithm

hBPP14.txt 62 62 62 62 62 62

hBPP832.txt 60 61 61 61 61 61

hBPP40.txt 59 60 60 60 60 60

hBPP360.txt 62 63 63 63 62 63

hBPP645.txt 58 59 59 59 59 59

hBPP742.txt 64 65 65 65 64 65

hBPP766.txt 62 63 63 63 63 63

hBPP60.txt 63 64 64 64 64 64

hBPP13.txt 67 68 68 68 68 68

hBPP195.txt 64 65 65 65 65 65

hBPP709.txt 67 68 68 68 68 68

hBPP785.txt 68 69 69 69 69 69

hBPP47.txt 71 72 72 72 71 72

hBPP181.txt 72 73 73 73 73 73

hBPP359.txt 76 76 76 76 76 76

hBPP485.txt 71 72 72 72 72 72

hBPP640.txt 74 75 75 75 74 77

hBPP716.txt 76 76 76 76 76 76

hBPP119.txt 77 77 77 77 77 77

hBPP144.txt 73 74 74 74 74 74

hBPP561.txt 72 73 73 73 73 73

hBPP781.txt 71 72 72 72 72 73

hBPP900.txt 75 76 76 76 76 76

hBPP175.txt 84 84 84 84 84 84

hBPP178.txt 80 81 81 81 81 81

hBPP419.txt 80 81 81 81 81 81

hBPP531.txt 83 84 84 84 83 85

hBPP814.txt 81 82 82 82 81 83

Total 5 5 5 5 11 5

Table 5. Comparative table of the solution times

Proposed Algorithm HGGA-BP HI_BP WA Pert-Saw MBS

10 ms. 4.31 seg 0.48 seg. 0.59 seg. 0.24 seg.

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546

doi: 10.13053/CyS-22-1-2777

A Storage Pattern-based Heuristic Algorithm for Solving Instances of Hard28 Datasets for the Bin Packing Problem 241

this is valid because the capacity of the container,
for the case of the set of instances Hard28, is an
even number. Subsequently, the strategy of divide
and conquer is used, this strategy is applied to the
list of free objects of Phase 1.

For this, the reduced list is divided into 3
sublists; objects whose weight value is an even
number and objects whose weight value are prime
numbers. From this a combinatorial algorithm is
developed, using the list of prime objects with the
list of even objects. This fills some other containers
and further reduces the dimensionality of the
instance.

Phase 3. Heuristic algorithm. The three lists of
objects left over from phase 2: primes, pairs and
odd are concatenated, and the FFD heuristic
algorithm is applied.

Next, the proposed algorithm is shown, which
allows to obtain the optimum value of some
instances of the dataset HARD28.

Step 1. The instance is reduced by filling the
containers with 2 objects

For all objects in the instance:

Let Oi and Oj be the weights associated with
the i-th and the j-th object of the instance and
let C be the capacity of the container

If Oi + Oj = C then place them in a container
and remove the Oi and Oj objects from the
instance.

Step 2. The instance is reduced by filling the
containers with 3 objects

Split the list into 3 sublists:

List of even objects,

List of prime objects,

List of odd objects.

For all objects in the list of primes and list of pairs.

Let Ok, be an object that belongs to the list of
even objects.

Let Oi and Oj, be two objects belonging to the
list of prime objects and C the capacity of the
containe.

If Oi + Oj + Ok = C then place them in a
container and delete the objects Oi, Oj and Ok,
from the instance.

Step 3. Join the lists of even, odd and
prime objects.

Step 4. Apply to the First Fit Decreasing
(FFD) algorithm.

In the next section, the experimental results
are discussed.

5 Experimental Results

The tests were performed using the C#
programming language and the VS.NET 2010 IDE
on an Intel Core i7 2.80 GHz computer with 4GB of
RAM, using the Windows 7 operating system.

Each of the instances of the Hard28 set
contains different numbers of objects, 160, 180 or
200. The range of weights is from 1 to 800, with a
container capacity equal to 1000.

Table 3 shows the percentage of objects that
have a prime, even or odd value, as well as the
percentage of objects that are above half the
container capacity of the instances of the Hard28
dataset. This percentage corresponds to the
objects that were left, after filling the containers
with 2 objects.

Of the 28 instances of the Hard28 data set the
optimum was found in 5 of them: hBPP14,
hBPP359, hBPP716, hBPP119, hBPP175, as
shown in Table 4. These same instances were
solved with the algorithms: HI-BP [7], WA [9] and
Pert-SAWMBS [10], but the time it took the
algorithm proposed in this paper is less than the
algorithms mentioned above. In the case of the
HGGA-BP algorithm [8], it solves 6 more, but in a
much longer time, as shown in Table 5, it shows
the total time consumed by the HGGA-BP
algorithms [8], HI- BP [7], WA [9] and Pert-
SAWMBS [10] in solving all set of
instances Hard28.

Although the optimal was not obtained for the
remaining instances, the solution is close to the
optimum (a container), except for instances
hBPP814, hBPP531, hBPP640, hBPP781 whose
difference is larger than a container. Particularly
the instance hBPP640 is to 3 containers of the
optimal value.

6 Conclusions

Many of the works that try to solve the problem
1DBPP have focused on giving solution to the set

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546
doi: 10.13053/CyS-22-1-2777

Joaquín Pérez, Rafael de la Rosa, Hilda Castillo, Darnes Vilariño242

of instances Hard28, which have been reported in
the specialized literature as the most difficult.

The algorithm proposed in this research is
novel and promising. Unlike the ones reported in
the literature, the algorithm uses the characteristics
of each of the weights of the objects to be located,
that is, the weight of the objects can be: a prime
number, an even number or an odd number. Also
used is the fact that the weights of some of the
objects have a value higher than half the capacity
of the container. This type of patterns allows to
reduce the dimensionality of instances.

The first reduction of dimensionality is achieved
by filling a container with two objects, depending
on the size of the instance, but in general this
allows to reduce the size of instances between 5%
and 10%.

One of the results that is important to highlight
is the discovery of storage patterns of objects in
containers. A container is filled with 3 objects: 2
objects whose weight are prime numbers and an
object whose weight is an even number, this is due
to the implemented tool, MEVIZ, and that allowed
to analyze the whole set of solutions generated by
the algorithm HGGA-BP.

The algorithm proposed in this paper finds the
optimal value for 5 instances, reported in the
specialized literature [6, 7, 8, 9], and the
computation time was in milliseconds, which is
practically negligible, see Table 5.

The measured times for each of the instances
are less than one millisecond, except for the
instance hBPP14. But in instances hBPP716,
hBPP119, hBPP175 and hBPP359 the
computation time is one millisecond. For other
instances, it is almost insignificant. In other related
works, the reported times are in seconds
and greater.

The results generated, see Table 4, allow to
continue in this line, that is, to work with the
characteristics of the objects. Find patterns of
combinations for three objects and make it unique;
two odd and one pair, or three objects whose
weight is an even value.

As well as working with number theory and
characterizing objects to determine three objects
that must necessarily go together inside a
container; two objects whose weight is a prime
number and an object whose weight is an even

number or three objects whose weight is an even
number.

References

1. Garey, M.R. & Johnson, D.S. (1979). Computers

and Intractability: A guide to the Theory of NP-
Completeness. W.H. Freeman and Company, John
Wiley & Sons.

2. Coffman, E.G., Garey, Jr. M.R., & Johnson, D.S.
(1996). Approximation algorithms for bin packing: A
survey. Approximation algorithms for NP-Hard
problems, edited by D. Hochbaum, pp. 46–93.

3. Coffman, E.G., Galambos, G., Martello, S., &
Vigo, D. (1999). Bin packing approximation

algorithms: combinatorial analysis. Handbook of
combinatorial optimization. Springer, DOI: 10.1007/
978-1-4757-3023-4_3.

4. Csirik, J., Johnson, D.S., Kenyon, C., Shor, P.W.,
& Kenyon, R.R. (1974). Fast Algorithms for Bin
Packing. Journal of computer and system sciences,

Vol. 8, No. 3, pp. 272–314. DOI: 10.1016/S0022-
0000(74)80026-7.

5. Reeves, C.R. (1996). Hybrid genetic algorithms for

bin-packing and related problems. Annals of
Operation Research, Vol. 63, No. 1, pp. 371–396.
DOI: 10.1007/BF02125404.

6. Frederick, D. & John, L. (2004). Ant colony

optimization and local search for bin packing and

cutting stock problems. Journal of the Operational
Research society, Vol. 55, No. 7, pp. 705–716. DOI:
10.1057/palgrave.jors.2601771.

7. Alvim, A.C.F., Ribeiro, C.C., Glover, F., & Aloise,
D.J. (2004). A hybrid improvement heuristic for the

one-dimensional bin packing problem. Journal of
Heuristics, Vol. 10, No. 2, pp. 205–229. DOI:
10.1023/B:HEUR.0000026267.44673.ed.

8. Reyes, L.C., Quiroz, M., Alvim, A.C.F., Fraire,
H.J., Gómez, C., & Jiménez, J.T. (2012). Efficient

Hybrid Grouping Heuristics for the Bin Packing
Problem. Computación y Sistemas, Vol. 16, No. 3,
pp. 349–360.

9. Loh, K.H., Golden, B., & Wasil, E. (2008). Solving

the one-dimensional bin packing problem with a
weight annealing heuristic. Computers &
Operations Research, Vol. 35, No. 7, pp. 2283–
2291. DOI: 10.1016/j.cor.2006.10.021.

10. Fleszar, K. & Charalambous, C. (2011). Average-

weight-controlled bin-oriented heuristics for the one-
dimensional bin-packing problem. European
Journal of Operational Research, Vol. 210, No. 2,
pp. 176–184. DOI: 10.1016/j.ejor.2010.11.004.

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546

doi: 10.13053/CyS-22-1-2777

A Storage Pattern-based Heuristic Algorithm for Solving Instances of Hard28 Datasets for the Bin Packing Problem 243

11. Glover, F. & Laguna, M. (1997). Tabu Search.
Kluwer Academic Publishers.

12. Mexicano, S.A. (2012). Caracterización de
conjuntos de instancias difíciles del problema de bin
packing orientada a la mejora de algoritmos
metaheurísticos mediante el uso de técnicas de
minería de datos.

13. Pérez, O.J., Castillo, Z.H., Villarino, A.D.,
Mexicano, S.A., Zabala, D.J.C., Martínez, R.A., &
Estrada, E.H. (2016). Una nueva estrategia
heurística para el problema de bin packing. Revista
Ingeniería Investigación y Tecnología, Vol. 17, No.
2, pp. 155–168. DOI: 10.1016/j.riit.2016.06.001.

14. Falkenauer, E. (1996). A hybrid grouping genetic

algorithm for bin packing. Journal of Heuristics, Vol.
2, No. 1, pp. 5–30. DOI: 10.1007/BF00226291.

15. Scholl, A., Klein, R., & Jurgens, C. (1997). Bison:

A fast hybrid procedure for exactly solving the one-
dimensional bin packing problem. Computers
Operations. Research, Vol. 24, No. 7, pp. 627–645.
DOI: 10.1016/S0305-0548(96)00082-2.

16. Wascher, G. & Gau, T. (1996). Heuristic for the

integer one dimensional cutting stock problem: A
computational study. Operations Research-
Spektrum, Springer-Verlang, Vol. 18, No. 3, pp.
131–144. DOI: 10.1007/BF01539705.

17. Schwerin, P. & Wascher, G. (1998). A new lower

bound for the bin packing problem and its
integration into MTP. Springer-Verlag.

18. Schwerin, P. & Wäscher, G. (1997). The bin-

packing problem: A problem generator and some
numerical experiments with FFD packing and MTP.
International Transactions in Operational Research,
Vol. 4, No. 5–6, pp. 337–389. DOI: 10.1111/j.1475-
3995.1997.tb00093.x.

19. Martello, S. & Toth, P. (1990). Knapsack problems,
algorithms and computer implementations. John
Wiley & Sons.

Article received on 12/08/2016; accepted on 11/10/2016.
Corresponding author is Joaquin Perez.

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 235–244
ISSN 1405-5546
doi: 10.13053/CyS-22-1-2777

Joaquín Pérez, Rafael de la Rosa, Hilda Castillo, Darnes Vilariño244

