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Resumen. La revisión de creencias es un área
central en la representación de conocimiento y
en el procesamiento de razonamiento automático.
Consideraremos una base inicial de conocimiento K y
una nueva información φ, ambas codificadas en forma
normal conjuntiva (FC). Presentamos aquı́, un algoritmo
novedoso, determinista y correcto para la revisión de
creencias de φ en K. Denotamos nuestro operador de
revisión como: K′ = K ◦ φ. Proponemos un nuevo
operador binario lógico Ind entre formas conjuntivas, y
tal que Ind(φ,K) construye también una nueva forma
conjuntiva. El operador Ind(φ,K) trabaja construyendo
cláusulas independientes con las cláusulas de K, y
las asignaciones falsificantes de la fórmula resultante
cubren exactamente el espacio de asignaciones de
Fals(φ) − Fals(K), lo que es esencial para realizar el
proceso de revisión de creencias K′ = K ◦ φ, y donde
K′ |= φ. Además de que nuestra propuesta satisface los
postulados KM. Presentamos también la demostración
de que nuestro algoritmo de revisión de creencias es
correcto, y su análisis de complejidad en tiempo.

Palabras clave. Inferencia proposicional, revisión de
creencias, inferencia basada en modelos, postulados
KM.

Model-based Algorithm for Belief
Revisions between Normal

Conjunctive Forms

Abstract. Belief revision is a central area in knowledge
representation and processing of automated reasoning.
We will consider a knowledge base (KB) K and a
new information φ, both expressed in conjunctive form
(CF). We present here, a novel, deterministic and
correct algorithm for belief revision of φ in K. We
denote our revision operator as: K′ = K ◦ φ. We
introduce a new logical binary operator Ind between two
conjunctive forms, such that Ind(φ,K) generates also a

conjunctive form. The operator Ind(φ,K) works building
independent clauses with the clauses of K, and whose
falsifying assignments of the resulting formula cover
exactly the space of assignments Fals(φ) − Fals(K),
this is essential for performing the process of belief
revision K′ = K ◦ φ, where K′ |= φ. Furthermore, our
proposal satisfies the KM postulates. We also present
the correctness proof of our belief revision method, and
the analysis of its time complexity.

Keywords. Propositional inference, belief revision,
model based inference, postulates KM.

1. Introducción

Un marco de referencia ampliamente aceptado
en el área del razonamiento en sistemas
inteligentes es el enfoque de sistemas basados en
bases de conocimiento. La idea general de estos
sistemas es mantener el conocimiento en algún
lenguaje de representación con una connotación
bien definida. En este caso, las sentencias se
almacenan en una base de conocimiento (KB – por
sus siglas en inglés) provista de un mecanismo de
razonamiento [9].

Un reto fundamental de estos sistemas es la
automatización del razonamiento deductivo a partir
de la KB. El razonamiento deductivo proposicional
es generalmente resumido como sigue: dada una
KB K, que contiene el conocimiento acerca de
un dominio (“el mundo”), y una sentencia φ que
representa la consulta que captura la situación
actual, ambas expresadas en lógica proposicional,
el objetivo es decidir si K implica φ (en sı́mbolos:
K |= φ), lo que se conoce como el problema de
implicación proposicional.
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La implicación proposicional es una tarea
relevante en problemas como: estimar el grado
de creencia, revisión y actualización de creencias,
al trabajar con explicaciones abductivas, y en
muchos otros procedimientos en aplicaciones de
la Inteligencia Artificial (AI, por sus siglas en
inglés), por ejemplo, al trabajar en planeación,
diseño de sistemas multiagentes, diagnóstico
lógico, razonamiento aproximado, entre otras
aplicaciones [7, 13]. En general, el problema
de la implicación lógica es un reto difı́cil en el
área de razonamiento automático, y resulta ser
un problema Co-NP difı́cil, incluso en el caso
proposicional [17].

La revisión de creencias consiste en incorporar
nuevas creencias a una base de conocimiento
(KB) ya establecida, cambiando lo menos po-
sible las creencias originales y manteniendo la
consistencia de la KB. La función básica de
la revisión de creencias es ofrecer un método
de cómo cambiar una base de conocimiento
cuando nos enfrentamos con nueva información
φ. La nueva información puede entrar en conflicto
con la que tenı́amos antes, y en ese caso,
si queremos mantener consistencia, se deberán
eliminar algunos elementos previos de la KB.

Es deseable que los cambios en la base original
de conocimiento no se efectúen de cualquier
manera, sino de forma racional. En la revisión
de creencias se trata por tanto, de una teorı́a
normativa que nos indica en cada caso, cuál es
la manera óptima de proceder.

En cierto sentido, la revisión de creencias
propone una teorı́a formal, cuyos efectos podemos
interpretar de diferente manera. Las creencias
pueden aludir a entidades mentales de un agente,
a elementos de una base de conocimiento del
mundo real, o tal vez, a elementos de un problema
en la teorı́a de la decisión. Esta caracterı́stica
proporciona su versatilidad a la teorı́a de revisión
de creencias [5].

Al proceso de revisión de creencias lo donotare-
mos con el operador (◦) que actúa sobre una KB
K y sobre una nueva evidencia φ, para formar una
nueva KB K ′ = K ◦ φ. Cuando K |= φ entonces
K ′ = K ◦ φ = K. Cuando K 6|= φ, la idea de la
revisión de creencias es formar una nueva KB K ′

a partir de la previa K, que permita inferir la nueva

evidencia φ y al mismo tiempo, minimice la pérdida
de información de K [9], [12].

Aunque la inferencia proposicional es un
problema Co-NP-completo en su versión general
[22], existen también algunos casos que se pueden
resolver de manera eficiente [17]. Consideraremos
una KB K =

∧m
(j=1) Cj y φ =

∧k
(i=1) ϕi, donde cada

Cj ∈ K y cada ϕi ∈ φ son cláusulas expresadas
bajo un mismo conjunto de n variables Booleanas.
Este artı́culo muestra que el uso de patrones
falsificantes de las cláusulas, ayuda a determinar
si una FC se infiere de otra FC, y por tanto, a
construir un algoritmo para la revisión de creencias
entre formas normales conjuntivas.

Es común el uso de FC’s en el proceso de
razonamiento automático, ya que el procedimiento
de resolución ha abierto un área de relevancia
práctica para revisar consistencia entre FC’s.
Aunque es bien conocido que la inferencia basada
en el principio de resolución tiene limitaciones
intrı́nsecas [3]. Al tener un método efectivo de
revisión de creencias entre FC’s, su extensión para
considerar otras formas normales no es difı́cil,
dado que cualquier fórmula Booleana se puede
expresar en forma conjuntiva.

1.1. Estado del arte

El enfoque más conocido para realizar la
revisión de creencias es el paradigma AGM
(debido a las iniciales de los autores Alchourrón,
Gärdenfors and Makinson) [1]. La teorı́a AGM
propone un conjunto de postulados racionales, que
cualquier operador de revisión debe satisfacer

Posterior a la propuesta AGM, Alchourrón y Ma-
kinson [14] desarrollaron un modelo constructivo
para funciones de cambio llamado “contracción
segura” (safe contraction) que después fue
generalizada por Hansson [15]. Sin embargo,
la mayorı́a de estas propuestas requieren de
información adicional, tales como: relaciones de
afianzamiento epistémicas, sistemas de esferas,
relación de subfórmulas, entre otras [14].

Algunos de los problemas con las propuestas
anteriores, es que muchas veces esta información
no se tiene, o bien no existe, obligando a tratar
todas las creencias por igual. Más aún, hay
otras propuestas cuyos operadores de revisión de
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creencias son completamente dependientes de la
sintaxis.

Katsuno y Mendelzon unificaron los diferentes
enfoques semánticos de revisión de creencias,
y reformularon los postulados AGM, a los
que llamaron ahora postulados KM. Además,
propusieron un teorema de representación que
caracteriza las operaciones de revisión en térmi-
nos de pre-órdenes totales sobre el conjunto de
interpretaciones [16].

Posteriormente, Darwiche y Pearl [8] propusie-
ron postulados para una revisión de forma iterada,
donde caracterizan la revisión de creencias como
un proceso que puede depender de elementos de
un estado que no necesariamente son capturados
por un conjunto de creencias. Su propuesta
establece una representación basada en el modelo
que representa los postulados y las restricciones
para la revisión de creencias. Otra propuesta
similar a la de Darwiche y Pearl es la presentada
por Lehmann [18], donde cada observación es una
sentencia general que se asume es consistente.

Hay algunas propuestas de revisión de creen-
cias basadas en modelos, y que se identifican
por el nombre de sus autores; Dalal, Satoh,
Winslett, Borguida y Forbus [20]. Por ejemplo,
Dalal [6] sugiere un operador de revisión basado
en la distancia mı́nima Hamming entre las
interpretaciones y la cual se extiende a distancias
entre interpretaciones y bases. En la práctica,
esta propuesta implica un cálculo de modelos
que pueden ser muy costoso, otro de los
inconvenientes del enfoque Dalal es que se limita
al caso de bases de conocimientos consistentes.

Por otro lado, la propuesta de Satoh [25] es
similar a la de Dalal, con la diferencia de que
la distancia entre dos modelos es definida como
el conjunto de literales a las que les son dados
diferentes valores. En el caso de Winslett, la
propuesta se basa en la comparación entre todos
los sistemas consistentes de longitud máxima.

La propuesta de Borguida y Forbus es similar a
la de Winslett, con la diferencia de que Borguida
considera modelos incompatibles, y Forbus utiliza
la distancia Hamming. La similitud entre los mode-
los es definida a través de un conjunto conteniendo
todas las subfórmulas máximales y consistentes
con la consulta realizada, lo que lleva a una

búsqueda exhaustiva sobre la tautologicidad de
una gran cantidad de subfórmulas, cuestionando
ası́ no sólo la funcionalidad de cada uno de los
métodos, sino que nos lleva también a concluir que
el problema de revisión de creencias bajo estos
métodos es un problema inherentemente intratable
(de complejidad exponencial en tiempo).

Más recientemente, la revisión de creencias
ha ganado atención en el marco de la lógica
simbólica, y numerosos operadores de revisión
de creencias han sido propuestos de acuerdo a
puntos de vista sintácticos o semánticos [19, 21,
25], obteniéndose diferentes resultados sobre la
complejidad en tiempo de estas propuestas [6, 19].
Algunas de las investigaciones en esta dirección
se han acotado principalmente a considerar el
fragmento Horn dentro de la lógica clásica.

Existen diversas propuestas que involucran
fórmulas proposicionales tales como las descritas
en [10, 26, 2] que sugieren métodos que abordan
sólo fragmentos de la lógica proposicional. Una
de las propuestas recientes debida a Delgrande
presenta los primeros resultados sobre cambio de
creencias en el fragmento Horn [10].

En [4], los autores presentan una metodologı́a
general para definir nuevos operadores de revisión
derivados de operadores estándar (como por
ejemplo, los operadores de Dalal y Satoh), tal
que el resultado de la revisión se mantiene
en el fragmento en cuestión. Por lo tanto, en
esta propuesta los autores no se limitan sólo al
caso Horn, sino que ésta es aplicable a otros
fragmentos de la lógica proposicional, donde los
modelos de las fórmulas cumplan el ser cerrados
bajo una función Booleana.

Se puede notar que estas propuestas se
desarrollan para considerar algún tipo de fórmula
normalizada o bien sólo consideran cláusulas de
Horn. Cada una de estas propuestas propone
un operador de revisión que trabaja sobre sus
fórmulas normalizadas y que presentan diversos
inconvenientes. Por ejemplo, algunos de los
operadores son dependientes de la sintaxis o
bien requieren de información adicional. Otros
definen diferentes nociones de proximidad, y
unos más se limitan a revisar sólo bases
consistentes. Pero el principal inconveniente de
estos métodos de revisión de creencias es que
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conllevan inherentemente a realizar procesos de
complejidad exponencial en tiempo.

Por otro lado, nuestra propuesta de revisión
de creencias sigue el enfoque basado en revisar
los modelos de las fórmulas involucradas, porque
supondremos que la KBK y la fórmula de consulta
φ son FC’s. Trabajar con FC’s permite el cálculo
efectivo del conjunto de asignaciones que falsifican
a cada una de sus cláusulas, y por tanto, también
del conjunto complemento de tales asignaciones
falsificantes, que serán precisamente, los modelos
de las fórmulas.

Mostramos aquı́, que el proceso de revisión
de creencias puede realizarse de forma práctica
en función de las asignaciones falsificantes de
las FC’s involucradas. Además, nuestra propuesta
obtiene una nueva base de conocimiento K ′ =
K ◦ φ, que reduce de forma mı́nima el conjunto de
modelos de la base de conocimiento original K.

Resumiendo, las contribuciones principales de
nuestro trabajo son:

Proponemos un método que trabaja sobre el
conjunto de asignaciones falsificantes de las
fórmulas involucradas, para revisar: K |= φ.

Introducimos un operador lógico entre dos
cláusulas, Ind(ϕi,Cj), cuyo resultado es una
FC Fs, tal que Fals(Fs) = Fals(ϕi) −
Fals(Cj).

Demostramos que nuestra propuesta de
revisión de creencias es correcto, y cumple los
postulados de Katsuno y Mendelzon.

El operador Ind(ϕi,Cj) se implementó para
que trabaje en tiempo lineal sobre el número
de variables involucradas, y es la base de
nuestro proceso de revisión de creencias.

A pesar de la eficiencia del operador
Ind(ϕi,Cj), el número de cláusulas en Fs
para que (K ∧ Fs) |= φ, puede llevarnos a un
crecimiento exponencial de orden O(|K| · n ·
2(n−min{|ϕi|:ϕi∈φ})).

2. Preliminares

SeaX = {x1, . . . ,xn} un conjunto de n variables
Booleanas. Una literal denotada como lit es, o
una variable xi o una variable negada ¬xi. Como
es usual, para cada x ∈ X, x0 = ¬x y x1 = x. Sean
⊥ and > dos constantes representando los valores
lógicos falso y verdadero, respectivamente.

Una cláusula es una disyunción de diferentes
literales. Para k ∈ N , una k-cláusula es una
cláusula que consiste exactamente de k literales, y
una (≤ k)-cláusula es una cláusula con a lo más k
literales. Una frase es una conjunción de literales.
Una k-frase es una frase con exactamente k
literales. Una variable x ∈ X aparece en una
cláusula (frase) C si x o ¬x es un elemento de C.

Una forma normal conjuntiva (FC) es una
conjunción de cláusulas (que también llamaremos
forma conjuntiva), y una k-FC es una FC que
contiene sólo k-cláusulas.

Una forma normal disyuntiva (FD) es una
disyunción de frases, y una k-FD es una FD
que contiene sólo k-frases. Una FC F con n
variables representa una función Booleana n-aria
F :{0, 1}n → {0, 1}. Por el contrario, cualquier
función Booleana F tiene infinitamente muchas re-
presentaciones equivalentes, entre estas, algunas
en FC y también otras en FD.

Denotamos con Y a cualquiera de los elementos
lógicos básicos que estamos utilizando, como:
una literal, una cláusula, una frase, una FD o
una FC, y v(Y ) denota el conjunto de variables
involucradas en el objeto Y . Por ejemplo, v(¬x1 ∨
x2) = {x1,x2}. Mientras lit(Y ) denota el conjunto
de literales involucradas en el objeto Y . Por
ejemplo, si X = v(Y ) entonces lit(Y ) = X ∪
¬X = {x1,¬x1, . . . ,xn,¬xn}. También usamos ¬Y
como el operador de negación sobre el objeto Y .
Denotaremos a {1, 2, 3, . . .,n} por [[1, n]], y a la
cardinalidad de un conjunto A por |A|.

Una asignación s para una fórmula F es
un mapeo Booleano s : v(F ) → {1, 0}. Una
asignación s puede también ser considerada como
un conjunto de literales no complementarias: l ∈ s
sı́ y sólo si s asigna l a cierto y ¬l a falso. s es
una asignación parcial para la fórmula F cuando
s ha determinado un valor lógico sólo para las
variables de un subconjunto propio de F , a saber
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s : Y → {1, 0} y Y ⊂ v(F ). Si s tiene valores
lógicos determinados para todas las variables en
F entonces s es una asignación total de F .

Si F1 ⊂ F es una FC que consiste de algunas
cláusulas en F , y v(F1) ⊂ v(F ), una asignación
sobre v(F1) es una asignación parcial sobre v(F ).
Considerando n = |v(F )| y de igual forma n1 =
|v(F1)|, cualquier asignación sobre v(F1) tiene
2n−n1 extensiones sobre v(F ).

Considerando una cláusula C y una asignación
s como conjuntos de literales, C es satisfecha por
s si s ∩ C 6= ∅, de otra manera s contradice (o
falsifica) a C. Una FC F es satisfecha por una
asignación s si cada cláusula en F es satisfecha
por s; F es contradicha por s si alguna cláusula
en F es falsificada por s. Un modelo de F es una
asignación sobre v(F ) satisfaciendo F .

Una frase f es satisfecha por una asignación s si
f ⊆ s, de otra manera s falsifica a f . Una FD F es
satisfecha por s si alguna frase en F es satisfecha
por s. F es contradicha por s si todas las frases en
F son falsificadas por s.

Dada una fórmula F , sea S(F ) el conjunto de
todas las posibles asignaciones definidas sobre
v(F ). Si n = |v(F )| entonces |S(F )| = 2n. s |=
F denota que la asignación s es un modelo de
F (s satisface a F ). s 6|= F denota que s es
una asignación falsificante de F . Denotamos por
SAT (F ) al conjunto de asignaciones en S(F ) que
son modelos de F . Fals(F ) denota el conjunto de
asignaciones de S(F ) que falsifican a F .

Dadas dos fórmulas Booleanas F y G definidas
sobre un mismo conjunto de variables, esto es
v(F ) = v(G), decimos que F es consecuencia
lógica de G, denotado como G |= F , si para toda
asignación s que satisface a G se cumple que s
también satisface a F . Y diremos que F y G son
logicamente equivalentes, denotado como G ≡ F ,
si ambas fórmulas tienen el mismo conjunto de
modelos, esto es, una asignación s satisface a
G si y sólo si s satisface a F . En términos de
los conjuntos de modelos, podemos denotar que:
G |= F si y sólo si SAT (G) ⊆ SAT (F ), y que
G ≡ F si y sólo si SAT (F ) = SAT (G).

#SAT (F ) denota el número de asignaciones de
S(F ) que satisfacen a la fórmula F . Mientras que
#Fals(F ) representa al número de asignaciones
de S(F ) que no satisfacen a F .

Para cualquier fórmula proposicional F , se
cumple que: S(F ) = SAT (F ) ∪ Fals(F ). El
problema SAT consiste en decidir, para una
fórmula de entrada F , si F es satisfactible, esto
es, si F tiene un modelo o no. Una base de
conocimiento KB es un conjunto K de fórmulas.
Dada una KB K y una fórmula proposicional φ,
decimos que K implica φ, y escribimos K |= φ,
si φ es satisfecha por todo modelo de K, es decir,
SAT (K) ⊆ SAT (φ).

3. Inferencia entre formas
conjuntivas

Un problema fundamental en el razonamiento
deductivo es el problema de la implicación lógica:
dada una KB K y una fórmula φ, debemos
decidir si K |= φ. En este trabajo analizaremos la
complejidad computacional del caso del problema
de implicación entre formas conjuntivas: FC |= FC.

Sea una base de conocimiento K que se
encuentra en forma conjuntiva, K =

∧m
(j=1) Cj y

sea una consulta expresada también en FC φ =∧k
(i=1) ϕi , donde cada Cj ∈ K y cada ϕi ∈ φ son

cláusulas expresadas bajo un mismo conjunto de
n variables Booleanas.

Dadas dos FC’s F1 y F2, decidir si F1 |= F2 es
lógicamente equivalente a probar que ¬F2 |= ¬F1,
que resulta en revisar la inferencia entre formas
disyuntivas, ya que si F es una FC entonces ¬(F )
es una FD, debido a que negar una FC F se realiza
en tiempo lineal sobre el tamaño de F , a través de
una generalización de las reglas de De Morgan.

Por otro lado, revisar la inferencia entre formas
disyuntivas se reduce a revisar si una FD G es
una tautologı́a, lo que es un problema clásico en
la clase de complejidad Co-NP completo [22]. La
reducción proviene de considerar que la existencia
de un procedimiento que determina si G1 |= G2,
con G1 y G2 formas disyuntivas, permite a su vez,
determinar la tautologicidad de cualquier forma
disyuntiva G, ya que basta con hacer G1 ≡ > que
es una tautologı́a, y entonces G1 |= G se cumplirá
sólo si G es a su vez una tautologı́a.

Como K y φ están en FC, las cadenas
falsificantes de sus cláusulas Fals(K) y Fals(φ)
se pueden calcular eficientemente [9]. Usar las
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cadenas falsificantes es la base para revisar si
K |= φ, lo que en términos de sus asignaciones
equivale a revisar si SAT (K) ⊆ SAT (φ), o bien
que: Fals(φ) ⊆ Fals(K). El resultado de aplicar el
operador de revisión de creencias sobre la KB K y
la nueva evidencia φ es denotado como K ′ = K ◦
φ. Cuando K |= φ entonces K ′ = K ◦ φ = K.

Si K 6|= φ entonces Fals(φ) 6⊂ Fals(K), lo que
implica que existe un conjunto de asignaciones S
tal que S ⊆ Fals(φ) y S 6⊆ Fals(K). Si K 6|= φ,
entonces S = (Fals(φ) - Fals(K) ) 6= ∅. En este
caso, nuestro método de revisión de creencias
trabaja construyendo tal conjunto S, lo que permite
construir una nueva FC Fs, tal que S = Fals(Fs)
y K ′ = K ∧ Fs, cumple que: K ′ |= φ.

El método que proponemos obtiene S =
(Fals(φ)−Fals(K)) como un conjunto de cadenas
falsificantes, lo que nos lleva a construir de forma
directa una FC Fs, donde S = Fals(Fs) y
tal que K ′= K ∧ Fs es una nueva FC con
menos información que K (dado que K ′ tiene más
cláusulas que K), de hecho, se cumple que si
S 6= ∅ entonces Fals(K) ⊂ Fals(K ′), y por tanto,
SAT (K ′) ⊂ SAT (K).

3.1. Construcción de conjuntos
independientes de cláusulas

Dada una forma conjuntiva K =
∧m

(i=1) Ci,
con n = |v(K)|, para cualquier cláusula Ci ∈
K, hay exactamente 2(n−|Ci|) asignaciones de
S(K) falsificando Ci. Debido a que todas las
falsificaciones de Ci tiene valores fijos en las
posiciones de las variables v(Ci) y tales valores
falsifican cada literal de Ci. Por tanto, hay n - | Ci |
variables a las que se les puede asignar cualquier
valor de verdad. Esto significa que hay 2(n−|Ci|)

asignaciones falsificantes para Ci.
Sea Ai un conjunto de cadenas tales que

la longitud de cada cadena es n. El valor en
la j-ésima posición de la cadena Ai, 1≤j≤n
representa el valor de verdad de xj que falsifica Ci.
Es decir, si xj ∈ Ci entonces el j-ésimo elemento
de cualquier cadena en Ai es 0. De otra manera si
¬xj ∈ Ci entonces el j-ésimo elemento es 1.

Usaremos el sı́mbolo ∗ para representar los
elementos que pueden tomar cualquier valor
de verdad en las cadenas Ai. Por ejemplo, si

K = {C1, ..,Cm} es una 2-FC, n = |v(K)|,
C1 = {x1,x2} y C2 = {x2,¬x3} entonces se
representa A1 como 00**· · · * y A2 como *01*· · · *.
Este abuso de notación nos permitirá dar una
representación concisa y clara en el resto del
documento, considerando a las cadenas Ai como
patrones que representan las falsificaciones de
la cláusula Ci. A tales cadenas las llamaremos
cadenas falsificantes de una cláusula.

Definición 1 [11] Dadas dos cláusulas Ci y Cj , si
ellas tienen al menos una literal complementaria,
se les llamará cláusulas independientes. En
otro caso, se dice que ambas son cláusulas
dependientes.

Definición 2 Sea K = {C1,C2, . . . ,Cm} una FC.
K es llamada independiente si para cualquier par
de cláusulas Ci,Cj ∈ K, i 6= j, se cumple la
propiedad de independencia.

Definición 3 Dadas dos cadenas falsificantes A
y B, ambas de la misma longitud, si hay una i
tal que A[i] = x y B[i] = 1 − x, x ∈ {0, 1}, se
dice que tienen la propiedad de independencia.
En otro caso, decimos que ambas cadenas son
dependientes.

Sea C una cláusula cualquiera, para cualquier
variable x se cumple que:

C = (C ∨ ¬x) ∧ (C ∨ x). (1)

Además, esta reducción conserva el número de
asignaciones falsificantes, ya que para cualquier
par de cláusulas independientes Ci, Cj se cumple
que Fals(Ci)∩Fals(Cj) = ∅ y entonces #Fals(C)
= 2(n−|c|) = 2(n−(|c|+1))+2(n−(|c|+1)) = #Fals((C ∨
¬x) ∧ (C ∨ x)), porque (C ∨ ¬x) y (C ∨ x) son
cláusulas independientes.

La conjunción de un par de cláusulas de-
pendientes C1 y C2 puede expresarse mediante
una conjunción de cláusulas independientes.
Supongamos que hay literales en C1 que no
están en C2, sea L = {x1,x2, . . . ,xp} tales
literales. Esto es, L = lit(C1) − lit(C2). Existe
una reducción para transformar C2 (o C1) como
cláusula independiente con C1 (o C2) llamada
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reducción de independencia, y que trabaja de la
siguiente manera.

Por (1) se puede escribir:
C1 ∧ C2 = C1 ∧ (C2 ∨ ¬x1) ∧ (C2 ∨ x1). Ahora
C1 y (C2 ∨ ¬x1) son independientes. Aplicando
(1) a (C2 ∨ x1) : C1 ∧ C2 = C1 ∧ (C2 ∨ ¬x1) ∧
(C2 ∨ x1 ∨ ¬x2) ∧ (C2 ∨ x1 ∨ x2). Las primeras
tres cláusulas son independientes. Repitiendo la
reducción de independencia hasta xp, se tiene que
C1 ∧ C2 puede expresarse como:
C1 ∧ (C2 ∨¬x1)∧ (C2 ∨ x1 ∨¬x2)∧ . . .∧ (C2 ∨ x1 ∨
x2 ∨ . . . ∨ ¬xp) ∧ (C2 ∨ x1 ∨ x2 ∨ . . . ∨ xp).
La última cláusula contiene todas las literales de
C1, ası́ que puede eliminarse porque es subsumida
por la cláusula C1, obteniéndose que:

C1 ∧ C2 = C1 ∧ (C2 ∨ ¬x1) ∧ (C2 ∨ x1 ∨ ¬x2)

∧ . . . ∧ (C2 ∨ x1 ∨ x2 ∨ . . . ∨ ¬xp). (2)

Las cláusulas del lado derecho de la ecuación
(2) son independientes por construcción.

El operador central para revisar inferencia entre
FC’s es un operador de independiencia que trabaja
sobre dos cláusulas ϕ y C, y que construye un
conjunto de cláusulas independientes equivalentes
a ϕ ∧C. Sea L = {x1,x2, . . . ,xp} = lit(C)− lit(ϕ)
se define el operador de independencia entre ϕ y
C como sigue:

Ind(ϕ,C) =


ϕ Si ϕ y C son independientes
∅ Si lit(C)− lit(ϕ) = ∅
(ϕ ∨ ¬x1) ∧ . . . ∧ (ϕ ∨ x1 ∨ . . .
∨¬xp), en otro caso.

La complejidad en tiempo para ejecutar
Ind(ϕ,C), que denotaremos como TInd(|ϕ|, |C|),
depende directamente del tiempo para ejecutar
operaciones básicas entre conjuntos de literales.
Por ejemplo, la operación lit(C) − lit(ϕ) podrı́a
realizarse como: para cada x ∈ lit(C) revisar
si x ∈ lit(ϕ) o si ¬x ∈ lit(ϕ), lo que requiere
de a lo más |C| ∗ |ϕ)| ≤ n2 operaciones de
comparación. Si los conjuntos lit(C) y lit(ϕ) se
representan mediante arreglos de n posiciones
(fijando una posición para cada una de las n
posibles variables), entonces lit(C) − lit(ϕ) se
realizará en a lo más O(n) operaciones lógicas
entre las posiciones de ambos arreglos.

Por otro lado, cuando L = lit(C) − lit(ϕ) 6= ∅,
se realiza un ciclo de |L| ≤ (n − 1) iteracciones,
y en cada iteracción i se agrega una disyunción y
una negación para formar (ϕ ∨ x1 ∨ . . . ∨ ¬xi), y a
través de una conjunción se adiciona esta cláusula
a la FC que se esta construyendo. Esto nos lleva
a un proceso, en el peor caso, de orden O(n) para
construir Ind(ϕ,C).

Veamos como este operador de independencia
Ind(ϕi,Cj) entre cláusulas ϕi ∈ φ y Cj ∈ K es la
base para realizar la revisión de creencias entre K
y φ.

4. Revisión de Creencias entre
formas conjuntivas

Nuestro método de Revisión de Creencias se
basa en las siguientes dos propiedades:

1. Si ∀ s ∈ Fals(φ) se cumple que s ∈ Fals(K),
entonces K |= φ.

2. Si ∃ s ∈ Fals(φ), y s 6∈ Fals(K), entonces
K 6|= φ.

El primer caso considera que todas las
asignaciones de Fals(φ) están en el conjunto
Fals(K), lo que demostrarı́a que K |= φ. Y en este
caso K ′ = K, ya que no se necesita cambiar la KB
K.

En el segundo caso, se detectarán los conjuntos
de asignaciones S tal que ∃ϕ ∈ φ, S ⊆ Fals(ϕ)
y S 6⊆ Fals(K). Para construir estos conjuntos
S se inicia con la cadena A1 que representa a
Fals(ϕ1) y se aplica el operador Ind con cada
una de las cadenas Bj que representan Fals(Cj),
j = 1, . . . ,m.

La operación Ind(ϕi,Cj) forma una cadena que
representa el conjunto de asignaciones falsifican-
tes: Fals(ϕi) − Fals(Cj). Esto es, Ind(ϕi,Cj)
determina las asignaciones que están en Fals(ϕi)
pero que no están contenidas en Fals(Cj). Si
se aplica la operación Ind sobre todo Cj ∈ K,
obtendremos como resultado el conjunto S ⊆
Fals(ϕi) ∧ S 6⊂ Fals(K).

El conjunto S permite construir una FC Fsi,
Fsi = (D1 ∧ D2 ∧ . . . Dt), donde S = Fals(Fsi).
Al agregar las nuevas cláusulas de Fsi a K,
obtenemos una nueva KB K ′i = K ∧ Fsi, que
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cumple que: K ′i |= ϕi, y además, K ′i sigue
siendo una FC. Presentamos algorı́tmicamente
este proceso.

Algorithm 1 Procedure Ind(ϕi,K)

Input: K: Una KB, y ϕi: cláusula con nueva inf.
Push(ϕi,V ); Fs = ∅; {Salida en Fs una FC
(conjunto de cláusulas)}
for all Cj ∈ K do

while (V 6= ∅) do
ϕ = Pop(V); {Prueba cláusula sgte.}
Fs = Fs− ϕ; {quitar cláusula de la salida}
Nc = Ind(φ,Cj); {Forma: Nc ∧ Cj |= φ }
if (Nc 6= ∅) then
Fs = Fs ∪ Nc; {Sólo si hay cláusulas a
agregar}

end if
end while
V = Fs; {Sgte. iteración considera nuevas
cláusulas}

end for
Returns(Fs)

Ind(ϕi,K) consiste de dos ciclos, uno externo
sobre Cj ∈ K, de orden O(|K|). Este ciclo (el For)
recorre las columnas de una tabla donde se irán
colocando los resultados de Ind(ϕi,Cj).
El cuerpo del ciclo interno consiste esencialmente
de realizar el operador Ind(ϕi,Cj) que es de orden
O(n), y de realizar ajustes a la FC Fsi que inicia
con la cláusula ϕi y que involucra no más de O(n)
operaciones.

El número de filas de la tabla se va ajustando
de forma dinámica, dependiendo del resultado de
Ind(ϕi,Cj). En el peor caso, este ciclo sobre el
número de filas puede llevarnos a un crecimiento
exponencial sobre el número de cláusulas que
contiene una Fsi, como se mostrará en la sección
de análisis de complejidad de nuestro método.

Cuando el proceso Ind(ϕi,K) itera sobre toda
ϕi ∈ φ, se forman las cláusulas Fsi tal que
Fals(

⋃
(Fsi)) = Fals(φ) − Fals(K). Al adicionar

a K el conjunto de cláusulas
⋃

(Fsi), se forma
una nueva KB K ′ tal que K ′ |= φ, puesto que
Fals(φ) ⊆ Fals(K ′), y por tanto, SAT (K ′) ⊆
SAT (φ).

Ejemplo 1. En todos los ejemplos a presentar, su-
pondremos un ordenamiento alfanumérico sobre
el conjunto de variables que se utilizan. Sea K =
(¬p∨q∨s)∧(¬q∨¬r∨s)∧(¬q∨r∨¬s)∧(¬p∨¬q∨r)
y φ = (¬p∨¬r)∧ (¬q ∨ r)∧ (p∨ q ∨¬r∨¬s)∧ (¬t).
Probar que K |= φ, es equivalente a revisar que:
Fals(φ) = {1*1**, *10**, 0011*, ****1} ⊆ Fals(K) =
{10*0*, *110*, *101*, 110**}. En cada celda de
las columnas 2 en adelante de la tabla 1, se va
mostrando el resultado de Ind(ϕi,Cj).

Dadas 2 cláusulas Ci, Cj que difieren en el
signo de sólo una variable, la reducción por literal
complementaria genera una sóla cláusula de Ci ∧
Cj , de hecho, la reducción se basa en la aplicación
de la ecuación (1).

Por ejemplo, sea Ci = (x ∨ q), y Cj = (¬x ∨
q), entonces Ci ∧ Cj = (q). En términos
de las cadenas falsificantes de las cláusulas,
denotaremos tal reducción como: V arcom(Ai,Aj).
En el caso de nuestro ejemplo, se tiene que:
V arcom(1111∗, 1011∗) = 1 ∗ 11∗.

Es relevante aplicar la operación de reducción
por literales complementarias sobre las cadenas
en S, para ası́ minimizar el número total de
cláusulas.

Aplicando la reducción V arcom y eliminando
cláusulas subsumidas al resultado del ejemplo 1,
se tiene que: S = {1*11*, 0100*, 0011*, 00**1,
*1111, 10*11}. Escribiendo S como una FC, Fs =
(¬p∨¬r∨¬s) ∧(p∨¬q∨ r∨ s)∧ (p∨ q∨¬r∨¬s)∧
(p∨ q∨¬t)∧ (¬q∨¬r∨¬s∨¬t)∧ (¬p∨ q∨¬s∨¬t).
Y ası́, la nueva KB K ′ = K ∧ Fs es una FC que
cumple: K ′ |= φ.

Tabla 1. Construyendo Ind(φ,K)

H
HHHHφ

K 10*0* *110* *101* 110** S

1*1** 111** 1111* 1111* 1111* 1111*
1011* 1011* 1011* 1011* 1011*

*10** *10** *10** *100* 0100* 0100*
0011* 0011* 0011* 0011* 0011* 0011*
****1 0***1 00**1 00**1 00**1 00**1

010*1 01001 01001 01001
01111 01111 01111 01111

11**1 110*1 11001 ∅ ∅
11111 11111 11111 11111

10*11 10*11 10*11 10*11 10*11
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4.1. Propiedades del método de Revisión de
Creencias

El conjunto de cláusulas construido mediante
Ind(ϕi,K) se agrega a la KB original K, y ası́,
cada ϕi ∈ φ se infiere de K ∧ Ind(ϕi,K). Esto
se demuestra en el siguiente teorema sobre la
corrección de nuestro método.

Teorema 1 Dadas dos cláusulas ϕi y Cj se
cumple que (Cj ∧ Ind(ϕi,Cj) ) |= ϕi.

Demostración.
Si ϕi y Cj son cláusulas independientes,

entonces ϕi = Ind(ϕi,Cj) y por tanto (Cj ∧
Ind(ϕi,Cj)) = (Cj ∧ ϕi). Ası́ (Cj ∧ ϕi) |= ϕi, por
la propiedad proposicional: (p ∧ q) ⊃ q y por la
reflexividad de la inferencia lógica: ϕi |= ϕi.
Si ϕi y Cj no son independientes, pero Ind(ϕi,Cj)
= ∅, esto implica que Fals(ϕi) ⊆ Fals(Cj) y por tal
Cj |= ϕi. Como Cj = (Cj ∧ Ind(ϕi,Cj)), entonces
(Cj ∧ Ind(ϕi,Cj)) |= ϕi.
Cuando ϕi y Cj no son independientes, e
Ind(ϕi,Cj) 6= ∅, se cumple que (Cj ∧ Ind(ϕi,Cj))
≡ (Cj ∧ ϕi) por (2), cumpliéndose que: (Cj ∧ ϕi)
|= ϕi, por la propiedad proposicional: (p∧ q) ⊃ q, y
por la reflexividad: ϕi |= ϕi.
Ası́, para cualquiera de los tres posibles resultados
de Ind(ϕi,Cj), se cumple: (Cj∧Ind(ϕi,Cj)) |= ϕi.
�

El conjunto de cláusulas construido mediante
Ind(ϕi,Cj) contiene exactamente las cláusulas
necesarias que permitirán inferir cada ϕi ∈ φ a
partir de Cj ∧ Ind(ϕi,Cj). Al iterar Ind(ϕi,Cj)
sobre todo Cj ∈ K, se obtiene un conjunto de
cláusulas con las que se asegura cumplir (K ∧
Ind(ϕi,K)) |= ϕi. El teorema anterior demuestra
ası́ la corrección de nuestro método.

Mostremos ahora que el conjunto de cláusulas
en Ind(ϕi,Cj) representa el conjunto mı́nimo
de cláusulas que permiten cubrir el espacio:
Fals(ϕi) − Fals(Cj), que es el espacio mı́nimo
necesario de asignaciones para que Fals(ϕi) ⊆
Fals(Cj)∪Fals(Ind(ϕi,Cj)), y por tanto, para que
se cumpla (Cj ∧ Ind(ϕi,Cj)) |= ϕi.

Teorema 2 Fals(Ind(ϕi,Cj)) = Fals(ϕi)− Fals(Cj).
Demostración.

Si Ind(ϕi,Cj) = ∅, se cumple que Ind(ϕi,Cj) es
el número mı́nimo de cláusulas que permiten inferir
(Cj ∧ Ind(ϕi,Cj)) |= ϕi, ya que de hecho, Cj |= ϕi.
Supongamos ahora que Ind(ϕi,Cj) 6= ∅. Veamos que
∀s ∈ Fals(Ind(ϕi,Cj)) se cumple que s ∈ Fals(ϕi), y
s 6∈ Fals(Cj). Sea s ∈ Fals(Ind(ϕi,Cj)), entonces s
falsifica a ϕi, ya que cada cláusula en Ind(ϕi,Cj) tiene
la forma (ϕi ∨ R), con R una disyunción de literales.
Si s falsifica a (ϕi ∨ R) entonces s falsifica tanto a
(ϕi) como a (R), por tanto s ∈ Fals(ϕi). Además,
s 6∈ Fals(Cj), ya que Cj es independiente con cada
una de las cláusulas de Ind(ϕi,Cj) (por construcción
del operador de independencia), y por tal, s 6∈ Fals(Cj).
�

El teorema anterior demuestra que el operador
de independencia Ind(ϕi,Cj) construye un con-
junto de cláusulas que cubren de forma exacta
el espacio de asignaciones que hacen falta para
que Fals(ϕi) ⊆ Fals(Cj) ∪ Fals(Ind(ϕi,Cj)).
Aún más, el conjunto Fals(Ind(ϕi,Cj)) es el
conjunto mı́nimo de asignaciones para cubrir el
espacio Fals(ϕi) − Fals(Cj), ya que Fals(Cj) y
Fals(Ind(ϕi,Cj)) son ajenos (por construcción del
operador de independencia), y por tanto Fals(Cj)
∩ Fals(Ind(ϕi,Cj)) = ∅.

Corolario 1 Fals(Ind(ϕi,K)) ⊆ Fals(ϕi).
Demostración.

Por el teorema (2), se tiene que
Fals(Ind(ϕi,Cj)) = Fals(ϕ) − Fals(Cj), al
iterar sobre cada Cj de K se cumple que
Fals(Ind(ϕi,K)) = Fals(ϕi) − Fals(K). Y por
propiedades entre conjuntos, se cumple que
Fals(Ind(ϕi,K)) ⊆ Fals(ϕ). �

Al iterar Ind(ϕi,Cj) sobre todo Cj ∈ K, se
obtiene un conjunto mı́nimo de cláusulas: Fsi que
asegura que: (K ∧ Fsi) |= ϕi.

Al extender K con las cláusulas obtenidas
en Ind(ϕi,K) se va formando K ′. Ası́ K ′

extiende al conjunto de cláusulas de K, y por
tanto, extiende también el espacio inicial de
falsificaciones de K, agregando las asignaciones
que falsifican a Ind(ϕi,K). De hecho, estos
dos conjuntos de falsificaciones son excluyentes
por construcción de Ind(ϕi,K), y por tanto,

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 435–448
ISSN 1405-5546

doi: 10.13053/CyS-21-3-2442

Algoritmo basado en modelos para la revisión de creencias entre formas normales conjuntivas 443



Fals(K)∩Fals(Ind(ϕi,K)) = ∅. En otras palabras,
el conjunto de modelos de K ′ es ahora un
subconjunto de los modelos de K, SAT (K ′) ⊆
SAT (K).

Sin embargo, al iterar el operador Ind(ϕi,K),
sobre cada ϕi ∈ φ, i = 1, . . . , k, se tiene que
los k conjuntos de cláusulas Fsi formados por
Ind(φ,K) podrı́an no tener un número mı́nimo de
cláusulas. La reducción V arcom permite reducir el
número de cláusulas en Ind(φ,K).

Ası́, después de obtener el conjunto de
cláusulas Ind(φ,K), se reduce su cardinalidad,
eliminando cláusulas subsumidas y aplicando
la reducción V arcom entre cláusulas de dos
diferentes conjuntos Ind(ϕi1 ,K) e Ind(ϕi2 ,K).

Este último proceso de reducción de cláusulas
a través de literales complementarias y de
eliminación de cláusulas subsumidas, se ejecuta
en tiempo polinomial (de hecho en tiempo
cuadrático) sobre la longitud inicial de |Ind(φ,K)|,
ya que consistirı́a en ir tomando una cláusula
C ∈ Ind(φ,K), y revisar si es subcláusula
(como subconjunto de literales) o si hay una
literal complementaria con alguna otra cláusula
en Ind(φ,K) − C. Además, el resultado de la
reducción mantiene la forma de una FC.

Un proceso similar a V arcom se aplicó en
el cálculo de los implicantes primos de una
fórmula, presentada por Quine y McCluskey
[24]. En esta propuesta, los autores buscan
los implicantes primos esenciales que sean
necesarios y suficientes para generar la función
Booleana de entrada.

Sin embargo, cuando la heurı́stica de éste
método recibe una fórmula con un gran número de
variables, conduce a resultados no mı́nimos, por lo
que se tiene que recurrir al método de Petrick con
el fı́n de poder caracterizar la expresión mı́nima
de la función Booleana [23].

Ejemplo 2.
Sea K = (¬p∨q∨r∨s) ∧ (¬p∨¬q) ∧ (¬p∨¬r) y φ =
(¬p∨¬s∨¬t) ∧ (q∨¬r∨¬s∨¬t) ∧ (¬p∨q∨r∨¬s∨t) ∧
(¬p), probar que K |= φ, es equivalente a revisar si
Fals(φ) = {1**11, *0111, 10010, 1****} ⊆ Fals(K)
= {1000*, 11***, 1*1**}. En cada celda de la tabla
2, se va calculando Ind(ϕi,Cj).

Tabla 2. Aplicación del operador Ind(φ,K)

HHH
HHφ
K 1000* 11*** 1*1** S

1**11 1**11 10*11 10011 10011
*0111 *0111 00111 00111 00111
10010 10010 10010 10010 10010
1**** 11*** ∅ ∅ ∅

101** 101** ∅ ∅
1001* 1001* 1001* 1001*

Tabla 3. Cálculo de Ind con las Ci ∈ K ordenadas

H
HHHHϕ1

K 1*1** 11*** 1000* S

1**11 1*011 10011 10011 10011
H
HHHHϕ2

K 1000* 11*** 1*1** S

*0111 00111 00111 00111 00111
HH

HHHϕ3

K 11*** 1*1** 1000* S

10010 10010 10010 10010 10010
H
HHHHϕ4

K 1*1** 11*** 1000* S

1**** 1*0** 100** 1001* 1001*

Como se puede observar en la tabla 2, al aplicar
el operador Ind(φ,K) se genera un número de
cadenas mayor a las que aparecen en la tabla
3, debido a que en la tabla 3, antes de aplicar
el operador de independencia, se ordenan las
cláusulas Ci ∈ K, de acuerdo al tamaño |lit(Cj)−
lit(ϕi)| de menor a mayor, dado que el número
de literales de Cj diferentes con ϕi determinará el
número de cláusulas independientes a generarse,
además de descartar con anticipación cadenas
que serán subsumidas.

Por tanto, antes de aplicar el operador
Ind(ϕi,K) es conveniente ordenar las cláusulas
en K de acuerdo al valor de cada ϕi que se esté
considerando, tal y como se muestra en la tabla 3.
Con lo que se obtiene una estrategia de reducción
sobre el número de cláusulas independientes
a generar. Al aplicar el proceso de reducción
de cláusulas vı́a literales complementarias,
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se tiene como resultado para el caso del
ejemplo 2, que S = {1001∗, 00111}, cuya FC
es Fs = (¬p ∨ q ∨ r ∨ ¬s) ∧ (p ∨ q ∨ ¬r ∨ ¬s ∨ ¬t).
Ası́, K ′ = K ∧ Fs = (¬p ∨ q ∨ r ∨ s) ∧ (¬p ∨ ¬q) ∧
(¬p∨¬r) ∧ (¬p∨q∨r∨¬s) ∧ (p∨q∨¬r∨¬s∨¬t).

5. Postulados KM

Katsuno y Mendelzon (KM) unificaron los
diferentes enfoques semánticos que un operador
de revisión de creencias deberı́a cumplir [16].
Presentamos aquı́ el análisis de estos postulados
sobre nuestra propuesta de operador de revisión
de creencias K ′ = K ◦ φ = K ∧ Ind(φ,K).
Consideremos ahora los postulados KM.

(R1) K ◦ φ |= φ.

(R2) SiK ∧ φ es satisfactible entoncesK◦φ ≡
K ∧ φ.

(R3) Si φ es satisfactible, entonces también lo
es K ◦ φ.

(R4) Si K1 ≡ K2 y φ1 ≡ φ2, entonces K1 ◦φ1
≡ K2 ◦ φ2.

(R5) (K ◦ φ) ∧ γ |= K ◦ (φ ∧ γ).

(R6) Si (K ◦ φ) ∧ γ es satisfactible entonces
también K ◦ (φ ∧ γ) |= (K ◦ φ) ∧ γ.

El teorema 1, muestra que nuestro operador de
revisión de creencias cumple el postulado R1. Si
K∧φ es satisfactible y K |= φ, entonces cada ϕi ∈
φ se infiere de K y por tanto, Ind(ϕi,K) = ϕi, i =
1, . . . , k. Ası́, K ◦ φ = K ∧ Ind(φ,K) = K ∧ φ,
cumpliéndose el postulado R2.

Analicemos el cumplimiento del postulado R3.
Este se cumple si K ◦ φ es satisfactible (por R2).
Pero si Fals(K)∪Fals(Ind(φ,K)) cubriera a todo
el espacio de asignaciones: 2n, entonces sólo en
este caso se redefine K ◦ φ. Por ejemplo, si K =
(p∨q)∧(p∨¬q) y φ = (¬p), como φ es independiente
con cada cláusula deK, se tendrı́a queK◦φ = (¬p)
∧ (p∨q) ∧ (p∨¬q), que claramente es una fórmula
insatisfactible.

Bajo estas circunstancias de comprobación de
que (K ∧ Ind(φ,K)) es insatisfactible, se redefine
K ◦ φ para que cumpla R3. Se redefine K ◦ φ =

((K ∧ Ind(φ,K))–Cj), seleccionando la cláusula
Cj ∈ K con la menor información (note que
|SAT (Cj)| es mı́nimo sobre la cardinalidad del
conjunto de modelos de cada Cj ∈ K, si |Cj | es
máximo en K), y de esta forma se mantendrı́a
la satisfactibilidad del resultado de la revisión de
creencias.

Los postulados R4 y R5 se cumplen debido
a que nuestro operador de revisión es cerrado
sobre las formas conjuntivas. Por ejemplo, si
consideramos dos diferentes KB; K1 ≡ K2,
y dos subfórmulas φ1 ≡ φ2, se cumple que
Fals(K1) = Fals(K2) y Fals(φ1) = Fals(φ2).
Al trabajar nuestro método sobre los conjuntos
Fals(Ind(φ,K)) y al ser tanto K, φ y Ind(φ,K)
FC’s, se cumple de forma directa el postulado R4.

Veamos que se cumple R5 (K ◦ φ) ∧ γ |= K ◦
(φ ∧ γ). Consideremos: K ◦ (φ ∧ γ) = K ∧ Ind(φ ∧
γ,K) por definición del operador (◦), K ◦ (φ ∧
γ) = K ∧ Ind(φ,K) ∧ Ind(γ,K) por definición del
operador Ind y puesto que tanto φ como γ son
FC’s. Entonces, K ◦ (φ ∧ γ) = K ∧ S ∧ Ind(γ,K)
con S = Ind(φ,K). Por otro lado, Fals(K ◦ (φ ∧
γ)) = Fals(K ∧ S ∧ Ind(γ,K)) = Fals(K ∧ S) ∪
Fals(Ind(γ,K)) = Fals(K◦φ)∪Fals(Ind(γ,K)) ⊆
Fals(K ◦ φ) ∪ Fals(γ), por el Corolario 1. Ası́,
Fals(K ◦ (φ ∧ γ)) ⊆ Fals(K ◦ φ) ∪ Fals(γ) =
Fals((K ◦ φ) ∧ γ) cumpliéndose R5.

(R6) Si (K ◦φ)∧ γ es satisfactible, entonces K ◦
(φ ∧ γ) |= (K ◦ φ) ∧ γ. Sea Fals((K ◦ φ) ∧ γ) =
Fals(K ∧ Ind(φ,K) ∧ γ), pero (γ) sólo serı́a igual
a Ind(γ,K) sı́ y solo si γ fuera independiente con
cada cláusula de K, y entonces sólo en ese caso
se tiene que Fals(K ∧ Ind(φ,K) ∧ γ) = Fals(K ∧
Ind(φ,K)∧ Ind(γ,K)) = Fals(K ◦ (φ∧ γ) y ası́ se
cumplirı́a el postulado R6.

6. Análisis de complejidad en tiempo

La función que mide el tiempo de nuestro
operador de revisión de creencias K ◦ φ, que
denotaremos como: T0(|φ|, |K|), depende princi-
palmente del tiempo de ejecución del operador de
independencia: Ind(φ,K). Y como Ind(φ,K) se
obtiene del cálculo iterativo de Ind(ϕi,K), ∀ϕi ∈ φ,
entonces el tiempo de construcción para Ind(φ,K)
depende del tiempo máximo que requiere algún
Ind(ϕi,K),ϕi ∈ φ.
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Como se presentó en la sección del diseño del
algoritmo 1, la complejidad en tiempo del proceso
Ind(ϕi,K) es de orden O(|K| · n · f(|ϕi|, |K|)),
donde f(|ϕi|, |K|) es una función entera, que dada
una cláusula ϕi y una FC K, determina el número
de cláusulas que regresará el proceso Ind(ϕi,K).
Analicemos ahora, el número máximo posible de
cláusulas que se pueden generar a través del
proceso Ind(ϕi,K).

En algunos casos, Ind(ϕi,K) puede generar
conjuntos nulos (cuando ∃ Cj ∈ K, tal que Cj |=
ϕi), pero en los peores casos, la complejidad en
tiempo del cálculo de Ind(ϕi,K), dependerá de la
longitud de los conjuntos: Sij = {x1,x2, . . . ,xp} =
lit(Cj) - lit(ϕi), j = 1, . . . ,m.

Como se hizo notar en el ejemplo 2, fija una
ϕi ∈ φ, es conveniente ordenar las cláusulas
Cj ∈ K de acuerdo a la cardinalidad de los Sij ,
j = 1, . . . ,m de menor a mayor, y eliminando
de este ordenamiento las cláusulas que sean
independientes con ϕi. Una vez ordenadas las
cláusulas en K en función a la longitud de Sij , se
va aplicando el operador Ind(ϕi,Cj), j = 1, . . . ,m,
determinándose ası́, la sucesión:

Si0 = v(ϕi)
Si1 = v(C1) - v(ϕi)
Si2 = v(C2) – (v(C1) ∪ v(ϕi))
. . .
Sim = v(Cm) – (v(Cm−1) ∪ . . . ∪ v(C1) ∪ v(ϕi)).

El número de cláusulas que se generan
por Ind(ϕi,C1) serı́a |Si1|, y para Ind(ϕi,C2)
se podrı́a tener en el peor caso, hasta |Si2|
nuevas cláusulas por cada una de las cláusulas
generadas en Ind(ϕi,C1), y ası́ sucesivamente.
Para Ind(ϕi,Cm), habrı́a a lo más |Sim| posibles
cláusulas que se pueden generar por cada una de
las anteriores cláusulas en Ind(ϕi,Cm−1).

Esto nos genera un proceso multiplicativo sobre
el número de cláusulas en Ind(ϕi,K), dado por:
|Ind(ϕi,K)| ≤

∏m
j=1|Sij | = |Si1| ∗ |Si2| ∗ . . . ∗ |Sim|

y bajo la restricción
∑m
j=1|Sij |≤n−|v(ϕi)|, ya

que cada conjunto Sik cubre el espacio de
asignaciones formado por las variables que no ha
sido cubierto por las variables de las Cj , j =
1,. . .,k−1 y las variables de ϕi, y en todo este

proceso no puede cubrirse más de n − v(ϕi)
variables.

De hecho, si algún Sij = ∅, entonces el
conjunto de cláusulas en Ind(ϕi,K) es también
vacı́o, indicando que el K actual no cambiará al
considerar tal ϕi y entonces

∏m
j=1 | Sij |= 0.

Cuando no hay cláusulas independientes con
ϕi, ni ningún Sij = ∅ para j = 1, . . . ,m, entonces
la complejidad en tiempo para calcular Ind(ϕi,K)
es acotado por su número de cláusulas, en otras
palabras, se tiene que |Ind(ϕi,K)| ≤ |Si1| ∗ |Si2|
∗ . . . ∗ |Sim| ∗ Poly(n). Donde Poly(n) resume
un tiempo polinomial sobre el número de variables
que se genera de aplicar el operador Ind(ϕi,Cj)
y por aplicar el ordenamiento inicial sobre las
cláusulas de K.

Es claro que el valor |Ind(ϕi,K)| no puede
ser mayor al número de asignaciones que están
en Fals(ϕi) − Fals(K), ya que de hecho, se
está cubriendo este espacio de asignaciones vı́a
cláusulas independientes. Esto significa que |Si1|
∗ |Si2| ∗ . . . ∗ |Sim| ≤ 2(n−|ϕi|).

Podemos inferir entonces que la complejidad
en tiempo T0(|φ|, |K|) para nuestro operador de
revisión de creencias, en el peor de los casos,
esta acotado superiormente por Max{|Si1| ∗ |Si2|
∗ . . . ∗ |Sim| : ∀ϕi ∈ φ}, suprimiendo factores
polinomiales sobre n (el número de variables) y
sobre el tamaño de la KB K. A su vez, este
valor máximo está acotado superiormente por
2(n−min{|ϕi|:ϕi∈φ}). Cumpliéndose entonces que:
T0(|φ|, |K|) ≤ Max{|Si1| ∗ |Si2| ∗ . . . ∗ |Sim| :
∀ϕi∈φ} ∈ O(2(n−min{|ϕi|:ϕi∈φ})). Y por tanto, la
complejidad en tiempo de nuestra prouesta es de
O(|K| · n · 2(n−min{|ϕi|:ϕi∈φ})).

7. Conclusiones

Un problema fundamental del razonamiento
automático en el cálculo proposicional y de los
sistemas inteligentes en general, es el problema
de revisión de creencias.

En este trabajo se presenta un método
novedoso para construir K ′ = K ◦ φ, a partir de
considerar que K y φ son FC’s. Como K y φ son
FC’s, el proceso de revisión entre K y φ se va
reduciendo a realizar la revisión entre cada ϕi de
φ y cada Cj de K, simplificando el problema total
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de revisión en resolver los |K| ∗ |φ| subproblemas
de revisión entre dos cláusulas.

Se construyó un operador lógico llamado
Ind(ϕi,Cj), que encuentra las cláusulas que
cubren el espacio de asignaciones faltantes para
que se cumpla que: Fals(ϕi) ⊆ Fals(Cj) ∪
Fals(Ind(ϕi,Cj)), al iterar este proceso sobre
todo ϕi ∈ φ, y cuidando reducir clásulas comple-
mentarias, encontramos un proceso efectivo para
la revisión de creencias entre formas conjuntivas.

Se demuestra la corrección de nuestra pro-
puesta de revisión de creencias, la verificación
de cumplimiento de los postulados KM, ası́ como
el análisis de la complejidad en tiempo de los
procesos involucrados en nuestro método.
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14. Fermé, E. (2007). Revisión de creencias. Revista
Iberoamericana de Inteligencia Artificial, Vol. 11,
pp. 17–39.

15. Hansson, S. (1994). Belief contraction. Journal of
Symbolic Logic, Vol. 59, pp. 845–859.

16. Katsuno, H. & Mendelzon, A. O. (1991). On the
difference between updating a knowledge base and
revising it. KR’91 Cambridge, MA, USA, Vol. 1,
pp. 387–394.

17. Khardon, R. & Roth, D. (1996). Reasoning with
models. Artificial Intelligence, Vol. 87, pp. 187–213.

18. Lehmann, D. (1995). Belief revision. Proc. IJCAI’95,
IJCAI, pp. 1534–1540.

19. Liberatore, P. & Schaerf, M. (2001). Belief revision
and update: Complexity of model checking. Journal
of Computer and System Sciences, Vol. 62, pp. 43–
72.

20. Liberatore, P. & Schaerf, M. (2001). The complexity
of model checking for belief revision and update.
Journal of Computer and Systems Sciences,
Vol. 62, pp. 43–72.

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 435–448
ISSN 1405-5546

doi: 10.13053/CyS-21-3-2442

Algoritmo basado en modelos para la revisión de creencias entre formas normales conjuntivas 447



21. Nebel, B. (1998). How hard is it to revise a
belief base? Handbook of Defeasible Reasoning
and Uncertainty Management Systems, Vol. 3,
pp. 77–145.

22. Papadimitriou, C. H. (1994). Computational Com-
plexity. Addison-Wesley Pub.

23. Petrick, S. (1956). A direct termination of the
irredundant forms of a boolean function from the set
of primer implicants. Technical report, Cambridge
Res Center.

24. Quine, W. (1952). The problem of simplifying truth
functions. JSTOR, Vol. 59, pp. 521–531.

25. Satoh, K. (1988). Nonmonotonic Reasoning by
Minimal Belief Revision. Vol. 358, Institute for New
Generation Computer Technology.
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