Low-Exponential Algorithm for Counting
the Number of Edge Cover on Simple Graphs

José A. Hernandez-Servin', J. Raymundo Marcial-Romero', Guillermo De Ita Luna?

1 Universidad Autbnoma del Estado de México, Toluca,
Mexico

2 Benemeérita Universidad Autbnoma de Puebla, Puebla,
Mexico

xoseahernandez@uaemex.mx, jrmarcialr@uaemex.mx, deita@cs.buap.mx

Abstract. A procedure for counting edge covers of
simple graphs is presented. The procedure splits simple
graphs into non-intersecting cycle graphs. This is a “low
exponential” exact algorithm to count edge covers for
simple graphs whose upper bound in the worst case
is O(1.465575(™~™ x (m + n)), where m and n are
the number of edges and nodes of the input graph,
respectively.

Keywords.
partition.

Edge covering, graph theory, integer

1 Introduction

Counting problems, although intrinsically interesting,
have applications in a wide range of different areas.
For instance, when estimating the probability that a
given graph remains connected (graph connectivity is
fundamental in network reliability theory) or when a
propositional formula needs to be probabilistically tested
to be true. The estimation of such probabilities can be
seen as a counting problem. Counting problems also
arise naturally in Artificial Intelligence Research, when
some methods are used in reasoning areas, such as
computing the ‘degree of belief’ when ‘Bayesian belief
networks’ are used [6, 5, 17, 18].

Counting has become an important area in theoretical
computer science, even though it has received less
attention than decision problems. There is a handful of
counting problems in graph theory that can be solved
exactly in polynomial time, and indeed an important
line of research is to determine low-exponential upper
bounds for the time complexity of hard counting
problems.

An edge cover of a graph G is a subset of edges
covering all nodes of G. The problem of counting the
number of edge cover sets of a graph, denoted as
#Edge_Covers, is a #P complete problem proven via the
reduction from #Twice-SAT to #Edge_Covers [4]. Most of
the research on the subject has focused on approximate
algorithms. In [2], an approximation algorithm for
counting edge covers on 3 regular randomized graphs
was presented.

More recently, in [13] a fully polynomial time
approximation scheme (FPTAS) for counting edge
covers of simple graphs was proposed; same authors
have extended the technique to tackle the weighted edge
cover problem in [14]. Additionally, the edge covering
property was found interesting and relevant in various
domains [7, 15, 16]. The edge cover polynomial of a
graph G is presented in [1].

The edge cover problem is related to (perfect)
matching, k-factor problems among others. The previous
problems involve a set of edges satisfying local vertex
constraints. For matching, it is at most one incident edge
should be chosen compared to the edge cover problem
in which at least one edge is chosen. For generic
constraints, it is the Holant setting [10, 11], which has
been studied for exact counting [9, 11, 8].

In this paper, we present an exact algorithm for
counting edge covers taking into account that there
exists a polynomial time algorithm for non-intersecting
cyclic graphs [15]. Having said that, the technique is
basically to reduce a simple graph into a sequence of
non-intersecting cyclic graphs. The time complexity of
the algorithm is also studied. Although, the complexity
of our proposal remains exponential its complexity is
smaller than the trivial 2(™~™), where m and n are the

Computacién y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456
ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

450 José A. Hernandez-Servin,]. Raymundo Marcial-Romero, Guillermo De Ita Luna

number of edges and vertices respectively of the input
graph.

2 Preliminaries

A graph is a pair G = (V,E), where V is a set of
vertices and F is a set of edges that associates pairs of
vertices. The number of vertices and edges is denoted
by v(G) and e(G), respectively. A simple graph is an
unweighted, undirected graph containing no graph loops
or multiple edges. Through the paper only simple finite
graphs will be considered, where G is a finite graph if
n = |v(G)| < oo and m = |e(G)| < co. A simple cycle in
a simple graph is a set of vertices that can be arranged
in a cyclic sequence in such a way that two vertices are
adjacent if they are consecutive in the sequence, and are
nonadjacent otherwise [3]. A cycle basis is a minimal set
of simple cycles such that any cycle can be written as
the sum of the cycles in the basis. A graph is said to
be non-intersecting cyclic if any pair of simple cycles are
edge disjoints.

An edge cover of agraph G is a set of edges C' C Eg,
such that meets all vertices of G. That is for any v € V,
it holds that £, N C # () where E, is the set of edges
incident to v. The family of edge covers for the graph
G will be denoted by £z. The problem of computing
the cardinality of £z is well known to be #P-complete
problem.

A subgraph of a graph G is a graph G' = (V', E')
suchthat V' C Vand E' C E. If e € E, e can simply be
removed from graph G, yielding a subgraph denoted by
G\¢; this is obviously the graph (V, E — e). Analogously,
if v € V, G\v is the graph (V — v, E’) where E' C E
consists of the edges in E except those incident at v. A
spanning subgraph is a subgraph computed by deleting
a number of edges while keeping all its vertices covered,
that is if S C FE is a subset of E, then a spanning
subgraph of G = (V,E) is a graph (V,S C E) such
that for every v € Vit holds £, NS # 0.

A path in a graph is a linear sequence of adjacent
vertices, whereas a cycle in a graph G is a simple graph
whose vertices can be arranged in a cyclic sequence
in such a way that two vertices are adjacent if they
are consecutive in the sequence, and are nonadjacent
otherwise [3]. The length of a path or a cycle is the
number of its edges.

An acyclic graph is a graph that does not contain
cycles. The connected acyclic graphs are called trees,
and a connected graph is a graph that for any two
pair of vertices there exists a path connecting them.
The number of connected components of a graph G
is denoted by ¢(G). It is not difficult to infer that in a

Computacidn y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456
ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

tree there is a unique path connecting any two pair of
vertices. Let T'(v) be a tree T' with root vertex v. The
vertices in a tree with degree equal to one are called
leaves.

2.1 The Cycle Space

A cycle basis is a minimal set of basic cycles such that
any cycle can be written as the sum of the cycles in
the basis [12]. The sum of cycles C; is defined as the
subgraph Cy & --- & Ci, where the edges are those
contained in an odd number of C;’s, ¢ € {1,...,k} with
k € N arbitrary. The aforementioned sum gives to the set
of cycle or cycle space C the structure of a vector space
under a given field k. The dimension of the cycle space
Cis dimg C = |B| where B is a basis for C. In particular, if
G is a simple graph the field is taken to be k = I, which
is the case concerning this paper. Thus the field Fx will
be used through the entire paper to describe cycle space
of graphs.

3 Splitting Simple Graphs

The technique proposed in this paper, assumes that if
the graph has cycles, it is always possible to calculate
a cycle basis for the cycle space of the graph. The
cycle basis to be considered in this paper can easily be
constructed by using the well known depth first search
algorithm (DFS) [3]. The process of getting a spanning
tree for G by DFS algorithm will be denoted by (G).
By using depth first search a spanning tree or forest
T = (G) can be constructed for any graph G. The
cycle basis is the set of all cycles such that each of them
consists of an edge in T = G\T and the simple path in
T connecting its two end vertices. The dimension of Ca
is therefore |T|.

3.1 Non-intersecting Cycle Graph or Basic
Graphs

In this paper we define basic graphs or non-intersecting
cycle graphs as those simple graphs G with dimCg # 0
in such a way that any pair of basic cycles are edge
disjoints. Let B = {C4,...,Cx} a basis for the cycle
space Cg; if C, = (Vi, Ey) let us define the sequence
of intersections of the edge sets {E;} as

By= |J [Byn--NE] (3.1)

i1 iy
for any I, = {i1,..,ip} C {1,..,k}, it is clear
that £;, N--- N Ei, = Ei,, N---NE;,, forany

Low-Exponential Algorithm for Counting the Number of Edge Cover on Simple Graphs 451

permutation o € S,; where S, is the symmetric group of
permutations. The number of different terms to consider
in Equation (3.1) is given by k!/(k — p)!p! which is the
number of different combinations of the index set I,,.
Thus, we can establish the conditions of whether a graph
G has not an intersecting cycle basis. If the graph G is
not acyclic and B, = @) then dim G > 1 so G is called a
basic graph. Let e € F be an edge and define n. as the
maximum integer such that e belongs to as many as n.
edge sets E;. In other words, n. = max{p|B, # 0}.

3.2 Splitting a Graph into Basic Graphs

Computing edge covers for simple graphs lies on the
idea of splitting a given graph G into acyclic graphs
or basic graphs. It will be shown, that calculating
edge covers for simple graphs can be reduced to
the computation of edge covers for acyclic graphs or
basic graphs thus being able to fully compute |Eg|.
The definition below describes in detail the process of
splitting a graph into smaller graphs, which eventually
leads to a decomposition of simple graphs into acyclic
graphs or basic graphs.

Definition 1 For a given graph G = (V, E),

1. the split at vertex v € V is defined as the graph
GHv = (V', E")where V' = (V—{v})UU,cn, {w'}
and E' = (E — Ey) UU, ey, {ww'} with w" ¢ V,

2. the subdivision operation at edge e = wv € E'is
defined as the graph GLle = (V U {z},(E —e) U
{uz, zv}) with z ¢ V, and z can be written either as

Uy OF Uy

3.1f e = ww € E is an edge, G/e will denote
the resulting graph after performing the following
operation

(((G\e)LS)Hu)Hv

where S = E, U E, — {e}. The subdivide operation
(G\e)LS means tacitly (---((G\e)Lf)Lg---))
where f,g,... € S.

Above definition can be easily extended to subsets
V' = {vi,..,v.} CV, E = {e,..,es} C E, thatis
GAV' = (- ((GH wv1)H v2)---) 4 vr; analogously,
GLlE" = (---((GLei)Lles)---)Les. It must be noted,
that the order on which the operations to obtain G /e are
performed is unimportant as long as one keeps track of
the labels used during the process.

Example 1 Consider the star graph W, as presented in
Figure 1.

3y v

Fig. 1. The split and subdivision operation

If H, Q are graphs not necessarily edge or vertex
disjoint we define a formal union of H and @ as the
graph H U @ by properly relabelling Vx and Vig; this
can be accomplished by defining Vaug = {(u,1)|u €
H} U {(u,2)lu € Q}. The edge set Fuug could be
defined as follows: if a,b € Vhug such that a = (u, 1),
b= (v,j) forsome i,5 € {1,2} and u,v € Vg U Vg then
ab € Egug ifand only if uv € Eg U Eg and ¢ = j.

Others labeling systems might work out just fine, as
long as they respect the integrity of graphs H and Q.
To recover the original graphs, we define the projections
mx,asta(HUQ) = Hand mo(H U Q) = Q; that is
the projections 7x revert the relabeling process to the
original for both graphs H and Q.

Definition 2 Let G = (V, E) be a simple graph. Let us
define the split operator LI, as

(i) the graph U.G = G\e U G/e, that is the graph G
splits into the graph G'\e and the graph G/eife € E.
Ife ¢ EthenU.G = nq(G\elUG/e) = ng(GUG) =
G.

(i) if H, Q are arbitrary graphs then U.(HUQ) = U.HU
LleQ withe € Eg U EQ.

Example 2 Figure 2 shows an example of how a simple
graph can be decomposed into acyclic or basic graphs.

3.3 Edge Covering Sets for Simple Graphs

The following results summarize the main properties of
the split operator L., necessary for the calculation of the
edge covering sets for simple graphs. The first result is
regarding the dimension of the cycle spaces C/. and Cg
for an edge e in the cotree of G. The proposition is rather
simple in the sense that the resulting graph after applying
G /e its dimension must diminishes certain amount which

Computacién y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456
ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

452 José A. Hernandez-Servin,]. Raymundo Marcial-Romero, Guillermo De Ita Luna

Goo
3 4
1
2 5
G10 Gll
o o
G2
Gao
I I .
° °

G3o G31

XX

Fig. 2. Example of the splitting process provided by
Definiton (2) applied to the star graph W, with five
spokes. It clearly shows the process step by step and
how the family G;; of acyclic or basic graphs is built from
Definiton (2)

allow us to conclude that the operator U will split the
graph G into non-intersecting cyclic graph.

Proposition 3.1 Let G be a simple graph, B a cycle
base, e = wv € T an edge in the cotree of G. If
be = |B, U B,| where B, = {C € Blu € C} and
B, ={C € BJv € C} then b, + dim Cg/. = dim Cg

Proof 1 Every fundamental cycle containing either u or
v must disappear under the operation G/e then those
edges in T that do not contain « or v are the only
ones that contribute to the dimension of the graph G/e,
therefore dim Cg/. = dimCg — be.

The proposition above allow us to explicitly calculate
the number of connected components into which the
graph G/e is being decomposed, on the other hand
is providing a rather efficient way of testing whether
or not G/e is a non-intersecting cyclic graph. The
lemma below assumes that the graph in consideration
is not connected, that is G has multiple connected
components, thus we must consider a spanning forest
for G instead of its spanning tree.

Computacidn y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456
ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

Lemmal Let G = (V,E) be a simple graph, F, F are
a spanning forest and its corresponding coforest for G,
respectively; let us choose an edge ¢ = uv € E¢ and
consider the split LG of G. If ac = |(E. U E,) N F| then

(i) If e € F then c(G\e) = ¢(G) and c(G/e) = c(G) +
dr(u) + dr(v) + ac — be — 3.

(i) It holds that dim Ce\. = dimCg —1 and dim Cg,. <
dim Cg.

(iii) There exists a bijective map e : £, ¢ — &¢. Thatis,
if S is an edge covering set for G\e or G/e then £(.5)
is an edge covering set for G, which is equivalent to
o =ExneVe(€qe). Thus, €| = €a\ | + |€q/]

Proof 2 (i) For any forest F, |Er| = |Vp| — c(F).

If G = &.G;, where G, are the connected
components of G, a spanning forest F' for G is a
disjoint union &7 such that T is an spanning tree
for every component G,. If e € F = U,Ts, where
Ts = Eg, — Er,, there exist ¢ such that e € T,
e ¢ Eq, and Gs\e = G5 with s # ¢ and therefore
c(Gq\e) = c(Gq) which immediately implies that
¢(G\e) = ¢(G).
The operation G/e on G is clearly adding vertices
and edges as follows: |Vg/.| = |Va| + 2(dg(u) +
da(v))—6 for vertices and |Eg .| = |Ec|+da(u) +
da(v) — 3 for edges. It is not difficult to check that
for any graph G, ¢(G) = dimCq — |Ec| + |Vz|, as a
consequence we also have ¢(G/e) = dimCg/e —
|Eg/e|l + [Vayel- Since T, is a spanning tree of
G, by Proposition (3.1) dimCg, /. = dimC¢, — b.
where B, the basis that defines b., is the basis
for the cycle space Cg,; clearly we also have that
da(u) + de(v) = dr(u) + dr(v) + a. then

c(Gle) = Z dimCg, /. +dimCq, /e
s#£q
—|Eg/el + Vayel
= ¢(G) —be+da(u)+da(v) —3
= (G) +dr(u)+dr(v)
+ae — be — 3.

(i) By definition of the cycle space Cg,, Ts forms a
vector basis for every s, thus dimCs, = |T| and
since |Er,| = |Va,| — 1 we have that dimCq, =
|Ec.| — |Va.| + 1. Now, if e € F then e € T, for
some ¢; thus dimCg\e = [Eg el — [Va\el + 1,
but |[Eg el = |Eg,| — 1 and |[Vg .| = [Vg,| so
we have that dimCg,\. = dimCq, — 1. On the
other hand, since G = ®:G we have that G\e =

Low-Exponential Algorithm for Counting the Number of Edge Cover on Simple Graphs 453

[Gq\e] & D, Gs and so a sum of cycle spaces
Cave = Cap\e © B, Ca. such that

c(G)
dimCa. = dimCgp\e+ Z dim Cq,
s#q
= dimCqg — 1.

It readily follows from Proposition (3.1) that
dimCq,)e = dimCg, — b. where b. as in
Proposition (3.1) with B replaced by B?, the
fundamental basis for graph G,. Now, b, is always
different form zero since B # 0 and BI # 0
because they always contain the fundamental cycle
formed by the edge e. Thus,

diInCG/E = dimCg — be
< dimCg.

If e € T for some T in the forest then there
must exists C € B such that e € C. The cycle
C is destroyed under the operation LI.G therefore
dimCy,¢ < dimCg.

(iii) The family £; can be partitioned into two disjoint
subfamilies of edge covering sets, thatis R = {S €
Eqle € S} then & = R U RS, To build up the
map ¢ we proceed as follows: S € R¢ if and only if
S € Eg.; thisis because G\e C G thusany S € R*
must be a subset of E¢\ . and vice versa. Therefore,
we define ¢|re = id, where id is the identity map.
Let N, = {zi}:er. be the set of adjacent vertices
to z, I. a set of indices of cardinality de\.(z) where
z is either u or v. Let us define Q. = {z:2;} and
Q. = {ziz{}, thus any S € &g, must necessarily
contain the set Q’; ifany f € Q. is notin S then S
would not be an edge covering set because 2.’ will
be an isolated vertex for some i € I.. So, S = QU
Q, U S’ for some §’ C Eg/. such that ' N Q. =0
for z = u,v. Now if R € R then R = {e} U R’ such
that e ¢ R'. Since |Eg/e| = |Eg\e| + dave(u) +
dee(v), and [Eg/e — QU Q| = |Egye| — Q| —
|Q7| which implies that |Eg /. — Q) U Q3| = |Eg\|
and therefore there exist a bijection ¢ between sets
P(Eg/e—Q,UQ,) and P(Eg\.) since they are both
finite. In fact, ¢ can be chosen in such a way that if
QLUQ,US € &g, then {e} Up(S") € R and vice
versa. Therefore, £(Q, UQ,US’) = {e}U¢(S") and
e'{eUR) =Q,UQ,Us ' (R).

The family £, . accounts for those edge covering sets
S for G on which e ¢ S whereas &g, stands for those
edge covering sets where ¢ is always a member.

Let S C E be a subset of edges, from Definiton (2)(i)
the split of G along S, denoted by LisG, is recursively
defined in terms of the sequence of splits G;; =
uciG(i,Dj = G(ifl)j\ei] G(ifl)j/ei, i € {1,..., |S‘} in
particular for i = 1 we define Gi1 = Goo\e1 U Goo/ex
where Goo = G. By setting ¢(i) = 2°"' — 1 and for
0 < j < ¢(i) we have therefore,

UsG = Gis= || [G\su} 3.2
0<5j<a(1S1)
= U [G<\S|—1>j\€\sw'—'Gusw—m/em]
0<j<o(IS)

To short up the notation, we make Gy; = G—1); * e,
&y =C&q, and & = &g, we, = gGIj with x € {\,/};

under this notation we have that G;; = G}j u G{j. In
general, the graph G¢; is disconnected, if we denote by
G'1js its connected components then &, ;, will denote the
family of edge covering sets for each graph G:;. For
any given spanning tree T for a simple graph G, let
us make t = |T| = dimCg, H; =][] &ys for some
SESt;
set S;; C N, where [] denotes the cartesian product
and the projections will be denoted by 7;, for every s,
j. Every edge covering set of a graph G induces a
subgraph; if S C Eg by definition S meets all vertices
of G then the induce graph of S becomes (V¢, S). For
the rest of the paper the family of edge covering sets,
like &,;, will also denote the family of induced graphs by
this sets. Therefore, the calculation of edge cover for a
graph G is equivalent to calculate the induced graphs by
edge covering sets, since most of the operations to be
performed are graph operation like vertex splitting and
edge subdivision.

Theorem 1 Let G be a finite, connected simple graph,
T a spanning tree for G and T denotes its cotree and
t = |T| then
(i) the family {sz,G{j}, appearing in the expansion
UwG, are all acyclic graphs or non-intersecting
cycle graphs for all j satisfying 0 < 7 < ¢(#).
(i) If G%;s denotes the connected components of G7;,

then G7y;, are edge and vertex disjoint for every j,
and G;; = @ Gy, for some set of indices S;; €
sEStj
N.
(i) For every j, 0 < j < ¢(t) there exist bijections
€t : Ujgtj — &, ey 1 &y —> Eyoqy; such
that £,_,);, = g U &) [8(/,571”.} and therefore

(-1
& =] U; &)

Computacién y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456
ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

454 José A. Hernandez-Servin,]. Raymundo Marcial-Romero, Guillermo De Ita Luna

(iv) Let H = (H',..,H'"1") ¢ 1, be a vector of
graphs of the cartesian product of family &:;s of
induced graphs by edge covering sets, then &;; =

UHe’Hj [69565,:]' st(H)} and

U U [P st(Hj)D-

0<j<(t) Hj€M; sESy;

Etzat(

For every ¢, 1 < g < t, there exist bijections ¢,
R R - N (3.3)

insuch away thatife = g1 0---0g, then Eg = (&)

and
ol = > I&y]
J
= S IT leael) @4
7 SEStj
Proof3 (i) Let T be a spanning tree of G, T = E\T

its cotree and let I be an index set of integers. Let
us consider e; € T, u;,v; € Vg such that e; = w;v;;
it is well known that e; and the path of T joining
u; to v; forms a basic cycle. Let B = {Ci}ier
be that set of basic cycles then B is a basis for
the cycle space Cg where C; is the basic cycle
corresponding to edge e; [12]. Let us define the
family {G4;} as in Equation (3.2) of G of subgraphs
such that Goo = G, Gi; = G—1)jxerr J € Ji
and : € I where J; = {j|0 < j < ¢(i),7 € I}
By making C;; = cgij, it follows from Lemma (1),

o\ oo\
dimCey s,y = dmCG_y)

dimC{i_l)(Ji) for all i € I. Therefore at some point
in the decomposition process of graph G we must
have dimC;; = 0 or dimC;; > 0 and B(Gy;) #
0, which means that graphs G;; are acyclic or
non-intersecting cycle graphs for all j € J;.

imC’
—land dimC; ;) <

(i) It is clear from the definition of operator L7 that
all graphs Gy; are vertex and edge disjoint. The
connected components G7;, are all subgraphs of
Gi; thus G}; = @G, make sense.

(iii) It follows from Lemma (1)(iii).

(iv) It follows from Lemma (1)(iii) and (i)-(iii) of this
theorem.

Algorithm 1 decomposes the input graph into basic or
acyclic graphs as Definition 1 establishes.

Computacidn y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456
ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

Algorithm 1 Procedure that decompose a graph G
into UG compose of basic or acyclic graphs

1: procedure SPLIT(G) {Decomposition of G into
basic or acyclic graphs}
2: Input: G = (V, E)
3. Output: UsG
4: Select an edge e = uwv € FE such that e €
B,(G) # 0 for some p > 1. {Notice that if the
edge e exists can be found in O(nmlogm).}
5: if e exists then
6: Calculate U.G = G\e U G/e by applying the
splitting reduction rule over e generating H =
G\eand Q = G/e
7. if Bo(H) # 0 then
8: A= SPLIT(H)
90 endif
10: if Bo(Q) # 0 then
11 B = SPLIT(Q)
12: end if
13: end if
14: return A U B {the set of edges where the
splitting process is applied. By Theorem (1)(iv)
we have that [£q| = 3, [&;] and [&;] can be
calculated by the procedures presented in [15]
for basic and acyclic graphs.}

4 Time Complexity of the SPLIT
Algorithm

Let G = (V,E) be a simple graph, m = |E|, n =
|[V]. The time complexity of Algorithm 1 is given by the
recursive calls over G (steps 9 and 12) which can be
established by the following theorem.

Theorem2 Let G = (V,FE) be a simple connected
graph with m = |E|, n = [V| and nc = m —n + 1 the
basic cycles of G. The recurrence which represent the
complexity of Algorithm 1 is given by:

T(nc) = T(nc— 1)+ T(nc— 3) (4.2)
whose solution is ~ 1.46557

Proof 4 Since e is part of at least one pair of intersecting
cycles, then G \ e = (V4, Ey) is still a connected graph.
[Vi|=ni=n, |E1| = m1 = m — 1. The number of base
cyclesin Hyisnci =mi—ni =m—-n—1=nc—1.
Then, G\ e contains at least one pair less of intersecting
cycles than G.

Low-Exponential Algorithm for Counting the Number of Edge Cover on Simple Graphs 455

Let G/e = (VQ,EQ), ng = |‘/2| and mo = |E2| By
lemma 1-(i) nc—3. This recurrence has the characteristic
polynomial p(r) = r® — r> — 1 which has the maximum
real root r ~ 1.46557.

Remark 1 Finding e suchthate = uv € E, e € B,(G) #
() for some p has complexity O(m + n).

Corollary 1 The time complexity for splitting a simple
graph G is given by:

O™ ™™ x (m +n)) ~ O(1.465571™ ™ « (m + n)).

A polynomial procedure for computing edge covers for
basic graphs (acyclic or non-intersecting graphs) can be
consulted at [15], so the complexity of counting edge
covers is given by the splitting process.

5 Conclusions

A sound procedure has been presented to decompose a
graph in order to compute the number of edge covers for
the resulting subgraphs.

Regarding the cyclic graphs with intersecting cycles,
a branch and bound procedure has been presented, it
reduces the number of intersecting cycles until basic
graphs are produced (subgraphs without intersecting
cycles). Since polynomial time procedures are known for
basic graphs, the computational complexity of the edge
cover problem resides on intersecting cycle graphs.

Additionally, a recurrence relation has been deter-
mined that establish an upper bound on the time to
compute the number of edge covers on intersecting
cycle graphs. It was also designed a “low-exponential”
algorithm for the #Edge_Covers problem whose upper
bound is O(1.465571™~™ « (m + n)), m and n being
the number of edges and nodes of the input graph,
respectively.

References

1. Akbari, S. & Oboudi, M. R. (2013). On the edge
cover polynomial of a graph. Eur. J. Comb., Vol. 34,
No. 2, pp. 297-321.

2. Bezakova, I. & Rummler, W. A. (2009). Sampling
edge covers in 3-regular graphs. Kralovic, R. &
Niwinski, D., editors, Mathematical Foundations
of Computer Science 2009, 34th International
Symposium, MFCS 2009, Novy Smokovec, High
Tatras, Slovakia, August 24-28, 2009. Proceedings,
volume 5734 of Lecture Notes in Computer Science,
Springer, pp. 137-148.

10.

11.

12.

13.

14.

. Bondy, J. A. & Murty, U. S. R. (2008).

. Jin-Yi Cai, H. G. & Williams, T. (2013).

Graph
theory, volume 244. Springer, New York.

Bubley, R. & Dyer, M. E. (1997). Graph orientations
with no sink and an approximation for a hard case
of #sat. Saks, M. E., editor, Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, 5-7 January 1997, New Orleans,
Louisiana., ACM/SIAM, pp. 248-257.

Dahll 6f, V., Jonsson, P., & Wahlstr 6m, M. (2002).
Counting satisfying assignments in 2-sat and 3-sat.
Ibarra, O. H. & Zhang, L., editors, Computing
and Combinatorics, 8th Annual International Con-
ference, COCOON 2002, Singapore, August 15-17,
2002, Proceedings, volume 2387 of Lecture Notes
in Computer Science, Springer, pp. 535-543.

. Darwiche, A. (2000). On the tractable counting of

theory models and its application to belief revision
and truth maintenance. CoRR, Vol. cs.Al/0003044.

Grohe, M. & Marx, D. (2006). Constraint solving via
fractional edge covers. Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2006, Miami, Florida, USA,
January 22-26, 2006, ACM Press, pp. 289-298.

Huang, S. & Lu, P. (2012). A dichotomy for real
weighted holant problems. IEEE Conference on
Computational Complexity, pp. 96-106.

A complete
dichotomy rises from the capture of vanishing
signatures: extended abstract. STOC, pp. 635-644.

Jin-YI Cai, P. L. & Xia, M. (2009). Holant problems
and counting csp. Proceeding of the 41st annual
ACM symposium on THeory of computing, STOC
09, ACM, New York, USA, pp. 715-724.

Jin-YI Cai, P. L. & Xia, M. (2011). Computational
complexity of holant problems. SIAM J. Comput.,
Vol. 40, No. 4, pp. 1101-1132.

Kavitha, T., Liebchen, C., Mehlhorn, K., Michail,
D., Rizzi, R., Ueckerdt, T., & Zweig, K. A. (2009).
Cycle bases in graphs characterization, algorithms,
complexity, and applications. Computer Science
Review, Vol. 3, No. 4, pp. 199-243.

Lin, C., Liu, J., & Lu, P. (2013). A simple FPTAS for
counting edge covers. CoRR, Vol. abs/1309.6115.

Liu, J., Lu, P., & Zhang, C. (2014). FPTAS for
counting weighted edge covers. Schulz, A. S. &
Wagner, D., editors, Algorithms - ESA 2014 - 22th
Annual European Symposium, Wroclaw, Poland,
September 8-10, 2014. Proceedings, volume 8737

Computacién y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456

ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

456 José A. Hernandez-Servin,]. Raymundo Marcial-Romero, Guillermo De Ita Luna

of Lecture Notes in Computer Science, Springer,
pp. 654—-665.

17-21 July 2006, The Association for Computer
Linguistics, pp. 1161-1168.

15. Luna, G. D. I., Marcial-Romero, J. R., & Venegas, 17. Roth, D. (1996). On the hardness of approximate
H. A. M. (2010). Estimating the relevance on reasoning. Artif. Intell., Vol. 82, No. 1-2, pp. 273-
communication lines based on the number of edge 302.
covers. Electronic Notes in Discrete Mathematics, 18. Vadhan, S. P. (2001). The complexity of counting

16.

Vol. 36, pp. 247-254.

Pado, S. & Lapata, M. (2006). Optimal constituent
alignment with edge covers for semantic projection.
Calzolari, N., Cardie, C., & Isabelle, P. , editors,
ACL 2006, 21st International Conference on
Computational Linguistics and 44th Annual Meeting

in sparse, regular, and planar graphs. SIAM J.
Comput., Vol. 31, No. 2, pp. 398-427.

of the Association for Computational Linguistics,
Proceedings of the Conference, Sydney, Australia,

Article received on 14/05/2015; accepted on 15/09/2015.
Corresponding author is José A. Hernandez-Servin.

Computacidn y Sistemas, Vol. 21, No. 3, 2017, pp. 449-456
ISSN 1405-5546
doi: 10.13053/CyS-21-3-2244

