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Abstract. A procedure for counting edge covers of
simple graphs is presented. The procedure splits simple
graphs into non-intersecting cycle graphs. This is a “low
exponential” exact algorithm to count edge covers for
simple graphs whose upper bound in the worst case
is O(1.465575(m−n) × (m + n)), where m and n are
the number of edges and nodes of the input graph,
respectively.
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1 Introduction

Counting problems, although intrinsically interesting,
have applications in a wide range of different areas.
For instance, when estimating the probability that a
given graph remains connected (graph connectivity is
fundamental in network reliability theory) or when a
propositional formula needs to be probabilistically tested
to be true. The estimation of such probabilities can be
seen as a counting problem. Counting problems also
arise naturally in Artificial Intelligence Research, when
some methods are used in reasoning areas, such as
computing the ‘degree of belief’ when ‘Bayesian belief
networks’ are used [6, 5, 17, 18].

Counting has become an important area in theoretical
computer science, even though it has received less
attention than decision problems. There is a handful of
counting problems in graph theory that can be solved
exactly in polynomial time, and indeed an important
line of research is to determine low-exponential upper
bounds for the time complexity of hard counting
problems.

An edge cover of a graph G is a subset of edges
covering all nodes of G. The problem of counting the
number of edge cover sets of a graph, denoted as
#Edge Covers, is a #P complete problem proven via the
reduction from #Twice-SAT to #Edge Covers [4]. Most of
the research on the subject has focused on approximate
algorithms. In [2], an approximation algorithm for
counting edge covers on 3 regular randomized graphs
was presented.

More recently, in [13] a fully polynomial time
approximation scheme (FPTAS) for counting edge
covers of simple graphs was proposed; same authors
have extended the technique to tackle the weighted edge
cover problem in [14]. Additionally, the edge covering
property was found interesting and relevant in various
domains [7, 15, 16]. The edge cover polynomial of a
graph G is presented in [1].

The edge cover problem is related to (perfect)
matching, k-factor problems among others. The previous
problems involve a set of edges satisfying local vertex
constraints. For matching, it is at most one incident edge
should be chosen compared to the edge cover problem
in which at least one edge is chosen. For generic
constraints, it is the Holant setting [10, 11], which has
been studied for exact counting [9, 11, 8].

In this paper, we present an exact algorithm for
counting edge covers taking into account that there
exists a polynomial time algorithm for non-intersecting
cyclic graphs [15]. Having said that, the technique is
basically to reduce a simple graph into a sequence of
non-intersecting cyclic graphs. The time complexity of
the algorithm is also studied. Although, the complexity
of our proposal remains exponential its complexity is
smaller than the trivial 2(m−n), where m and n are the
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number of edges and vertices respectively of the input
graph.

2 Preliminaries

A graph is a pair G = (V ,E), where V is a set of
vertices and E is a set of edges that associates pairs of
vertices. The number of vertices and edges is denoted
by v(G) and e(G), respectively. A simple graph is an
unweighted, undirected graph containing no graph loops
or multiple edges. Through the paper only simple finite
graphs will be considered, where G is a finite graph if
n = |v(G)| < ∞ and m = |e(G)| < ∞. A simple cycle in
a simple graph is a set of vertices that can be arranged
in a cyclic sequence in such a way that two vertices are
adjacent if they are consecutive in the sequence, and are
nonadjacent otherwise [3]. A cycle basis is a minimal set
of simple cycles such that any cycle can be written as
the sum of the cycles in the basis. A graph is said to
be non-intersecting cyclic if any pair of simple cycles are
edge disjoints.

An edge cover of a graph G is a set of edges C ⊆ EG,
such that meets all vertices of G. That is for any v ∈ V ,
it holds that Ev ∩ C 6= ∅ where Ev is the set of edges
incident to v. The family of edge covers for the graph
G will be denoted by EG. The problem of computing
the cardinality of EG is well known to be ♯P-complete
problem.

A subgraph of a graph G is a graph G′ = (V ′,E′)
such that V ′ ⊆ V and E′ ⊆ E. If e ∈ E, e can simply be
removed from graph G, yielding a subgraph denoted by
G\e; this is obviously the graph (V ,E− e). Analogously,
if v ∈ V , G\v is the graph (V − v,E′) where E′ ⊆ E
consists of the edges in E except those incident at v. A
spanning subgraph is a subgraph computed by deleting
a number of edges while keeping all its vertices covered,
that is if S ⊂ E is a subset of E, then a spanning
subgraph of G = (V ,E) is a graph (V ,S ⊆ E) such
that for every v ∈ V it holds Ev ∩ S 6= ∅.

A path in a graph is a linear sequence of adjacent
vertices, whereas a cycle in a graph G is a simple graph
whose vertices can be arranged in a cyclic sequence
in such a way that two vertices are adjacent if they
are consecutive in the sequence, and are nonadjacent
otherwise [3]. The length of a path or a cycle is the
number of its edges.

An acyclic graph is a graph that does not contain
cycles. The connected acyclic graphs are called trees,
and a connected graph is a graph that for any two
pair of vertices there exists a path connecting them.
The number of connected components of a graph G
is denoted by c(G). It is not difficult to infer that in a

tree there is a unique path connecting any two pair of
vertices. Let T (v) be a tree T with root vertex v. The
vertices in a tree with degree equal to one are called
leaves.

2.1 The Cycle Space

A cycle basis is a minimal set of basic cycles such that
any cycle can be written as the sum of the cycles in
the basis [12]. The sum of cycles Ci is defined as the
subgraph C1 ⊕ · · · ⊕ Ck, where the edges are those
contained in an odd number of Ci’s, i ∈ {1, ..., k} with
k ∈ N arbitrary. The aforementioned sum gives to the set
of cycle or cycle space C the structure of a vector space
under a given field k. The dimension of the cycle space
C is dimk C = |B| where B is a basis for C. In particular, if
G is a simple graph the field is taken to be k = F2, which
is the case concerning this paper. Thus the field F2 will
be used through the entire paper to describe cycle space
of graphs.

3 Splitting Simple Graphs

The technique proposed in this paper, assumes that if
the graph has cycles, it is always possible to calculate
a cycle basis for the cycle space of the graph. The
cycle basis to be considered in this paper can easily be
constructed by using the well known depth first search
algorithm (DFS) [3]. The process of getting a spanning
tree for G by DFS algorithm will be denoted by 〈G〉.
By using depth first search a spanning tree or forest
T = 〈G〉 can be constructed for any graph G. The
cycle basis is the set of all cycles such that each of them
consists of an edge in T̄ = G\T and the simple path in
T connecting its two end vertices. The dimension of CG

is therefore |T̄ |.

3.1 Non-intersecting Cycle Graph or Basic
Graphs

In this paper we define basic graphs or non-intersecting
cycle graphs as those simple graphs G with dim CG 6= 0
in such a way that any pair of basic cycles are edge
disjoints. Let B = {C1, ...,Ck} a basis for the cycle
space CG; if Ck = (Vk,Ek) let us define the sequence
of intersections of the edge sets {Ei} as

Bp =
⋃

i1 6=···6=ip

[Ei1 ∩ · · · ∩ Eip ] (3.1)

for any Ip = {i1, ..., ip} ⊆ {1, ..., k}, it is clear
that Ei1 ∩ · · · ∩ Eip = Eiσ(1)

∩ · · · ∩ Eiσ(p)
for any
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permutation σ ∈ Sp; where Sp is the symmetric group of
permutations. The number of different terms to consider
in Equation (3.1) is given by k!/(k − p)!p! which is the
number of different combinations of the index set Ip.
Thus, we can establish the conditions of whether a graph
G has not an intersecting cycle basis. If the graph G is
not acyclic and B2 = ∅ then dimG ≥ 1 so G is called a
basic graph. Let e ∈ E be an edge and define ne as the
maximum integer such that e belongs to as many as ne

edge sets Ei. In other words, ne = max{p|Bp 6= ∅}.

3.2 Splitting a Graph into Basic Graphs

Computing edge covers for simple graphs lies on the
idea of splitting a given graph G into acyclic graphs
or basic graphs. It will be shown, that calculating
edge covers for simple graphs can be reduced to
the computation of edge covers for acyclic graphs or
basic graphs thus being able to fully compute |EG|.
The definition below describes in detail the process of
splitting a graph into smaller graphs, which eventually
leads to a decomposition of simple graphs into acyclic
graphs or basic graphs.

Definition 1 For a given graph G = (V ,E),

1. the split at vertex v ∈ V is defined as the graph
G⊣v = (V ′,E′) where V ′ = (V −{v})∪

⋃

w∈Nv
{w′}

and E′ = (E − Ev) ∪
⋃

w∈Nv
{ww′} with w′ /∈ V ,

2. the subdivision operation at edge e = uv ∈ E is
defined as the graph G⊥e = (V ∪ {z}, (E − e) ∪
{uz, zv}) with z /∈ V , and z can be written either as
uv or vu.

3. If e = uv ∈ E is an edge, G/e will denote
the resulting graph after performing the following
operation

(((G\e)⊥S)⊣u)⊣v

where S = Eu ∪Ev −{e}. The subdivide operation
(G\e)⊥S means tacitly (· · · ((G\e)⊥f)⊥g · · · ))
where f , g, ... ∈ S.

Above definition can be easily extended to subsets
V ′ = {v1, ..., vr} ⊆ V , E′ = {e1, ..., es} ⊂ E, that is
G ⊣ V ′ = (· · · ((G ⊣ v1) ⊣ v2) · · · ) ⊣ vr; analogously,
G⊥E′ = (· · · ((G⊥e1)⊥e2) · · · )⊥es. It must be noted,
that the order on which the operations to obtain G/e are
performed is unimportant as long as one keeps track of
the labels used during the process.

Example 1 Consider the star graph W4 as presented in
Figure 1.
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Fig. 1. The split and subdivision operation

If H, Q are graphs not necessarily edge or vertex
disjoint we define a formal union of H and Q as the
graph H ⊔ Q by properly relabelling VH and VQ; this
can be accomplished by defining VH⊔Q = {(u, 1)|u ∈
H} ∪ {(u, 2)|u ∈ Q}. The edge set EH⊔Q could be
defined as follows: if a, b ∈ VH⊔Q such that a = (u, i),
b = (v, j) for some i, j ∈ {1, 2} and u, v ∈ VH ∪ VQ then
ab ∈ EH⊔Q if and only if uv ∈ EH ∪ EQ and i = j.

Others labeling systems might work out just fine, as
long as they respect the integrity of graphs H and Q.
To recover the original graphs, we define the projections
πX , as πH(H ⊔ Q) = H and πQ(H ⊔ Q) = Q; that is
the projections πX revert the relabeling process to the
original for both graphs H and Q.

Definition 2 Let G = (V ,E) be a simple graph. Let us
define the split operator ⊔e as

(i) the graph ⊔eG = G\e ⊔ G/e, that is the graph G
splits into the graph G\e and the graph G/e if e ∈ E.
If e /∈ E then ⊔eG = πG(G\e⊔G/e) = πG(G⊔G) =
G.

(ii) if H, Q are arbitrary graphs then ⊔e(H⊔Q) = ⊔eH⊔
⊔eQ with e ∈ EH ∪ EQ.

Example 2 Figure 2 shows an example of how a simple
graph can be decomposed into acyclic or basic graphs.

3.3 Edge Covering Sets for Simple Graphs

The following results summarize the main properties of
the split operator ⊔e, necessary for the calculation of the
edge covering sets for simple graphs. The first result is
regarding the dimension of the cycle spaces CG/e and CG

for an edge e in the cotree of G. The proposition is rather
simple in the sense that the resulting graph after applying
G/e its dimension must diminishes certain amount which
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Fig. 2. Example of the splitting process provided by
Definiton (2) applied to the star graph W4 with five
spokes. It clearly shows the process step by step and
how the family Gij of acyclic or basic graphs is built from
Definiton (2)

allow us to conclude that the operator ⊔ will split the
graph G into non-intersecting cyclic graph.

Proposition 3.1 Let G be a simple graph, B a cycle
base, e = uv ∈ T an edge in the cotree of G. If
be = |Bu ∪ Bv| where Bu = {C ∈ B|u ∈ C} and
Bv = {C ∈ B|v ∈ C} then be + dim CG/e = dim CG

Proof 1 Every fundamental cycle containing either u or
v must disappear under the operation G/e then those
edges in T that do not contain u or v are the only
ones that contribute to the dimension of the graph G/e,
therefore dim CG/e = dim CG − be.

The proposition above allow us to explicitly calculate
the number of connected components into which the
graph G/e is being decomposed, on the other hand
is providing a rather efficient way of testing whether
or not G/e is a non-intersecting cyclic graph. The
lemma below assumes that the graph in consideration
is not connected, that is G has multiple connected
components, thus we must consider a spanning forest
for G instead of its spanning tree.

Lemma 1 Let G = (V ,E) be a simple graph, F , F are
a spanning forest and its corresponding coforest for G,
respectively; let us choose an edge e = uv ∈ EG and
consider the split ⊔eG of G. If ae = |(Eu ∪Ev)∩ F | then

(i) If e ∈ F then c(G\e) = c(G) and c(G/e) = c(G) +
dF (u) + dF (v) + ae − be − 3.

(ii) It holds that dim CG\e = dim CG−1 and dim CG/e <
dim CG.

(iii) There exists a bijective map ε : E⊔eG → EG. That is,
if S is an edge covering set for G\e or G/e then ε(S)
is an edge covering set for G, which is equivalent to
EG = EG\e ∪ ε(EG/e). Thus, |EG| = |EG\e|+ |EG/e|.

Proof 2 (i) For any forest F , |EF | = |VF | − c(F ).
If G = ⊕sGs, where Gs are the connected
components of G, a spanning forest F for G is a
disjoint union ⊕Ts such that Ts is an spanning tree
for every component Gs. If e ∈ F = ∪sT s, where
T s = EGs − ETs , there exist q such that e ∈ T q,
e /∈ EGs and Gs\e = Gs with s 6= q and therefore
c(Gq\e) = c(Gq) which immediately implies that
c(G\e) = c(G).

The operation G/e on G is clearly adding vertices
and edges as follows: |VG/e| = |VG| + 2(dG(u) +
dG(v))−6 for vertices and |EG/e| = |EG|+dG(u)+
dG(v) − 3 for edges. It is not difficult to check that
for any graph G, c(G) = dim CG − |EG|+ |VG|, as a
consequence we also have c(G/e) = dim CG/e −
|EG/e| + |VG/e|. Since Tq is a spanning tree of
Gq, by Proposition (3.1) dim CGq/e = dim CGq − be
where B, the basis that defines be, is the basis
for the cycle space CGq ; clearly we also have that
dG(u) + dG(v) = dF (u) + dF (v) + ae then

c(G/e) =
∑

s 6=q

dim CGs/e + dim CGq/e

−|EG/e|+ |VG/e|

= c(G)− be + dG(u) + dG(v)− 3

= c(G) + dF (u) + dF (v)

+ae − be − 3.

(ii) By definition of the cycle space CGs , T s forms a
vector basis for every s, thus dim CGs = |T | and
since |ETs | = |VGs | − 1 we have that dim CGs =
|EGs | − |VGs | + 1. Now, if e ∈ F then e ∈ T q for
some q; thus dim CGq\e = |EGq\e| − |VGq\e| + 1,
but |EGq\e| = |EGq | − 1 and |VGq\e| = |VGq | so
we have that dim CGq\e = dim CGq − 1. On the
other hand, since G = ⊕sGs we have that G\e =
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[Gq\e] ⊕
⊕

s 6=q Gs and so a sum of cycle spaces
CG\e = CGq\e ⊕

⊕

s 6=q CGs such that

dim CG\e = dim CGq\e +

c(G)
∑

s 6=q

dim CGs

= dim CG − 1.

It readily follows from Proposition (3.1) that
dim CGq/e = dim CGq − be where be as in
Proposition (3.1) with B replaced by Bq, the
fundamental basis for graph Gq. Now, be is always
different form zero since Bq

u 6= ∅ and Bq
v 6= ∅

because they always contain the fundamental cycle
formed by the edge e. Thus,

dim CG/e = dim CG − be

< dim CG.

If e ∈ T for some T in the forest then there
must exists C ∈ B such that e ∈ C. The cycle
C is destroyed under the operation ⊔eG therefore
dim C⊔eG < dim CG.

(iii) The family EG can be partitioned into two disjoint
subfamilies of edge covering sets, that is R = {S ∈
EG|e ∈ S} then EG = R ∪ Rc. To build up the
map ε we proceed as follows: S ∈ Rc if and only if
S ∈ EG\e; this is because G\e ⊆ G thus any S ∈ Rc

must be a subset of EG\e and vice versa. Therefore,
we define ε|Rc = id, where id is the identity map.
Let Nz = {zi}i∈Iz be the set of adjacent vertices
to z, Iz a set of indices of cardinality dG\e(z) where
z is either u or v. Let us define Qz = {ziz

′
i} and

Q′
z = {z′iz

′′
i }, thus any S ∈ EG/e must necessarily

contain the set Q′
z; if any f ∈ Q′

z is not in S then S
would not be an edge covering set because z′′i will
be an isolated vertex for some i ∈ Iz. So, S = Q′

u∪
Q′

v ∪ S′ for some S′ ⊆ EG/e such that S′ ∩Q′
z = ∅

for z = u, v. Now if R ∈ R then R = {e} ∪ R′ such
that e /∈ R′. Since |EG/e| = |EG\e| + dG\e(u) +
dG\e(v), and |EG/e − Q′

u ∪ Q′
v| = |EG/e| − |Q′

u| −
|Q′

v| which implies that |EG/e −Q′
u ∪Q′

v| = |EG\e|
and therefore there exist a bijection φ between sets
P(EG/e−Q′

u∪Q
′
v) and P(EG\e) since they are both

finite. In fact, φ can be chosen in such a way that if
Q′

u ∪Q′
v ∪S′ ∈ EG/e then {e} ∪ φ(S′) ∈ R and vice

versa. Therefore, ε(Q′
u∪Q′

v∪S′) = {e}∪φ(S′) and
ε−1({e} ∪R′) = Q′

u ∪Q′
v ∪ φ−1(R′).

The family EG\e accounts for those edge covering sets
S for G on which e /∈ S whereas EG/e stands for those
edge covering sets where e is always a member.

Let S ⊆ E be a subset of edges, from Definiton (2)(i)
the split of G along S, denoted by ⊔SG, is recursively
defined in terms of the sequence of splits Gij =
⊔eiG(i−1)j = G(i−1)j\ei ⊔ G(i−1)j/ei, i ∈ {1, ..., |S|} in
particular for i = 1 we define G11 = G00\e1 ⊔ G00/e1
where G00 = G. By setting φ(i) = 2i−1 − 1 and for
0 ≤ j ≤ φ(i) we have therefore,

⊔SG = G|S| =
⊔

0≤j≤φ(|S|)

[

G|S|j

]

(3.2)

=
⊔

0≤j≤φ(|S|)

[

G(|S|−1)j\e|S| ⊔G(|S|−1)j/e|S|

]

To short up the notation, we make G∗
tj = G(t−1)j ∗ et,

Etj = EGtj
and E∗

tj = EG(t−1)j∗et
= EG∗

tj
with ∗ ∈ {\, /};

under this notation we have that Gtj = G
\
tj ⊔ G

/
tj . In

general, the graph Gtj is disconnected, if we denote by
Gtjs its connected components then Etjs will denote the
family of edge covering sets for each graph Gtj . For
any given spanning tree T for a simple graph G, let
us make t = |T | = dim CG, Hj =

∐

s∈Stj

Etjs for some

set Stj ⊆ N, where
∐

denotes the cartesian product
and the projections will be denoted by πsj , for every s,
j. Every edge covering set of a graph G induces a
subgraph; if S ⊆ EQ by definition S meets all vertices
of G then the induce graph of S becomes (VG,S). For
the rest of the paper the family of edge covering sets,
like Eijs will also denote the family of induced graphs by
this sets. Therefore, the calculation of edge cover for a
graph G is equivalent to calculate the induced graphs by
edge covering sets, since most of the operations to be
performed are graph operation like vertex splitting and
edge subdivision.

Theorem 1 Let G be a finite, connected simple graph,
T a spanning tree for G and T denotes its cotree and
t = |T | then

(i) the family {G\
tj ,G

/
tj}, appearing in the expansion

⊔TG, are all acyclic graphs or non-intersecting
cycle graphs for all j satisfying 0 ≤ j ≤ φ(t).

(ii) If G∗
tjs denotes the connected components of G∗

tj ,
then G∗

tjs are edge and vertex disjoint for every j,
and G∗

tj =
⊕

s∈Stj

G∗
tjs for some set of indices Stj ∈

N.

(iii) For every j, 0 ≤ j ≤ φ(t) there exist bijections
εt :

⋃

j Etj −→ Et, εtj : Etj −→ E(t−1)j such

that E(t−1)j = E\

(t−1)j ∪ εtj [E
/

(t−1)j ] and therefore

Et = εt
[

⋃

j Etj

]

.
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(iv) Let H = (H1, ...,H |St|j) ∈ Hj be a vector of
graphs of the cartesian product of family Etjs of
induced graphs by edge covering sets, then Etj =
⋃

H∈Hj
[
⊕

s∈Stj
πjs(H)] and

Et = εt
(

⋃

0≤j≤φ(t)

⋃

Hj∈Hj

[

⊕

s∈Stj

πjs(Hj)
])

.

For every q, 1 ≤ q ≤ t, there exist bijections εq

Eq
εq
−→ Eq−1

εq−1
−→ · · ·

ε2−→ E1
ε1−→ EG (3.3)

in such a way that if ε = ε1 ◦ · · · ◦εq then EG = ε(Et)
and

|EG| =
∑

j

|Etj |

=
∑

j

[

∏

s∈Stj

|Etjs|
]

. (3.4)

Proof 3 (i) Let T be a spanning tree of G, T = E\T
its cotree and let I be an index set of integers. Let
us consider ei ∈ T , ui, vi ∈ VG such that ei = uivi;
it is well known that ei and the path of T joining
ui to vi forms a basic cycle. Let B = {Ci}i∈I

be that set of basic cycles then B is a basis for
the cycle space CG where Ci is the basic cycle
corresponding to edge ei [12]. Let us define the
family {Gtj} as in Equation (3.2) of Gt of subgraphs
such that G00 = G, G∗

tj = G(t−1)j∗et , j ∈ Ji

and i ∈ I where Ji = {j|0 ≤ j ≤ φ(i), i ∈ I}.
By making C∗

ij = C∗
Gij

, it follows from Lemma (1),

dim C
\

(i)(Ji)
= dim C

\

(i−1)(Ji)
− 1 and dim C

/

(i)(Ji)
<

dim C/

(i−1)(Ji)
for all i ∈ I. Therefore at some point

in the decomposition process of graph G we must
have dim C∗

tj = 0 or dim C∗
tj > 0 and B2(G

∗
tj) 6=

∅, which means that graphs G∗
tj are acyclic or

non-intersecting cycle graphs for all j ∈ Jt.

(ii) It is clear from the definition of operator ⊔T that
all graphs G∗

tj are vertex and edge disjoint. The
connected components G∗

ijs are all subgraphs of
G∗

tj thus G∗
ij = ⊕sG

∗
ijs make sense.

(iii) It follows from Lemma (1)(iii).

(iv) It follows from Lemma (1)(iii) and (i)-(iii) of this
theorem.

Algorithm 1 decomposes the input graph into basic or
acyclic graphs as Definition 1 establishes.

Algorithm 1 Procedure that decompose a graph G
into ⊔G compose of basic or acyclic graphs

1: procedure SPLIT(G) {Decomposition of G into
basic or acyclic graphs}

2: Input: G = (V ,E)
3: Output: ⊔SG
4: Select an edge e = uv ∈ E such that e ∈

Bp(G) 6= ∅ for some p > 1. {Notice that if the
edge e exists can be found in O(nm logm).}

5: if e exists then
6: Calculate ⊔eG = G\e ⊔ G/e by applying the

splitting reduction rule over e generating H =
G\e and Q = G/e

7: if B2(H) 6= ∅ then
8: A = SPLIT(H)
9: end if

10: if B2(Q) 6= ∅ then
11: B = SPLIT(Q)
12: end if
13: end if
14: return A ⊔ B {the set of edges where the

splitting process is applied. By Theorem (1)(iv)
we have that |EG| =

∑
j |Etj | and |Etj | can be

calculated by the procedures presented in [15]
for basic and acyclic graphs.}

4 Time Complexity of the SPLIT
Algorithm

Let G = (V ,E) be a simple graph, m = |E|, n =
|V |. The time complexity of Algorithm 1 is given by the
recursive calls over G (steps 9 and 12) which can be
established by the following theorem.

Theorem 2 Let G = (V ,E) be a simple connected
graph with m = |E|, n = |V | and nc = m − n + 1 the
basic cycles of G. The recurrence which represent the
complexity of Algorithm 1 is given by:

T (nc) = T (nc− 1) + T (nc− 3) (4.1)

whose solution is ≈ 1.46557

Proof 4 Since e is part of at least one pair of intersecting
cycles, then G \ e = (V1,E1) is still a connected graph.
|V1|=n1=n, |E1| = m1 = m − 1. The number of base
cycles in H1 is nc1 = m1 − n1 = m − n − 1 = nc − 1.
Then, G \ e contains at least one pair less of intersecting
cycles than G.
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Let G/e = (V2,E2), n2 = |V2| and m2 = |E2|. By
lemma 1-(i) nc−3. This recurrence has the characteristic
polynomial p(r) = r3 − r2 − 1 which has the maximum
real root r ≈ 1.46557.

Remark 1 Finding e such that e = uv ∈ E, e ∈ Bp(G) 6=
∅ for some p has complexity O(m+ n).

Corollary 1 The time complexity for splitting a simple
graph G is given by:

O(r(m−n) ∗ (m+ n)) ≈ O(1.465571(m−n) ∗ (m+ n)).

A polynomial procedure for computing edge covers for
basic graphs (acyclic or non-intersecting graphs) can be
consulted at [15], so the complexity of counting edge
covers is given by the splitting process.

5 Conclusions

A sound procedure has been presented to decompose a
graph in order to compute the number of edge covers for
the resulting subgraphs.

Regarding the cyclic graphs with intersecting cycles,
a branch and bound procedure has been presented, it
reduces the number of intersecting cycles until basic
graphs are produced (subgraphs without intersecting
cycles). Since polynomial time procedures are known for
basic graphs, the computational complexity of the edge
cover problem resides on intersecting cycle graphs.

Additionally, a recurrence relation has been deter-
mined that establish an upper bound on the time to
compute the number of edge covers on intersecting
cycle graphs. It was also designed a “low-exponential”
algorithm for the #Edge Covers problem whose upper
bound is O(1.465571(m−n) ∗ (m + n)), m and n being
the number of edges and nodes of the input graph,
respectively.
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