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Resumen. La revision de creencias es un &rea
central en la representacibn de conocimiento y
en el procesamiento de razonamiento automatico.
Consideraremos una base inicial de conocimiento Ky
una nueva informacion ¢, ambas codificadas en forma
normal conjuntiva (FC). Presentamos aqui, un algoritmo
novedoso, determinista y correcto para la revisién de
creencias de ¢ en K. Denotamos nuestro operador de
revision como: K’ = K o ¢. Proponemos un nuevo
operador binario l6gico Ind entre formas conjuntivas, y
tal que Ind(¢, K) construye también una nueva forma
conjuntiva. El operador Ind(¢, K) trabaja construyendo
clausulas independientes con las clausulas de K, y
las asignaciones falsificantes de la férmula resultante
cubren exactamente el espacio de asignaciones de
Fals(¢) — Fals(K), lo que es esencial para realizar el
proceso de revision de creencias K’ = K o ¢, y donde
K' = ¢. Ademas de que nuestra propuesta satisface los
postulados KM. Presentamos también la demostracion
de que nuestro algoritmo de revisién de creencias es
correcto, y su analisis de complejidad en tiempo.

Palabras clave. Inferencia proposicional, revision de
creencias, inferencia basada en modelos, postulados
KM.

Model-based Algorithm for Belief
Revisions between Normal
Conjunctive Forms

Abstract. Belief revision is a central area in knowledge
representation and processing of automated reasoning.
We will consider a knowledge base (KB) K and a
new information ¢, both expressed in conjunctive form
(CF). We present here, a novel, deterministic and
correct algorithm for belief revision of ¢ in K. We
denote our revision operator as: K' = K o ¢. We
introduce a new logical binary operator I'nd between two
conjunctive forms, such that Ind(¢, K) generates also a

conjunctive form. The operator Ind(¢, K) works building
independent clauses with the clauses of K, and whose
falsifying assignments of the resulting formula cover
exactly the space of assignments Fals(¢) — Fals(K),
this is essential for performing the process of belief
revision K’ = K o ¢, where K’ |= ¢. Furthermore, our
proposal satisfies the KM postulates. We also present
the correctness proof of our belief revision method, and
the analysis of its time complexity.

Keywords. Propositional inference, belief revision,
model based inference, postulates KM.

1. Introduccion

Un marco de referencia ampliamente aceptado
en el area del razonamiento en sistemas
inteligentes es el enfoque de sistemas basados en
bases de conocimiento. La idea general de estos
sistemas es mantener el conocimiento en algun
lenguaje de representacion con una connotacion
bien definida. En este caso, las sentencias se
almacenan en una base de conocimiento (KB — por
sus siglas en inglés) provista de un mecanismo de
razonamiento [9].

Un reto fundamental de estos sistemas es la
automatizacion del razonamiento deductivo a partir
de la KB. El razonamiento deductivo proposicional
es generalmente resumido como sigue: dada una
KB K, que contiene el conocimiento acerca de
un dominio (“el mundo”), y una sentencia ¢ que
representa la consulta que captura la situacién
actual, ambas expresadas en logica proposicional,
el objetivo es decidir si K implica ¢ (en simbolos:
K E ¢), lo que se conoce como el problema de
implicacion proposicional.
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La implicacién proposicional es una tarea
relevante en problemas como: estimar el grado
de creencia, revision y actualizacion de creencias,
al trabajar con explicaciones abductivas, y en
muchos otros procedimientos en aplicaciones de
la Inteligencia Artificial (Al, por sus siglas en
inglés), por ejemplo, al trabajar en planeacion,
diseno de sistemas multiagentes, diagndstico
l6gico, razonamiento aproximado, entre otras
aplicaciones [7, 13]. En general, el problema
de la implicaciéon l6gica es un reto dificil en el
area de razonamiento automatico, y resulta ser
un problema Co-NP dificil, incluso en el caso
proposicional [17].

La revision de creencias consiste en incorporar
nuevas creencias a una base de conocimiento
(KB) ya establecida, cambiando lo menos po-
sible las creencias originales y manteniendo la
consistencia de la KB. La funcion basica de
la revision de creencias es ofrecer un método
de cémo cambiar una base de conocimiento
cuando nos enfrentamos con nueva informacion
¢. La nueva informacién puede entrar en conflicto
con la que teniamos antes, y en ese caso,
si queremos mantener consistencia, se deberan
eliminar algunos elementos previos de la KB.

Es deseable que los cambios en la base original
de conocimiento no se efecten de cualquier
manera, sino de forma racional. En la revisién
de creencias se trata por tanto, de una teoria
normativa que nos indica en cada caso, cual es
la manera éptima de proceder.

En cierto sentido, la revision de creencias
propone una teoria formal, cuyos efectos podemos
interpretar de diferente manera. Las creencias
pueden aludir a entidades mentales de un agente,
a elementos de una base de conocimiento del
mundo real, o tal vez, a elementos de un problema
en la teoria de la decision. Esta caracteristica
proporciona su versatilidad a la teoria de revision
de creencias [5].

Al proceso de revisién de creencias lo donotare-
mos con el operador (o) que actlia sobre una KB
K y sobre una nueva evidencia ¢, para formar una
nueva KB K’ = K o ¢. Cuando K | ¢ entonces
K' =K o ¢ = K. Cuando K [~ ¢, la idea de la
revisién de creencias es formar una nueva KB K’
a partir de la previa K, que permita inferir la nueva
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evidencia ¢ y al mismo tiempo, minimice la pérdida
de informacion de K [9], [12].

Aunque la inferencia proposicional es un
problema Co-NP-completo en su versién general
[22], existen también algunos casos que se pueden
resolver de manera eficiente [17]. Consideraremos
una KB K = /\Z‘:U Ciyo= /\’(“izl) i, donde cada
C; € K y cada ¢; € ¢ son clausulas expresadas
bajo un mismo conjunto de n variables Booleanas.
Este articulo muestra que el uso de patrones
falsificantes de las clausulas, ayuda a determinar
si una FC se infiere de otra FC, y por tanto, a
construir un algoritmo para la revision de creencias
entre formas normales conjuntivas.

Es comin el uso de FC’s en el proceso de
razonamiento automatico, ya que el procedimiento
de resolucion ha abierto un area de relevancia
practica para revisar consistencia entre FC’s.
Aunqgue es bien conocido que la inferencia basada
en el principio de resolucién tiene limitaciones
intrinsecas [3]. Al tener un método efectivo de
revision de creencias entre FC'’s, su extensién para
considerar otras formas normales no es dificil,
dado que cualquier férmula Booleana se puede
expresar en forma conjuntiva.

1.1. Estado del arte

El enfoque méas conocido para realizar la
revision de creencias es el paradigma AGM
(debido a las iniciales de los autores Alchourrdn,
Gardenfors and Makinson) [1]. La teoria AGM
propone un conjunto de postulados racionales, que
cualquier operador de revision debe satisfacer

Posterior a la propuesta AGM, Alchourrén y Ma-
kinson [14] desarrollaron un modelo constructivo
para funciones de cambio llamado “contraccion
segura” (safe contraction) que después fue
generalizada por Hansson [15]. Sin embargo,
la mayoria de estas propuestas requieren de
informacion adicional, tales como: relaciones de
afianzamiento epistémicas, sistemas de esferas,
relacién de subférmulas, entre otras [14].

Algunos de los problemas con las propuestas
anteriores, es que muchas veces esta informacion
no se tiene, o bien no existe, obligando a tratar
todas las creencias por igual. Mas aun, hay
otras propuestas cuyos operadores de revision de
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creencias son completamente dependientes de la
sintaxis.

Katsuno y Mendelzon unificaron los diferentes
enfoques semanticos de revisidn de creencias,
y reformularon los postulados AGM, a los
que llamaron ahora postulados KM. Ademas,
propusieron un teorema de representacion que
caracteriza las operaciones de revisién en térmi-
nos de pre-érdenes totales sobre el conjunto de
interpretaciones [16].

Posteriormente, Darwiche y Pearl [8] propusie-
ron postulados para una revision de forma iterada,
donde caracterizan la revisién de creencias como
un proceso que puede depender de elementos de
un estado que no necesariamente son capturados
por un conjunto de creencias. Su propuesta
establece una representacién basada en el modelo
que representa los postulados y las restricciones
para la revision de creencias. Otra propuesta
similar a la de Darwiche y Pearl es la presentada
por Lehmann [18], donde cada observacion es una
sentencia general que se asume es consistente.

Hay algunas propuestas de revision de creen-
cias basadas en modelos, y que se identifican
por el nombre de sus autores; Dalal, Satoh,
Winslett, Borguida y Forbus [20]. Por ejemplo,
Dalal [6] sugiere un operador de revision basado
en la distancia minima Hamming entre las
interpretaciones y la cual se extiende a distancias
entre interpretaciones y bases. En la practica,
esta propuesta implica un célculo de modelos
que pueden ser muy costoso, otro de los
inconvenientes del enfoque Dalal es que se limita
al caso de bases de conocimientos consistentes.

Por otro lado, la propuesta de Satoh [25] es
similar a la de Dalal, con la diferencia de que
la distancia entre dos modelos es definida como
el conjunto de literales a las que les son dados
diferentes valores. En el caso de Winslett, la
propuesta se basa en la comparacién entre todos
los sistemas consistentes de longitud maxima.

La propuesta de Borguida y Forbus es similar a
la de Winslett, con la diferencia de que Borguida
considera modelos incompatibles, y Forbus utiliza
la distancia Hamming. La similitud entre los mode-
los es definida a través de un conjunto conteniendo
todas las subférmulas maximales y consistentes
con la consulta realizada, lo que lleva a una

busqueda exhaustiva sobre la tautologicidad de
una gran cantidad de subférmulas, cuestionando
asi no so6lo la funcionalidad de cada uno de los
métodos, sino que nos lleva también a concluir que
el problema de revisidn de creencias bajo estos
métodos es un problema inherentemente intratable
(de complejidad exponencial en tiempo).

Mas recientemente, la revision de creencias
ha ganado atencién en el marco de la logica
simbodlica, y numerosos operadores de revision
de creencias han sido propuestos de acuerdo a
puntos de vista sintacticos o semanticos [19, 21,
25], obteniéndose diferentes resultados sobre la
complejidad en tiempo de estas propuestas [6, 19].
Algunas de las investigaciones en esta direccion
se han acotado principalmente a considerar el
fragmento Horn dentro de la l6gica clasica.

Existen diversas propuestas que involucran
formulas proposicionales tales como las descritas
en [10, 26, 2] que sugieren métodos que abordan
s6lo fragmentos de la l6gica proposicional. Una
de las propuestas recientes debida a Delgrande
presenta los primeros resultados sobre cambio de
creencias en el fragmento Horn [10].

En [4], los autores presentan una metodologia
general para definir nuevos operadores de revisién
derivados de operadores estandar (como por
ejemplo, los operadores de Dalal y Satoh), tal
que el resultado de la revision se mantiene
en el fragmento en cuestion. Por lo tanto, en
esta propuesta los autores no se limitan sélo al
caso Horn, sino que ésta es aplicable a otros
fragmentos de la légica proposicional, donde los
modelos de las férmulas cumplan el ser cerrados
bajo una funcién Booleana.

Se puede notar que estas propuestas se
desarrollan para considerar algun tipo de férmula
normalizada o bien sélo consideran clausulas de
Horn. Cada una de estas propuestas propone
un operador de revisidn que trabaja sobre sus
formulas normalizadas y que presentan diversos
inconvenientes. Por ejemplo, algunos de los
operadores son dependientes de la sintaxis o
bien requieren de informacion adicional. Otros
definen diferentes nociones de proximidad, vy
unos mas se limitan a revisar sblo bases
consistentes. Pero el principal inconveniente de
estos métodos de revision de creencias es que
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conllevan inherentemente a realizar procesos de
complejidad exponencial en tiempo.

Por otro lado, nuestra propuesta de revision
de creencias sigue el enfoque basado en revisar
los modelos de las férmulas involucradas, porque
supondremos que la KB K y la férmula de consulta
¢ son FC’s. Trabajar con FC’s permite el calculo
efectivo del conjunto de asignaciones que falsifican
a cada una de sus clausulas, y por tanto, también
del conjunto complemento de tales asignaciones
falsificantes, que seran precisamente, los modelos
de las férmulas.

Mostramos aqui, que el proceso de revision
de creencias puede realizarse de forma practica
en funcién de las asignaciones falsificantes de
las FC’s involucradas. Ademas, nuestra propuesta
obtiene una nueva base de conocimiento K’ =
K o ¢, que reduce de forma minima el conjunto de
modelos de la base de conocimiento original K.

Resumiendo, las contribuciones principales de
nuestro trabajo son:

= Proponemos un método que trabaja sobre el
conjunto de asignaciones falsificantes de las
formulas involucradas, para revisar: K = ¢.

= Introducimos un operador légico entre dos
clausulas, Ind(y;,Cj), cuyo resultado es una
FC Fs, tal que Fals(Fs) = Fals(p;) —
Fals(Cj).

= Demostramos que nuestra propuesta de
revision de creencias es correcto, y cumple los
postulados de Katsuno y Mendelzon.

= El operador Ind(y;, C;) se implement6 para
que trabaje en tiempo lineal sobre el nimero
de variables involucradas, y es la base de
nuestro proceso de revision de creencias.

m A pesar de la eficiencia del operador
Ind(p;,C;), el numero de clausulas en F's
para que (K A F's) = ¢, puede llevarnos a un

crecimiento exponencial de orden O(|K| - n -
2("—7"1'”{|80i|1%6¢}))'
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2. Preliminares

Sea X = {«1,...,z,} unconjunto de n variables
Booleanas. Una literal denotada como lit es, 0
una variable z; o una variable negada —x;. Como
es usual,paracadar € X, 2" = -z yz! = z. Sean
1 and T dos constantes representando los valores
l6gicos falso y verdadero, respectivamente.

Una clausula es una disyuncién de diferentes
literales. Para k£ € N, una k-clausula es una
clausula que consiste exactamente de  literales, y
una (< k)-clausula es una clausula con a lo mas k
literales. Una frase es una conjuncién de literales.
Una k-frase es una frase con exactamente &
literales. Una variable z € X aparece en una
clausula (frase) C si z 0 —x es un elemento de C.

Una forma normal conjuntiva (FC) es una
conjuncion de clausulas (que también llamaremos
forma conjuntiva), y una k-FC es una FC que
contiene sélo k-clausulas.

Una forma normal disyuntiva (F'D) es una
disyuncién de frases, y una k-F'D es una FD
que contiene soélo k-frases. Una FC F con n
variables representa una funcién Booleana n-aria
F:{0,1}"™ — {0, 1}. Por el contrario, cualquier
funcion Booleana F tiene infinitamente muchas re-
presentaciones equivalentes, entre estas, algunas
en FC y también otras en FD.

Denotamos con Y a cualquiera de los elementos
l6gicos basicos que estamos utilizando, como:
una literal, una clausula, una frase, una FD o
una FC, y v(Y) denota el conjunto de variables
involucradas en el objeto Y. Por ejemplo, v(—z; V
x9) = {x1,z2}. Mientras lit(Y") denota el conjunto
de literales involucradas en el objeto Y. Por
ejemplo, si X = o(Y) entonces lit(Y) = X U
-X ={x1,-x1,...,Tpn, Ty, . También usamos —Y
como el operador de negacién sobre el objeto Y.
Denotaremos a {1, 2, 3, ...,n} por [[1, n]], y a la
cardinalidad de un conjunto A por |A|.

Una asignacién s para una féormula F es
un mapeo Booleano s v(F) — {1,0}. Una
asignacion s puede también ser considerada como
un conjunto de literales no complementarias: [ € s
si y solo si s asigna [ a cierto y -l a falso. s es
una asignacién parcial para la formula F cuando
s ha determinado un valor légico sélo para las
variables de un subconjunto propio de F', a saber
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s:Y — {1,0} yY C o(F). Si s tiene valores
l6gicos determinados para todas las variables en
F entonces s es una asignacion total de F.

Si F1 C F es una FC que consiste de algunas
clausulas en F, y v(Fy) C u(F), una asignacion
sobre v(F}) es una asignacion parcial sobre v(F).
Considerando n = |v(F)| y de igual forma n; =
|v(F1)|, cualquier asignacion sobre v(F) tiene
2"~m extensiones sobre v(F).

Considerando una clausula C'y una asignacion
s como conjuntos de literales, C es satisfecha por
s si sNC # 0, de otra manera s contradice (o
falsifica) a C. Una FC F es satisfecha por una
asignacién s si cada clausula en F es satisfecha
por s; F' es contradicha por s si alguna clausula
en F es falsificada por s. Un modelo de F' es una
asignacion sobre v(F') satisfaciendo F'.

Una frase f es satisfecha por una asignacion s si
f C s, de otra manera s falsifica a f. Una FD F es
satisfecha por s si alguna frase en F' es satisfecha
por s. F' es contradicha por s si todas las frases en
F son falsificadas por s.

Dada una férmula F, sea S(F) el conjunto de
todas las posibles asignaciones definidas sobre
v(F). Sin = |v(F)| entonces |S(F)| = 2". s E
F denota que la asignacion s es un modelo de
F (s satisface a F). s [~ F denota que s es
una asignacion falsificante de F. Denotamos por
SAT(F) al conjunto de asignaciones en S(F') que
son modelos de F. Fals(F') denota el conjunto de
asignaciones de S(F') que falsifican a F.

Dadas dos férmulas Booleanas F'y G definidas
sobre un mismo conjunto de variables, esto es
v(F) = v(@), decimos que F es consecuencia
Iégica de G, denotado como G | F, si para toda
asignacién s que satisface a G se cumple que s
también satisface a F. Y diremos que F' y G son
logicamente equivalentes, denotado como G = F,
si ambas férmulas tienen el mismo conjunto de
modelos, esto es, una asignacion s satisface a
G si y soOlo si s satisface a F. En términos de
los conjuntos de modelos, podemos denotar que:
G = F siy sélo si SAT(G) C SAT(F), y que
G = F siys6losi SAT(F) = SAT(G).

#SAT(F) denota el nUmero de asignaciones de
S(F') que satisfacen a la férmula F'. Mientras que
#Fals(F) representa al numero de asignaciones
de S(F) que no satisfacen a F.

Para cualquier férmula proposicional F, se
cumple que: S(F) = SAT(F) U Fals(F). El
problema SAT consiste en decidir, para una
formula de entrada F, si F' es satisfactible, esto
es, si F' tiene un modelo o no. Una base de
conocimiento KB es un conjunto K de férmulas.
Dada una KB K y una férmula proposicional ¢,
decimos que K implica ¢, y escribimos K £ ¢,
si ¢ es satisfecha por todo modelo de K, es decir,
SAT(K) C SAT(9).

3. Inferencia entre formas
conjuntivas

Un problema fundamental en el razonamiento
deductivo es el problema de la implicacion logica:
dada una KB K y una férmula ¢, debemos
decidir si K | ¢. En este trabajo analizaremos la
complejidad computacional del caso del problema
de implicacion entre formas conjuntivas: FC = FC.

Sea una base de conocimiento K que se
encuentra en forma conjuntiva, K = A\(j_;, C; ¥
sea una consulta expresada también en FC ¢ =
/\’(“i:l) @i , donde cada C; € K y cada ¢; € ¢ son
clausulas expresadas bajo un mismo conjunto de
n variables Booleanas.

Dadas dos FC’s F; y F5, decidir si F; = F> es
l6gicamente equivalente a probar que —F; = —Fy,
que resulta en revisar la inferencia entre formas
disyuntivas, ya que si F' es una FC entonces —(F)
es una FD, debido a que negar una FC F' se realiza
en tiempo lineal sobre el tamano de F, a través de
una generalizacion de las reglas de De Morgan.

Por otro lado, revisar la inferencia entre formas
disyuntivas se reduce a revisar si una FD G es
una tautologia, lo que es un problema clasico en
la clase de complejidad Co-NP completo [22]. La
reduccion proviene de considerar que la existencia
de un procedimiento que determina si G; = G,
con Gy y G formas disyuntivas, permite a su vez,
determinar la tautologicidad de cualquier forma
disyuntiva G, ya que basta con hacer G; = T que
es una tautologia, y entonces G; = G se cumplira
solo si G es a su vez una tautologia.

Como K y ¢ estan en FC, las cadenas
falsificantes de sus clausulas Fals(K) y Fals(¢)
se pueden calcular eficientemente [9]. Usar las
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cadenas falsificantes es la base para revisar si
K E ¢, lo que en términos de sus asignaciones
equivale a revisar si SAT(K) C SAT(¢), o bien
que: Fals(¢) C Fals(K). El resultado de aplicar el
operador de revision de creencias sobre la KB K y
la nueva evidencia ¢ es denotado como K’ = K o
¢. Cuando K | ¢ entonces K/ = K o ¢ = K.

Si K [~ ¢ entonces Fals(¢) ¢ Fals(K), lo que
implica que existe un conjunto de asignaciones S
tal que S C Fals(¢) y S € Fals(K). Si K [~ ¢,
entonces S = (Fals(¢) - Fals(K) ) # 0. En este
caso, nuestro método de revision de creencias
trabaja construyendo tal conjunto S, lo que permite
construir una nueva FC F's, tal que S = Fals(F's)
y K’ = K A\ Fs, cumple que: K’ |= ¢.

El método que proponemos obtiene S =
(Fals(¢)—Fals(K)) como un conjunto de cadenas
falsificantes, lo que nos lleva a construir de forma
directa una FC F's, donde S = Fals(Fs) y
tal que K'= K A Fs es una nueva FC con
menos informacién que K (dado que K’ tiene mas
clausulas que K), de hecho, se cumple que si
S # () entonces Fals(K) C Fals(K'), y por tanto,
SAT(K') Cc SAT(K).

3.1. Construccion de conjuntos
independientes de clausulas

Dada una forma conjuntiva K = /\?;:1) Ci,
con n = |v(K)|, para cualquier clausula C; €
K, hay exactamente 2("~IC:) asignaciones de
S(K) falsificando C;. Debido a que todas las
falsificaciones de C; tiene valores fijos en las
posiciones de las variables v(C;) y tales valores
falsifican cada literal de C;. Por tanto, hay n - | C; |
variables a las que se les puede asignar cualquier
valor de verdad. Esto significa que hay 2(»~I¢iD)
asignaciones falsificantes para C;.

Sea A; un conjunto de cadenas tales que
la longitud de cada cadena es n. El valor en
la j-ésima posiciébn de la cadena A;, 1<j<n
representa el valor de verdad de x; que falsifica C;.
Es decir, si z; € C; entonces el j-ésimo elemento
de cualquier cadena en A; es 0. De otra manera si
—x; € C; entonces el j-ésimo elemento es 1.

Usaremos el simbolo x para representar los
elementos que pueden tomar cualquier valor
de verdad en las cadenas A;. Por ejemplo, si
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K = {C,.,Cy} es una 2-FC, n = |v(K)],
Cy = {z1,22} y Co = {x2,—x3} entonces se
representa A; como 00**---*y A, como *01*.--*.
Este abuso de notacién nos permitira dar una
representacion concisa y clara en el resto del
documento, considerando a las cadenas A; como
patrones que representan las falsificaciones de
la clausula C;. A tales cadenas las llamaremos
cadenas falsificantes de una clausula.

Definicion 1 [11] Dadas dos clausulas C; y C;, si
ellas tienen al menos una literal complementaria,
se les llamara clausulas independientes. En
otro caso, se dice que ambas son clausulas
dependientes.

Definicion 2 Sea K = {C4,C,,...,C,,} una FC.
K es llamada independiente si para cualquier par
de clausulas C;,C; € K, i # j, se cumple la
propiedad de independencia.

Definicion 3 Dadas dos cadenas falsificantes A
y B, ambas de la misma longitud, si hay una i
tal que Ali] = x y Bli] = 1 — =z, z € {0,1}, se
dice que tienen la propiedad de independencia.
En otro caso, decimos que ambas cadenas son
dependientes.

Sea C una clausula cualquiera, para cualquier
variable x se cumple que:

C=(CV-z)A(CVa). (1)

Ademas, esta reduccién conserva el nimero de
asignaciones falsificantes, ya que para cualquier
par de clausulas independientes C;, C; se cumple
que Fals(C;)NFals(C;) = 0y entonces #Fals(C)
= 2n=lel) = 2(n=(lel+1) 1 2(n=(el+1) = L Fals((C v
-z) A (C V z)), porque (C V —x)y (C V x) son
clausulas independientes.

La conjuncion de un par de clausulas de-
pendientes C; y Cy puede expresarse mediante
una conjuncion de clausulas independientes.
Supongamos que hay literales en C; que no
estdn en Cy, sea L = {z1,z2,...,2,} tales
literales. Esto es, L = [it(Cy) — lit(Cy). Existe
una reduccioén para transformar C; (o C;) como
clausula independiente con C; (o C5) llamada
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reduccién de independencia, y que trabaja de la
siguiente manera.

Por (1) se puede escribir:
CiNCy =C1 N (Cg \Y —h’El) A\ (CQ V xl). Ahora
Cy y (Ce VvV —x1) son independientes. Aplicando
(1) a (02\/1‘1) : C1 N Cy =Cl/\(02\/—\331)/\
(Cy V1 V —xe) A (Cy V x1 V x9). Las primeras
tres clausulas son independientes. Repitiendo la
reduccion de independencia hasta z,, se tiene que
C1 N Cy puede expresarse como:
4 /\(CQ\/ﬂaﬁl)/\(CQVl‘l \/_\132)/\.../\(02\/31‘1 vV
2oV ... Voxp) A(CoaVarVaa V...V,
La dltima clausula contiene todas las literales de
C1, asi que puede eliminarse porque es subsumida
por la clausula Cy, obteniéndose que:

Cl/\ngcl/\(Cg\/—\xl)/\(Cg \/.131\/_\1‘2)
AN AN(CoVayVaaV...V-ox,). (2)

Las clausulas del lado derecho de la ecuacién
(2) son independientes por construccion.

El operador central para revisar inferencia entre
FC’s es un operador de independiencia que trabaja
sobre dos clausulas ¢ y C, y que construye un
conjunto de clausulas independientes equivalentes
apANC.Sea L ={x1,x2,...,xp} = lit(C) — lit(p)
se define el operador de independencia entre ¢ y
C como sigue:

o Si ¢ y C son independientes
0 Silit(C) — lit(¢) = 0
(pVoz))A...AN(pVazL V...
V—z,), en otro caso.

Ind(p,C) =

La complejidad en tiempo para ejecutar
Ind(p,C), que denotaremos como Tr.q4(|¢|, |C|),
depende directamente del tiempo para ejecutar
operaciones basicas entre conjuntos de literales.
Por ejemplo, la operacion lit(C') — lit(¢) podria
realizarse como: para cada = < lit(C) revisar
si x € lit(p) o si ~x € lit(v), lo que requiere
de a lo mas |C| * |p)] < n® operaciones de
comparacion. Si los conjuntos lit(C) y lit(y) se
representan mediante arreglos de n posiciones
(fjando una posicién para cada una de las n
posibles variables), entonces [lit(C) — lit(¢) se
realizard en a lo mas O(n) operaciones logicas
entre las posiciones de ambos arreglos.

Por otro lado, cuando L = [it(C) — lit(p) # 0,
se realiza un ciclo de |L| < (n — 1) iteracciones,
y en cada iteraccion i se agrega una disyuncion y
una negacion para formar (p V1 V...V ;) y a
través de una conjuncién se adiciona esta clausula
a la FC que se esta construyendo. Esto nos lleva
a un proceso, en el peor caso, de orden O(n) para
construir Ind(y, C).

Veamos como este operador de independencia
Ind(yp;, C;) entre clausulas ¢; € ¢y C; € K es la
base para realizar la revision de creencias entre K

y ¢

4. Revision de Creencias entre
formas conjuntivas

Nuestro método de Revision de Creencias se
basa en las siguientes dos propiedades:

1. SiV s € Fals(¢) se cumple que s € Fals(K),
entonces K |= ¢.

2. Si 3 s € Fals(¢), y s € Fals(K), entonces
K [~ ¢.

El primer caso considera que todas las
asignaciones de Fals(¢) estan en el conjunto
Fals(K), lo que demostraria que K = ¢.Y en este
caso K’ = K, ya que no se necesita cambiar la KB
K.

En el segundo caso, se detectaran los conjuntos
de asignaciones S tal que Jp € ¢, S C Fals(p)
y S ¢ Fals(K). Para construir estos conjuntos
S se inicia con la cadena A; que representa a
Fals(p1) y se aplica el operador Ind con cada
una de las cadenas B; que representan Fals(C}),
j=1...,m.

La operacion Ind(y;, C;) forma una cadena que
representa el conjunto de asignaciones falsifican-
tes: Fals(p;) — Fals(Cj). Esto es, Ind(y;,C;)
determina las asignaciones que estan en Fals(y;)
pero que no estan contenidas en Fals(C;). Si
se aplica la operacion Ind sobre todo C; € K,
obtendremos como resultado el conjunto S C
Fals(p;) NS ¢ Fals(K).

El conjunto S permite construir una FC Fs;,
Fs;, = (D1 A Dy A ...Dt), donde S = FCLZS(F&)
Al agregar las nuevas clausulas de Fs; a K,
obtenemos una nueva KB K! = K A Fs;, que
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cumple que: K, E ¢;, y ademas, K| sigue
siendo una FC. Presentamos algoritmicamente
este proceso.

Algorithm 1 Procedure Ind(y;, K)

Input: K: Una KB, y ;: clausula con nueva inf.
Push(y;,V); Fs = (; {Salida en F's una FC
(conjunto de clausulas)}
forall C; € K do
while (V # () do
¢ = Pop(V); {Prueba clausula sgte.}
Fs = Fs — ¢; {quitar clausula de la salida}
Nc=1Ind(¢,C;); {Forma: NeAC; = ¢ }
if (Nc # 0) then
Fs = Fs U Nc; {So6lo si hay clausulas a
agregar}
end if
end while
V = Fs; {Sgte. iteracion considera nuevas
clausulas}
end for
Returns(F's)

Ind(p;, K) consiste de dos ciclos, uno externo

sobre C; € K, de orden O(|K|). Este ciclo (el For)
recorre las columnas de una tabla donde se iran
colocando los resultados de Ind(y;, C;).
El cuerpo del ciclo interno consiste esencialmente
de realizar el operador Ind(y;, C;) que es de orden
O(n), y de realizar ajustes a la FC F's; que inicia
con la clausula ¢; y que involucra no mas de O(n)
operaciones.

El numero de filas de la tabla se va ajustando
de forma dinamica, dependiendo del resultado de
Ind(y;,C;). En el peor caso, este ciclo sobre el
namero de filas puede llevarnos a un crecimiento
exponencial sobre el nimero de clausulas que
contiene una F's;, como se mostrara en la seccion
de analisis de complejidad de nuestro método.

Cuando el proceso Ind(y;, K) itera sobre toda
p; € ¢, se forman las clausulas F's; tal que
Fals(|J(F's;)) = Fals(¢) — Fals(K). Al adicionar
a K el conjunto de clausulas |J(F's;), se forma
una nueva KB K’ tal que K’ | ¢, puesto que
Fals(¢) C Fals(K'), y por tanto, SAT(K’') C
SAT ().
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Ejemplo 1. En todos los ejemplos a presentar, su-
pondremos un ordenamiento alfanumérico sobre
el conjunto de variables que se utilizan. Sea K =
(=pVaVs)A(—gV—rVs)A(—gVrV-s)A(—pV-gVr)
yo=(pVr)A(=gVr)A(pVqV-rV=as)A(-t).
Probar que K = ¢, es equivalente a revisar que:
Fals(¢)={1*1**,*10**,0011*,****1} C Fals(K) =
{10*0*, *110*, *101*, 110**}. En cada celda de
las columnas 2 en adelante de la tabla 1, se va
mostrando el resultado de Ind(y;, C;).

Dadas 2 clausulas C;, C; que difieren en el
signo de sélo una variable, la reduccion por literal
complementaria genera una soéla clausula de C; A
C;, de hecho, la reduccion se basa en la aplicacion
de la ecuacion (1).

Por ejemplo, sea C; = (x vV q), y C; = (mz V
q), entonces C; A C; = (gq). En términos
de las cadenas falsificantes de las clausulas,
denotaremos tal reduccidén como: Varcom(A;, A;).
En el caso de nuestro ejemplo, se tiene que:
Varcom(1111%,1011%) = 1 % 11x.

Es relevante aplicar la operacion de reduccién
por literales complementarias sobre las cadenas
en S, para asi minimizar el ndmero total de
clausulas.

Aplicando la reduccion Varcom y eliminando
clausulas subsumidas al resultado del ejemplo 1,
se tiene que: S = {1*11*, 0100, 0011*, 00™*1,
*1111, 10*11}. Escribiendo S como una FC, F's =
(mpV-rV=s) A(pV—gVrVs)A(pVgV-rV-s)A
(pVaqV—t)A(—gV-rV-sV—t)A(-pVgqV-sV-t).
Y asi, la nueva KB K’ = K A F's es una FC que
cumple: K’ = ¢.

Tabla 1. Construyendo Ind(¢, K)

K 10*0* | *110* | *101* | 110** S

11 T 111 111 1111 | 1111
1011* | 1011* | 1011* | 1011* | 1011*

*10** *10™ | *10™ | *100* | 0100* | 0100*

0011* 0011* | 0011* | 0011* | 0011* | 0011*

e 0***1 | 00**1 | 00**1 | 00**1 | 00**1
010*1 | 01001 | 01001 | 01001
01111 | 01111 | 01111 | 01111

11**1 | 110*1 | 11001 0 0
11111 | 11111 | 11111 | 11111

10*11 | 10*11 | 10*11 | 10*11 | 10*11
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4.1. Propiedades del método de Revision de
Creencias

El conjunto de clausulas construido mediante
Ind(yp;, K) se agrega a la KB original K, y asi,
cada ¢; € ¢ se infiere de K A Ind(y;, K). Esto
se demuestra en el siguiente teorema sobre la
correccion de nuestro método.

Teorema 1 Dadas dos clausulas ¢; y C; se
cumple que (C; A Ind(p;,C;) ) = .

Demostracion.

Si p; y C; son clausulas independientes,
enfonces ¢; = Ind(p;,C;) y por tanto (C; A
Ind(p:,Cy)) = (Cj A i). Asi (Cj A i) [= i, por
la propiedad proposicional: (p A q) D q y por la
reflexividad de la inferencia I6gica: ¢; = ;.

Sip; y C; no son independientes, pero Ind(y;,C;)
=0, esto implica que Fals(p;) C Fals(C;) y por tal
C; = ¢;. Como C; = (C; A Ind(yp;, C;)), entonces
(C; A Ind(¢:,Cy)) F .

Cuando ¢; y C; no son independientes, e
Ind(p;, C;) # 0, se cumple que (C; A Ind(p;, C}))
= (C; A i) por (2), cumpliéndose que: (C; A ;)
= ., por la propiedad proposicional: (p Aq) D q, ¥y
por la reflexividad: ¢; = v;.

Asi, para cualquiera de los tres posibles resultados
de Ind(p;, C;), se cumple: (C; AInd(p;, C})) = ;.
|

El conjunto de clausulas construido mediante
Ind(p;,C;) contiene exactamente las clausulas
necesarias que permitiran inferir cada ¢; € ¢ a
partir de C; A Ind(p;,C;). Al iterar Ind(p;, C;)
sobre todo C; € K, se obtiene un conjunto de
clausulas con las que se asegura cumplir (K A
Ind(p;, K)) = ;. El teorema anterior demuestra
asi la correccién de nuestro método.

Mostremos ahora que el conjunto de clausulas
en Ind(p;,C;) representa el conjunto minimo
de clausulas que permiten cubrir el espacio:
Fals(p;) — Fals(C;), que es el espacio minimo
necesario de asignaciones para que Fals(yp;) C
Fals(C;)UFals(Ind(p;, C;)), y por tanto, para que
se cumpla (C; A Ind(p;, C})) = ;-

Teorema 2 Fals(Ind(p;, C;)) = Fals(ei) — Fals(Cj).
Demostracion.

Si Ind(pi,C;) = 0, se cumple que Ind(p;,C;) es
el nimero minimo de clausulas que permiten inferir
(C; A Ind(pi, C;)) = i, ya que de hecho, C; = ;.
Supongamos ahora que Ind(yp;,C;) # 0. Veamos que
Vs € Fals(Ind(p;, Cj)) se cumple que s € Fals(p;), ¥y
s & Fals(Cj). Sea s € Fals(Ind(y:,C;)), entonces s
falsifica a p;, ya que cada clausula en Ind(y;i, C;) tiene
la forma (¢; V R), con R una disyuncion de literales.
Si s falsifica a (p; V R) entonces s falsifica tanto a
(¢p;) como a (R), por tanto s € Fals(y;). Ademas,
s ¢ Fals(C;), ya que C; es independiente con cada
una de las clausulas de Ind(p;,C;) (por construccion
del operador de independencia), y por tal, s ¢ Fals(C}).
|

El teorema anterior demuestra que el operador
de independencia Ind(y;,C;) construye un con-
junto de clausulas que cubren de forma exacta
el espacio de asignaciones que hacen falta para
que Fals(p;) C Fals(Cj) U Fals(Ind(p;, Cj)).
Alun més, el conjunto Fals(Ind(y;, C;)) es el
conjunto minimo de asignaciones para cubrir el
espacio Fals(y;) — Fals(C;), ya que Fals(C;) y
Fals(Ind(pi, C})) son ajenos (por construccion del
operador de independencia), y por tanto Fals(C))
N Fals(Ind(p;, C;)) = 0.

Corolario 1 Fals(Ind(p;, K)) C Fals(;).
Demostracion.

Por el teorema (2), se tiene que
Fals(Ind(y;,C;)) = Fals(p) — Fals(Cy), al
iterar sobre cada C; de K se cumple que
Fals(Ind(yi, K)) = Fals(p;) — Fals(K). Y por
propiedades entre conjuntos, se cumple que
Fals(Ind(p;, K)) C Fals(yp). R

Al iterar Ind(y;,C;) sobre todo C; € K, se
obtiene un conjunto minimo de clausulas: F's; que
asegura que: (K A F's;) = ;.

Al extender K con las clausulas obtenidas
en Ind(yp;,K) se va formando K’'. Asi K’
extiende al conjunto de clausulas de K, y por
tanto, extiende también el espacio inicial de
falsificaciones de K, agregando las asignaciones
que falsifican a Ind(¢;, K). De hecho, estos
dos conjuntos de falsificaciones son excluyentes
por construccion de Ind(y;, K), y por tanto,
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Fals(K)NFals(Ind(y;, K)) = 0. En otras palabras,
el conjunto de modelos de K’ es ahora un
subconjunto de los modelos de K, SAT(K') C
SAT(K).

Sin embargo, al iterar el operador Ind(y;, K),
sobre cada ¢; € ¢,i = 1,...,k, se tiene que
los k£ conjuntos de clausulas F's; formados por
Ind(¢, K) podrian no tener un niumero minimo de
clausulas. La reduccién Varcom permite reducir el
namero de clausulas en Ind(¢, K).

Asi, después de obtener el conjunto de
clausulas Ind(¢, K), se reduce su cardinalidad,
eliminando clausulas subsumidas y aplicando
la reduccion Varcom entre clausulas de dos
diferentes conjuntos Ind(y;,, K) € Ind(y;,, K).

Este Gltimo proceso de reduccion de clausulas
a través de literales complementarias y de
eliminacion de clausulas subsumidas, se ejecuta
en tiempo polinomial (de hecho en tiempo
cuadratico) sobre la longitud inicial de |Ind(¢, K)|,
ya que consistiria en ir tomando una clausula
C € Ind(¢,K), y revisar si es subclausula
(como subconjunto de literales) o si hay una
literal complementaria con alguna otra clausula
en Ind(¢,K) — C. Ademas, el resultado de la
reduccion mantiene la forma de una FC.

Un proceso similar a Varcom se aplicd en
el célculo de los implicantes primos de una
formula, presentada por Quine y McCluskey
[24]. En esta propuesta, los autores buscan
los implicantes primos esenciales que sean
necesarios y suficientes para generar la funciéon
Booleana de entrada.

Sin embargo, cuando la heuristica de éste
método recibe una férmula con un gran nimero de
variables, conduce a resultados no minimos, por lo
que se tiene que recurrir al método de Petrick con
el fin de poder caracterizar la expresién minima
de la funcién Booleana [23].

Ejemplo 2.

Sea K = (—pVqVrVs) A (-pV—q) A (-pV-r)y ¢ =
(mpV—sV=t) A (gV—rV=sV=it) A (mpVgVrV—sVi) A
(—p), probar que K | ¢, es equivalente a revisar si
Fals(¢) ={1**11,*0111, 10010, 1****} C Fals(K)
= {1000*, 11***, 1*1**}. En cada celda de la tabla
2, se va calculando Ind(yp;,C;).
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Tabla 2. Aplicacion del operador Ind(¢, K)

é K 1000* | 11** | 1*1** S
111 1**11 | 10*11 | 10011 | 10011
*0111 *0111 | 00111 | 00111 | 00111
10010 10010 | 10010 | 10010 | 10010
1**** 11*** @ @ @
101* | 101** 0 [
1001* | 1001* | 1001* | 1001*

Tabla 3. Calculo de Ind con las C; € K ordenadas

K

1*51** 11*** 1000* S
©1
1**11 1*011 | 10011 | 10011 | 10011
K 1000* L 1% S
P2
*0111 00111 | 00111 | 00111 | 00111
K 11%** 1*1** 1000* S
¥3
10010 10010 | 10010 | 10010 | 10010
K 1%1** 11%** 1000* S
P4
) R 1*0** 100** | 1001* | 1001*

Como se puede observar en la tabla 2, al aplicar
el operador Ind(¢, K) se genera un numero de
cadenas mayor a las que aparecen en la tabla
3, debido a que en la tabla 3, antes de aplicar
el operador de independencia, se ordenan las
clausulas C; € K, de acuerdo al tamafo |lit(C;) —
lit(p;)| de menor a mayor, dado que el numero
de literales de C; diferentes con ¢, determinara el
numero de clausulas independientes a generarse,
ademas de descartar con anticipacion cadenas
que seran subsumidas.

Por tanto, antes de aplicar el operador
Ind(p;, K) es conveniente ordenar las clausulas
en K de acuerdo al valor de cada ¢; que se esté
considerando, tal y como se muestra en la tabla 3.
Con lo que se obtiene una estrategia de reduccion
sobre el nuimero de clausulas independientes
a generar. Al aplicar el proceso de reduccién
de clausulas via literales complementarias,
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se tiene como resultado para el caso del
ejemplo 2, que S = {1001x,00111}, cuya FC
esFs=(-pVqgVrV-s)A(pVgqgV-rV-asV-t).
Asi, K =KAFs=(-pVqVrVvs)A(-pV-qg) A
(mpV=r) A (mpVaVrV-s) A(pVgV-rV-sV-—t).

5. Postulados KM

Katsuno y Mendelzon (KM) unificaron los
diferentes enfoques semanticos que un operador
de revisién de creencias deberia cumplir [16].
Presentamos aqui el analisis de estos postulados
sobre nuestra propuesta de operador de revision
de creencias K/ = Ko ¢ = K A Ind(¢, K).
Consideremos ahora los postulados KM.

" (R)Ko¢ k= o

(R2) Si K A ¢ es satisfactible entonces Ko¢ =
K A ¢.

(R3) Si ¢ es satisfactible, entonces también lo
es Ko ¢.

(R4) Si K1 = K2y ¢1 = ¢2, entonces K1o ¢l
= K20 ¢2.

(R5) (K 0 6) Ay = K o (6 /7).

(R6) Si (K o ¢) A v es satisfactible entonces
también Ko (¢ Avy) E (K o ¢) A~.

El teorema 1, muestra que nuestro operador de
revision de creencias cumple el postulado R1. Si
K A ¢ es satisfactible y K = ¢, entonces cada ¢; €
¢ se infiere de K y por tanto, Ind(p;, K) = ¢;,i =
1,...,k. Asi, Ko ¢ = K A Ind(¢,K) = K A ¢,
cumpliéndose el postulado R2.

Analicemos el cumplimiento del postulado R3.
Este se cumple si K o ¢ es satisfactible (por R2).
Pero si Fals(K) U Fals(Ind(¢, K)) cubriera a todo
el espacio de asignaciones: 2™, entonces soélo en
este caso se redefine K o ¢. Por ejemplo, si K =
(pvVg)A(pV—q) y ¢ = (—p), como ¢ es independiente
con cada clausula de K, se tendria que Ko¢ = (—p)
A (pVaq) A (pV—q), que claramente es una férmula
insatisfactible.

Bajo estas circunstancias de comprobacién de
que (K A Ind(¢, K)) es insatisfactible, se redefine
K o ¢ para que cumpla R3. Se redefine K o ¢ =

((K A Ind(¢,K))-C;), seleccionando la clausula
C; € K con la menor informaciéon (note que
|SAT(C;)| es minimo sobre la cardinalidad del
conjunto de modelos de cada C; € K, si |C}| es
maximo en K), y de esta forma se mantendria
la satisfactibilidad del resultado de la revisién de
creencias.

Los postulados R4 y R5 se cumplen debido
a que nuestro operador de revisibn es cerrado
sobre las formas conjuntivas. Por ejemplo, si
consideramos dos diferentes KB; K1 = K2,
y dos subférmulas ¢1 = ¢2, se cumple que
Fals(K1) = Fals(K2) y Fals(¢l) = Fals(¢2).
Al trabajar nuestro método sobre los conjuntos
Fals(Ind(¢,K)) y al ser tanto K, ¢ y Ind(¢, K)
FC’s, se cumple de forma directa el postulado RA4.

Veamos que se cumple R5 (Ko@) Ay E K o
(¢ A 7). Consideremos: K o (¢ Avy) = K A Ind(¢p A
v, K) por definicién del operador (o), K o (¢ A
v) = K A Ind(¢,K) A Ind(vy, K) por definicion del
operador Ind y puesto que tanto ¢ como ~ son
FC’s. Entonces, K o (¢ Ay) = K A S A Ind(y, K)
con S = Ind(¢, K). Por otro lado, Fals(K o (¢ A
v)) = Fals(K NS A Ind(vy,K)) = Fals(K A S) U
Fals(Ind(y,K)) = Fals(Ko¢)UFals(Ind(v, K)) C
Fals(K o ¢) U Fals(y), por el Corolario 1. Asi,
Fals(K o (¢ A v)) C Fals(K o ¢) U Fals(y) =
Fals((K o ¢) A~) cumpliéndose R5.

(R6) Si (K o ¢) A~ es satisfactible, entonces K o
(@N7Y) E (Ko¢)Avy. Sea Fals(( o ¢) N y) =
Fals(K A Ind(¢, K) A ), pero () sblo seria igual
a Ind(vy, K) si y solo si v fuera independiente con
cada clausula de K, y entonces sélo en ese caso
se tiene que Fals(K A Ind(¢, K) Avy) = Fals(K A
Ind(¢, K) AN Ind(v,K)) = Fals(K o (¢ Av) y asi se
cumpliria el postulado R6.

6. Analisis de complejidad en tiempo

La funcién que mide el tiempo de nuestro
operador de revisién de creencias K o ¢, que
denotaremos como: Ty(|¢],|K|), depende princi-
palmente del tiempo de ejecucion del operador de
independencia: Ind(¢, K). Y como Ind(¢, K) se
obtiene del célculo iterativo de Ind(p;, K), Vo, € ¢,
entonces el tiempo de construccion para Ind(¢, K)
depende del tiempo maximo que requiere algun
Ind(p;, K), i € ¢.
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Como se presentd en la seccién del disefio del
algoritmo 1, la complejidad en tiempo del proceso
Ind(p;, K) es de orden O(|K| - n - f(lgil, |K])),
donde f(|¢i|, |K]) es una funcion entera, que dada
una clausula ¢; y una FC K, determina el nimero
de clausulas que regresara el proceso Ind(p;, K).
Analicemos ahora, el nimero maximo posible de
clausulas que se pueden generar a través del
proceso Ind(p;, K).

En algunos casos, Ind(y;, K) puede generar
conjuntos nulos (cuando 3 C; € K, tal que C; |=
©i), pero en los peores casos, la complejidad en
tiempo del calculo de Ind(y;, K), dependera de la
longitud de los conjuntos: S;; = {z1,22,...,2,} =

Como se hizo notar en el ejemplo 2, fija una
p; € ¢, es conveniente ordenar las clausulas
C; € K de acuerdo a la cardinalidad de los S,
j = 1,...,m de menor a mayor, y eliminando
de este ordenamiento las clausulas que sean
independientes con ¢;. Una vez ordenadas las
clausulas en K en funcion a la longitud de S;;, se
va aplicando el operador Ind(y¢;, C;),j = 1,...,m,
determinandose asi, la sucesion:

Sio = v(pi)
Si1 =v(C1) - v(p:)
Siz = v(C2) = (v(C1) Uv(y;))

Sim = 0(Cin) = (0(Con_1) U ... Un(Cy) U n(i0r).

El ndmero de clausulas que se generan
por Ind(p;,Cy) seria |S;i|, y para Ind(p;, Cs)
se podria tener en el peor caso, hasta |S;|
nuevas clausulas por cada una de las clausulas
generadas en Ind(y;,C1), y asi sucesivamente.
Para Ind(y;,Cy,), habria a lo mas |S;,,| posibles
clausulas que se pueden generar por cada una de
las anteriores clausulas en Ind(¢;, Crn—1)-

Esto nos genera un proceso multiplicativo sobre
el nimero de clausulas en Ind(y;, K), dado por:
[Ind(pi, K)| < TT7218i51 = [Sal * |Sizl * ... % [Sim]

y bajo la restriccion 3770, [Si;[<n —|v(vi)], ya
que cada conjunto S;; cubre el espacio de
asignaciones formado por las variables que no ha
sido cubierto por las variables de las Cj, j =
1,...,k—1 y las variables de ¢;, y en todo este
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proceso no puede cubrirse mas de n — v(p;)
variables.

De hecho, si algin S;; = 0, entonces el
conjunto de clausulas en Ind(y;, K) es también
vacio, indicando que el K actual no cambiara al
considerar tal ¢; y entonces H;”Zl | Sij |[=0.

Cuando no hay clausulas independientes con
©;, Ni ningun S;; = @ para j = 1,...,m, entonces
la complejidad en tiempo para calcular Ind(yp;, K)
es acotado por su numero de clausulas, en otras
palabras, se tiene que |Ind(y;, K)| < [Si1] * |Sia]
% ... % |Siym| * Poly(n). Donde Poly(n) resume
un tiempo polinomial sobre el nimero de variables
que se genera de aplicar el operador Ind(y;, C;)
y por aplicar el ordenamiento inicial sobre las
clausulas de K.

Es claro que el valor |Ind(y;, K)| no puede
ser mayor al nimero de asignaciones que estan
en Fals(p;) — Fals(K), ya que de hecho, se
esta cubriendo este espacio de asignaciones via
clausulas independientes. Esto significa que |S;1]
* |Sl2‘ E R |Si'rn| < 2(n=leil)

Podemos inferir entonces que la complejidad
en tiempo Ty(|¢|, |K|) para nuestro operador de
revisiobn de creencias, en el peor de los casos,
esta acotado superiormente por Max{|S;1| * |Sia|
% ... % |Sim| * Ve, € ¢}, suprimiendo factores
polinomiales sobre n (el nimero de variables) y
sobre el tamano de la KB K. A su vez, este
valor maximo estd acotado superiormente por
o(n—min{|eil:0:€6}) -~ Cumpliéndose entonces que:
To(|¢|,|K|) S M(II{|S71‘ * |S,2| * ... X |Si7n| :
Vgl € O2m—mindleilei€oh)) Y por tanto, la
complejidad en tiempo de nuestra prouesta es de
O(|K]| - n - 2n=—mindlgilipico})).

7. Conclusiones

Un problema fundamental del razonamiento
automatico en el calculo proposicional y de los
sistemas inteligentes en general, es el problema
de revision de creencias.

En este trabajo se presenta un método
novedoso para construir K/ = K o ¢, a partir de
considerar que K y ¢ son FC’s. Como K y ¢ son
FC’s, el proceso de revision entre K y ¢ se va
reduciendo a realizar la revisién entre cada ¢, de
¢ y cada C; de K, simplificando el problema total
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de revisién en resolver los |K| x |¢| subproblemas
de revisién entre dos clausulas.

Se construyé un operador ldgico llamado
Ind(v;,C;j), que encuentra las clausulas que
cubren el espacio de asignaciones faltantes para
que se cumpla que: Fals(yp;) C Fals(Cj) U
Fals(Ind(y;,Cj)), al iterar este proceso sobre
todo ¢; € ¢, y cuidando reducir clasulas comple-
mentarias, encontramos un proceso efectivo para
la revision de creencias entre formas conjuntivas.

Se demuestra la correccion de nuestra pro-
puesta de revisién de creencias, la verificacién
de cumplimiento de los postulados KM, asi como
el andlisis de la complejidad en tiempo de los
procesos involucrados en nuestro método.
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