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Abstract. We propose methods of 3D visualization of
the main similarity measures for binary data and 2 x 2
tables. We present the shapes of Jaccard, Dice, Sokal &
Sneath, Roger & Tanimoto and other similarity
measures. Such visualization of the similarity measures
gives the direct, visual, method of comparison of these
measures and helps to understand the similarity and the
difference between them. Based on the visualization of
the two known parametric families of similarity measures
the paper proposes the new parametric family of
measures generalizing these two families and giving the
possibility to construct similarity measures occupying the
intermediate position between them.
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1 Introduction

Similarity measures have numerous applications in
computational linguistics, ecology, medicine,
biology, social sciences, etc. They play important
role in pattern recognition, machine learning,
classification and statistics [1, 5-7, 10, 12-14, 16,
18, 19]. Dozens of similarity (or dissimilarity)
measures for binary data have been proposed and
the problem of their comparison and selection for
specific application is studied in many works [2-10,
15, 17-20]. In different papers, such measures are
referred to as association coefficients, similarity
coefficients, resemblance measures etc. Different
approaches for comparing similarity measures are
based on: similarity of the properties of these
measures, similarity of formulas, possibility of

transformation of one measure into another one,
ordering of the measures, distance between them
etc. [2, 3, 6-12,18-20].

To the best of our knowledge, there are not
works on 3D visualization of the binary similarity
measures. Such visualization can be useful for
comparing the shapes of similarity measures and
selecting measure more suitable for specific
applications. The paper proposes the methods of
3D visualization of the most popular similarity
measures used for binary data and 2 x 2 tables.
Such visualization of similarity measures gives the
direct, visual, method of comparison of these
measures and can help to understand the similarity
and the difference between them.

Several authors have proposed different
parametric families of similarity and dissimilarity
measures [3, 9, 19, 20]. Based on the visualization
of the two known parametric families of similarity
measures the paper proposes the new parametric
family of the similarity measures generalizing these
two families and giving possibility to construct
similarity measures occupying intermediate
position between them.

The paper has the following structure. Section 2
considers some basic definition related with the
similarity measures for binary data and describes
the most popular similarity measures. Section 3
proposes the methods of 3D visualization of
similarity measures for binary data and visualize
the most popular measures. Section 4 proposes
the new parametric family of similarity measures.
The last section contains discussion and
conclusion.
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2 Basic Definitions

Consider objects described by n binary attributes,
descriptors or properties. The object x is coded by
the vector x = (x4, ..., x,,) of n attribute values such
that x;, = 1 if the object possesses the property k
and x;, = 0 otherwise. Such data are called also
presence/absence data [8, 11]. For any two objects
x = (%4, .., %) and y = (yq,...,y,) the following
four numbers are calculated:

— aisthe number of attributes such that x;, = 1,

Ve =1

—  bisthe number of attributes such that x;, = 1,
Ve = 0;

—  cis the number of attributes such that x;, = 0,
Ve =1

— d is the number of attributes such that x;, = 0,
Vi = 0.

The numbers a and d also referred to as the
numbers of positive and negative matches,
correspondingly [9, 17].

Note that the following is fulfilled for these four
number:

a+b+c+d=n, (1)

where n is the number of binary attributes. These
four numbers are represented in Table 1 also
known as 2x2 contingency table [1].

Below there are presented some popular
similarity measures defined for such tables [4, 5,
10].

Jaccard (1908):

a

S](x' )= a+b+c’ (2)

Dice (1945), Czekanowski (1913), Sorensen
(1948):

2a

Seps(x,y) = 2athic’ )
Sokal & Sneath (1963):
Sss-100,y) = a+2(l1)+2c' (4)

Sokal & Michener (1958) or “simple matching”:
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Table 1. 2 x 2 contingency table

y
1 0
1 a b
X
0 c d
a+d
Ssu(x,y) = a+b+c+d )
Rogers & Tanimoto (1960):
a
Ser(x,y) = ﬁ (6)
Sokal & Sneath (1963):
2a+2d
Sss-n(x,y) = ﬁ (7)
Rassel & Rao (1940):
a
Srr(x,y) = a+b+c+d (8)
Faith (1983):
0.5d
Sp(x,y) = = ©)

3 Visualization of Similarity Measures

Let us consider parametric families of similarity
measures that include the known similarity
measures as particular cases [9, 20]. The similarity
measures (2)-(4) can be generalized as follows:

a

Ty = (10)

a+6(b+c)’

where 6 is some positive real number. The
similarity measures (5)-(7) can be considered as
the particular cases of the following parametric
family of functions:

Sp=—22__ (11)

a+d+6(b+c)’



ISSN 2007-9737

Visualization of Similarity Measures for Binary Data and 2 x 2 Tables 347

Jaccard, S= a/(a+h+c)

Fig. 1(a). Jaccard similarity measure (view 1)

Rogers & Tanimoto, S= (a+d)/{a+2(b+c)+d)

Fig. 2(a). Rogers & Tanimoto similarity measure
(view 1)

For us it will be more convenient to use the
following notation of these parametric families of
similarity measures:

a
a+t(b+c)’

S y) = (12)

Jaccard, S= a/(a+h+c)

Fig. 1(b). Jaccard similarity measure (view 2)

Rogers & Tanimoto, S= (a+d)/(a+2(b+c)+d)
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Fig. 2(b). Rogers & Tanimoto similarity measure
(view 2)

a+d
a+d+t(b+c)’

5(a+d) (x,y) = (13)

where t is some positive real number. The similarity
measures (2)-(4) are obtained from (12) for the
parameter values t=1, 0.5, 2, correspondingly. The
similarity measures (5)-(7) are obtained from (13)
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for the parameter values t= 1, 2, 0.5,
correspondingly. Taking into account that from (1)
it follows

b+c=n-(a+d), (14)

the formulas (12) and (13) can be given in such
form:

a
a+t(n-a-d)’

S, y) = (15)
a+d
at+d+t(n-a-d)’

S(a+a) (xy) = (16)

The parametric families of the similarity
measures (15) and (16) have been considered in
[20] in the following forms:

A

Sy (0 Y) = pi Ty (17)

A+D
A+D+6(1-A-D)’

Sca+p) (x,y) = (18)

where A=%, D=2 Further we will use the

formulas (15) and (16) for the considered
parametric families of similarity measures that will
be referred to as (a)-family and (a+d)-family of
similarity measures, correspondingly.

We propose to use the relationship (14) for
representation of other similarity measures. The
similarity measures (8) and (9) do not belong to the
considered families of measures, but, using the
relation (1), they also can be written as the
functions of a and d:

Srr(x,y) = %, (19)

a+0.5d

Se(x,y) = : (20)

n

As it is clear from the formulas (15), (16), (19),
(20) for fixed numbers n and t one can build all of
these formulas in 3D space as the functions of 2
variables a and d. (The formula (19) will depend
really only from a). From (1) and (14) we obtain:

0<a+d<n (22)
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This condition defines restrictions on the domain of
the considered functions. In all figures below we
use the value n = 100 and build the graphics of all
functions for values a and d changing from 0 to 100
with the step 1, with the domain restriction (21).

Figures 1(a) and 1(b) show in two different
projections Jaccard similarity measure obtained
from the parametric formulas (12) and (15) for
parameter value t=1 as follows:

a

S](x: 3’) = ﬁ (22)

The domain (21) is presented on the plane S=0 by
triangle with bold sides. Two black lines show the
profiles of the surface of the similarity measure: 1)
for value a=50 and all values of d; 2) for value d=50
and all values of a. The value S = 0.5 depicts the
value of the measure S for a = 50 and d= 0. When
d = 0 we obtain in (22) S=a/n that corresponds on
Figure 1(a) to the line increasing from 0 to 1 when
d=0 and a is increasing from 0 to 100. Figure 1(b)
is obtained from Figure 1(a) by rotation of the axis
to show the profile of the surface for small values
of a and large values of d. This situation
corresponds to large number of negative matches
d and hence to small values of nominator and
denominator in (2). The similar comments can be
done for the figures of other similarity measures
shown later.

Figures 2(a) and 2(b) show two projections of
Rogers & Tanimoto similarity measure. From (6),
(13) and (16) we obtain for t=2:

a+d

Spr(x,y) = n—a—d’ (23)

Figure 3 shows the surfaces of the following
similarity measures belonging to the parametric
(a)-family of measures (from the left to the right): 1)
Dice-Czekanowski-Sorensen, 2) Jaccard, 3)
Sokal-Sneath-I.

Figure 4 shows the surfaces of the following
similarity measures belonging to the parametric
(a+d)-family of measures (from the left to the right):
1) Sokal-Sneath-I11, 2) Sokal & Michener, 3) Rogers
and Tanimoto.

For all of these similarity measures the formulas
like (22) and (23) can be easily obtained from their
original definitions by replacement b+c by n-a-d,
see (1) and (14).
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() family, Dice & Czekanowski & Sorensen, S= a/(a+t(b+c)), t=0.5

(a) family, Jaccard, S= a/(astfb+c)), t=1

(a) family, Sokal & Sneath.l, S= a/(a+tib+c)), t=2

(a)family, Jaccard, $= a/{astfbec)), =1

V

(a)family, Sokal & Sneaf

., S= af(astibec)), t= 2

Fig. 3. (a)-family of similarity measures in 2 views

{a+d)-family: Sokal & Sneathl, S= (a+d)/{a+tlb+c)+d), t= 0.5 {a+d)-family: Sokal & Michener, S~ (a+d)f(astibrcj+d), t= 1 {a+d)-family: Rogers & Tanimoto, S= (a+dj/fastibeci+d), t=2

Fig. 4. (a+d)-family of similarity measures in 2 views

Figure 5 depicts the surfaces of Rassel & Rao
and Faith measures in the same projection as the
similarity measures shown on Figures 1(a) and

2(a). Rassel & Rao and Faith measures do not
belong nor to (a)-family nor to (a+d)-family of
similarity measures and one can see that they
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Russel & Rao, S~ a/(asheerd)

Faith, S~ (a+0.5d)/(ashrcrd)

) i
L

d a

Fig. 5. Russel & Rao (on the left side) and Faith (on the right side) similarity measures

Jaccard,S=(a+pd)/(a+tib+c)+pd), t=1, p=0 S=(a+pd)/(astibec)+pd), t=1, p=0.02

08
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04

024

0
100

S=(a+pd/{astib+cj+pd), t=1, p=0.1

Sokal & Michener, S=(a+pd)/(a+t(b+c)+pd), t=1, p=1

Fig. 6. (a+pd)-family of similarity measures: Jaccard (on the left side) and Sokal & Michener (on the right side)

Dice & Sorensen,S=(a+pd)/(a+t(b+c)+pd), t=0.5, p=0 S=(a+pd)/(a+t(b+c)+pd), t=0.5, p=0.02

S=(a+pd)/(a+tb+c)+pd), =0.5, p=0.1 Sokal & Sneath-2, S=(a+pd)/(a+t(b+c)+pd), t=0.5, p=1

Fig. 7. (a+pd)-family of similarity measures: Dice & Czekanowski & Sorensen (on the left side) and Sokal & Sneath
— Il (on the right side)

have the shapes quite different from the shapes of
similarity measures from these families shown on
Figure 3 and 4.

The main problem with these two measures that
they do not satisfy the reflexivity property S(x,x)=1
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that requires that reflexive similarity measure
should have the value 1 on the border of the
domain where a+d= n and b= c= 0. One can see
that the similarity measures both from (a)-family
and from (a+d)-family are reflexive.
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Sokal & Sneath-1,S=(a+pd)/{a+t(b+c)+pd), =2, p=0 S=(a+pd)/(a+t{b+c)+pd), t=2, p=0.02
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S=(a+pd)/(a+t(h+c)+pd), t=2, p=0.1 Rogers & Tanimoto, S=(a+pd)/(a+t(b+c)+pd), t=2, p=1
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Fig. 8. (a+pd)-family of similarity measures: Sokal & Sneath — | (on the left side) and Rogers & Tanimoto (on the
right side)

4 New Parametric Family of Similarity
Measures

As one can see from Figures 3 and 4 the shapes
of the similarity measures from (a)-family and
(a+d)-family are sufficiently different. The similarity
measures S(x,y) from (a)-family are based on the
positive matches of binary attributes in x and y. The
similarity measures from (a+d)-family are based
both on positive and on negative matches.
Discussions pro and contra of these two types of
similarities measures can be found for example in
[5, 10, 17, 19]. We propose the new parametric
family of binary similarity measures formally
generalizing both these families and giving the
possibility to build the similarity measures
intermediate between these two families. Below
are the two equivalent forms of the new parametric
family of measures called (a+pd)-family:

_ a+pd

S(a"'pd)(x' y) = a+pd+t(b+c)’ (24)
_ a+pd

S(a+pd) () = a+pd+t(n—-a-d)’ (29)

where t is the positive real number and p is the
number from the interval [0,1]. When p = 0 we
obtain the (a)-family of similarity measures and
when p = 1 we obtain the (a+d) family of similarity

measures. Changing parameter p between 0 and
1 one can move similarity measure from (a)-family
to (a+d) family. Generally, the parameters p and t
can be tuned in some procedure of selection of
suitable similarity measure for specific application.
The selected value of the parameter p can reflect
the trade-off or relative importance of positive and
negative matches in the constructed similarity
measure.

Figures 6, 7, 8 show the shapes of binary
similarity measures from (a+pd)-family when
parameter p is changed from 0 (on the left sides)
to 1 (on the right sides) such that on the left sides
we have similarity measures from (a)-family and on
the right sides the measures from (a+d)-family. The
parameter t has the values 1, 0.5 and 2 on Figures
6, 7 and 8, respectively. On Figure 6. the similaty
measures are changed from Jaccard (on the left
side) to Sokal & Michener (on the right side). On
Figure 7. the similaty measures are changed from
Dice & Czekanowski & Sorensen (on the left side)
and Sokal & Sneath — Il (on the right side). On
Figure 8. the similaty measures are changed from
Sokal & Sneath — | (on the left side) and Rogers &
Tanimoto (on the right side).

5 Discussion and Conclusion

The paper proposes the methods of visualization
of the popular similarity measures for binary data
and contingency 2 x 2 tables. Such visualization
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helps to understand the relationships between
these measures and can explain why these
similarity measures joined in clusters of similar
measures obtained in different works where the
clustering of these measures is applied [6,12]. The
new parametric family of the similarity measures is
proposed. This family generalizes the two known
parametric families of similarity measures and
gives the possibility to construct similarity
measures intermediate between these two
families. Such intermediate position can reflect the
trade-off or relative importance of positive and
negative matches in the construction of similarity
measures from the new parametric class of
similarity measures. The proposed methodology of
visualization of binary similarity measures can be
extended on other binary similarity and association
measures considered in literature.
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