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Abstract. This paper presents a detailed survey of word
co-occurrence measures used in natural language
processing. Word co-occurrence information is vital for
accurate computational text treatment, it is important to
distinguish words which can combine freely with other
words from other words whose preferences to generate
phrases are restricted. The latter words together with
their typical co-occurring companions are called
collocations. To detect collocations, many word co-
occurrence measures, also called association
measures, are used to determine a high degree of
cohesion between words in collocations as opposed to a
low degree of cohesion in free word combinations. We
describe such association measures grouping them in
classes depending on approaches and mathematical
models used to formalize word co-occurrence.

Keywords. Word co-occurrence measure, association
measure, collocation, statistical language model, rule-
based language model, hybrid approach to model word
co-occurrence.

1 Introduction

Knowledge of lexical co-occurrence and of lexical
relation accounts for the extent to which the choice
of a word in a text is stipulated by its surrounding
words without taking into account syntactic and/or
semantic reasons [39]. Such knowledge is very
important in many tasks of natural language
processing: text analysis and generation,
knowledge extraction, opinion mining, text
summarization, question answering, machine
translation, polarity identification, information
retrieval, among others.

For instance, in the text generation task, one is
interested in construction of not only grammatically
correct utterances but also of those that sound
natural. In order to achieve this, the system must
know restrictions on usage of a particular word,

that is, its combinability with other words in an
utterance, or its collocational preferences.

Basically, word combinations can be divided into
two big classes depending on word collocational
choices. These two classes are free word
combinations and restricted word combinations,
also termed collocations.

Usually, collocations are defined as
characteristic and frequently recurrent
combinations [10, 11] of (commonly) two linguistic
elements which have a direct syntactic relationship
[40] but whose co-occurrence in texts cannot be
explained only by grammatical rules [7].

One of the elements of a collocation is called a
base or node and is autosemantic, that is, it can be
interpreted even if it is not in the context of the
collocation [13, 14]. The other element called
collocator or collocate is semantically dependent
on the base, has a more opaque meaning, and can
only be interpreted with reference to the
collocation, that is, it is synsemantic [14].

2 Strategies of Measuring Word Co-
occurrence for Collocation
Detection

In natural language processing research, there
have been developed basically three strategies for
automatic learning restrictions on word usage:
statistical, rule-based, and hybrid strategies.
Generally speaking, a computer system is
expected to analyze a machine-readable text or a
corpus defined as a collection of machine readable
texts. The system must be able to extract
combinations in which words are syntactically
related and determine to what extent the
appearance of one word in a phrase depends on
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the occurrence of another word or words. Such
feature is called cohesion or association.

Within the statistical strategy, which is most
common in language processing and lexical co-
occurrence research, in order to calculate a
measure of word association within collocations, a
formal model of word co-occurrence should be
designed or selected from the existing
statistical models.

An important advantage of statistical models is
that they use raw corpora where a selected
language unit (word, type or lemma, phrase,
sentence, document) is viewed as a data item.
Statistical modeling is attractive since conclusions
are derived out of data in a way that seems much
more objective in comparison with linguistic
interpretations and theories based on introspection
and intuition of experts in linguistics. Moreover,
statistical analysis in general is
language- independent.

However, statistical methods work under certain
assumptions, for instance, that data items “obey”
certain well-studied distributions: normal, binomial,
X2, or other distributions. We do not know actually
how real life linguistic data is distributed, but in any
case, our mathematical constructs can be justified
by the golden principle of pragmatics: it works
therefore it is true. Another problem of statistical
methods is that they require large corpora,
otherwise estimations of frequencies and
probabilities of word co-occurrences become
imprecise and untrustworthy. Besides, if a
collocation has a very low frequency of occurrence,
it can hardly be detected.

In order to combat the above mentioned
problems associated with the statistical methods,
the rule-based strategy was put forward. Methods
developed within this trend allow detecting low
frequency phrases and do not rely on a very large
collection of data.

On the other hand, rule-based techniques
usually depend on language and lack flexibility.
The latter characteristic harms the detection of
those collocations which permit syntactic variation.
Also, making hand-crafted rules is time consuming.
Moreover, such rules have limited coverage and
will hardly discover new collocations appearing
in language.

In an effort to overcome the disadvantages of
both strategies mentioned above and to take
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advantage of positive aspects of the same
strategies, the hybrid methods have been
proposed. Such methods use rules to extract
candidate phrases and then apply statistical
methods to improve the obtained results.

In this paper, we consider in detail the three
strategies—statistical, rule-based, hybrid—on the
task of detection of collocations. Reviewing each
strategy, we describe various methods developed
in state of the art works within the strategy, discuss
their degree of effectiveness, and give examples.

3 Statistical Strategy to Measure Word
Co-occurrence

Within the statistical methodology, candidate word
combinations are identified based on calculation of
a predetermined association measure in n-grams
extracted from a corpus. Usually, n-grams are
word combinations of a chosen syntactic pattern,
e.g., adjective+tnoun or  verb+preposition
depending on the preferred structural type. In order
to do this, the chosen corpus is lemmatized; words
are tagged with their respective parts of speech
(POS-tagged). Also, the corpus can be parsed.
Evidently, this preprocessing is language-
dependent. Another feature used for n-grams
extraction is window size, typically from 1 to
5 words.

After n-grams are extracted, the association
strength between their constituents is computed
according to some statistical metric. As we have
mentioned previously, such metrics used in the
process of extracting word combinations are
termed word co-occurrence measures or
association measures because they compute the
degree of association between the components in
a phrase.

In this section we consider the association
measures used to detect two-word collocations,
i.e., bigrams, which is a very common case.
Besides, the association measures for bigrams can
be extended to combinations of three or
more words.

Pecina [25] gives a comprehensive list of 82
association measures used to detect two-word
collocations. To calculate the association
measures, it is common to take into account
frequencies of occurrence of each word in a bigram
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.. soucdsti trhu, vznikl obratem ¢erny trh s plySovymi medvidky a ...
zabrénit pfisunu drog na domaci cerny trh v hodnoté 32 milionu .....
stejnymi jednotlivci i kompletni ¢erny trh . Jinymi slovy, bylaby .. ..
...pomahali paSovani cigaret na cerny trh do vychodniho Némecka ...
....ndjemnich priv nezaruceny cerny trh . Libor Dellin, ¢len ........

...milidnu dolaru. Ovliviiuje nejak negativne tento cerny trh nase hospodarstvi? Je to pouze zirita na danich

.. Maltské liry lze nakoupit pouze ve sméndrndch, cerny trh s valutami neexistuje. Na Maltg je v porovndni s
operoval i Zenu. A piece mi, jak se fikd na Arbatu, ¢erny trh néco do sebe. Je - li hlad nejlepsi kuchaf, je .. ...
.. piestal. V patich za krizi vstoupil do Bélehradu ¢erny trh , paSovani a zvySena kriminalita. Pfekupnici .. .

.....

Fig. 1. Example of a left inmediate context (top) and empirical context (bottom) of the collocation ¢erny trh (black
market)

xy (a sequence of two words, the word x and the
word ), the frequency of the bigram, its immediate
context, and its empirical context.

The words x and y are viewed as types or
lexical items, i.e., words as they are encountered
in a lexicon. Their realizations are various
grammatical forms found in a text. Commonly,
frequencies are estimated for types, and we view
frequencies here in this manner. However, the
theory termed lexical priming states that word
associations are characteristic of different forms of
lexical items, so a particular wordform may have its
own collocations typical for it and not typical for
another form of the same lexical item [16].
Therefore, lexical priming aims at a more fine-
grained classification of word associations which is
its strong side. On the other hand, such approach
increases the complexity of analysis, since lexical
items may have a very big number of grammatical
forms. Also, frequencies of each wordform may be
not high enough and thus not sufficient for
statistical tests to work accurately, as the total
frequency of a type is distributed through the whole
range of its numerous forms thus obtaining low
frequencies for each form of the type.

Speaking about the context of a bigram xy, we
mentioned above that in calculating association
measures the immediate and empirical contexts
are used [26]. The immediate context of a bigram
is word(s) immediately preceding or following the
bigram. The empirical context of a word sequence
is open class words occurring within a specified
context window. Open class words include nouns,
verbs, adjective, and adverbs.

Figure 1 gives an example of the immediate and
empirical contexts of the Czech bigram cerny trh
(black market) from [25]. In this example, the left
immediate context includes one word, and the
empirical context contains all words of the
utterance where the given bigram is used taken
without this bigram.

In the formulas of association measures which
we discuss in detail in what follows, the notation
from the contingency table is used. The term
contingency table was first used by Karl Pearson
in 1904, and such table is a certain manner of
considering the occurrence of two words
symbolized as x and y.

The contingency table presented in Table 1
contains observed frequencies for a bigram xy. In
this table, the following notation is used: f(xy) is
the frequency or the number of occurrences of the
bigram xy in a corpus; x stands for any word
except x, y stands for any word except y, * stands
for any word; N is a total number of bigrams in a
corpus.

In fact, N can be interpreted differently
depending on the task of the application being
developed or on the objective of research, so

Table 1. Contingency table of co-occurrence
frequencies of a bigram xy and its constituent words x
and y

a=f(xy) b= f(xy) f(xx)
c=f(xy) d = f(xy) Q=)
fCy) f(=y) N
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generally speaking, N is the number of language
units in the corpus chosen for consideration. Such
language units can be tokens, types, n-grams of
tokens or types, sentences, documents, etc. The
choice of a language unit depends on the
granularity of semantic analysis. In this article, we
interpret N as the total number of bigrams in
a corpus.

The bigrams are obtained following the paths in
trees of syntactic dependencies or constituents
resulting from parsing, so the words in a bigram are
syntactically related. This procedure filters out
irrelevant combinations of words which do not
comprise a phrase with meaningful sematic
interpretation.

Frequencies f(x*), f(x*), f(*y), f(*y) in the
contingency table are called marginal totals or
simply marginal frequencies, and f(xy), f(x¥),
f(xy), f(xy) are called joint frequencies.

In formulas, the contingency table cells are
sometimes referred to as f;;. Statistical tests of
independence also work with contingency tables of
expected frequencies f (xy) defined as

) = LD

In the contingency table, the following holds:

flxx) = flxy) + f(xy),
&) = f(xy) + f (&),
fCy) = f(xy) + f(xy),
fCe9) = f&y) + F(&XP),
N = f(N) = f(x*) + f(x*)
= fCy) + fC).

In some formulas of association measures, the
concept of probability is used. The probability of
finding a word x in a corpus P(x*) is calculated
according to the formula

f(xx)
N

where f(x*) is the frequency of x in a corpus and
N is the corpus size.

Also, in the formulas of some association
measures, the context is represented by the
following notation:
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C, Is the empirical context of w (w stands for
any word),

Cyy isthe empirical context of xy,

C,ﬁy is the left immediate context of xy,

Cyy s the rightimmediate context of xy.

We remind the reader that some examples of
the immediate and empirical context are given in
Figure 1.

4 Typology of Statistical Association
Measures

Evert [8] proposes a comprehensive classification
of statistical association measures. They can be
calculated using the UCS toolkit, software written
in Perl of the same author (available at
http://www.stefan-evert.de/Software.html).  Evert
defined the four approaches within the statistical
strategy, and within each approach, a number of
types of association measures. The classification
is as follows:

Approach 1. The methods within the first
approach measure the significance of association
between the words x and y in a bigram xy. They
guantify the amount of evidence that the observed
bigram xy provides against a null hypotheses of
independence of the words x and y in this bigram,
i.e., P(xy)=P(x*)P(*y), or against the null
hypothesis of homogeneity of the columns in the
contingency table for this bigram (for details on the
null hypothesis of homogeneity see section 2.2.4
in Evert 2005). The methods in this approach are
the following:

— Likelihood measures which compute the
probability of the observed contingency table
(multinomial-likelihood, binomial-likelihood,
Poisson-likelihood, the Poisson-Stirling
approximation, and hypergeometric-likelihood);

— Exact statistical hypothesis tests which
compute the significance of the observed data
(binomial test, Poisson test, Fisher’s exact test);

— Asymptotic statistical hypothesis tests used to
compute a test statistic (z-score, Yates’
continuity correction, t-score which compares
the observed co-occurrence frequency f(xy)
and the expected co-occurrence frequency
f(xy) as random variates, Pearson’s chi-
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squared test, Dunning’s log-likelihood which is
a likelihood ratio test).

Approach 2. The methods within the second
approach measure the degree of association of the
words x and y in a bigram xy by estimating one of
the coefficients of association strength from the
observed data. This class includes measures of
two types:

— Point estimates, usually, maximum-likelihood
estimates (mutual information, odds ratio,
relative  risk, Liddell's difference of
proportions, minimum sensitivity, geometric
mean coefficient, Dice coefficient or mutual
expectation, Jaccard coefficient);

—  Conservative estimates based on confidence
intervals obtained from a hypothesis test (a
confidence-interval estimate for mutual
information).

Approach 3. The techniques within the third
approach measure the association strength of the
words x and y in a bigram xy or, in other words,
the non-homogeneity of the observed contingency
table compared to the contingency table of
expected frequencies. These methods take
advantage of the concepts of entropy, cross-
entropy, and mutual information borrowed from the
information theory (pointwise mutual information,
local mutual information, average mutual
information).

Approach 4. The methods in the fourth approach
use various heuristics to evaluate the degree of
association between the components of a bigram
xy. Usually, such methods apply modified versions
of measures from the other three approaches or
combine  such measures (co-occurrence
frequency, variants of mutual information, random
selection).

Now using the notation given previously, in the
following sections we consider various association
measures used for automatic detection of
collocations in natural language texts. In each
section we indicate the approach to which the
considered association measures belong, so we
grouped these measures by their types following
the typology presented above.

We did not put the methods in the numeric order
of the approaches, rather we ordered them using

the criterion of complexity. First we describe some
simple methods to estimate the association of
words in a bigram xy, then we proceed to more
complex formulas and techniques.

5 Simple Frequency-based
Association Measures

In this section we discuss some simple measures,
belonging to Approach 4, based on word frequency
and probability used to detect collocations in a
corpus.

In the simplest case, taking advantage of such
property of collocations as recurrency (i.e.,
frequent usage in texts), we can count the number
of occurrences of a bigram xy and estimate their
joint probability P(xy):

f&xy)
P(Xy) = T

If the bigram is used frequently, than it is
probable that the two words are used together not
by chance but comprise a collocation.

Also, to detect collocations, raw frequency of a
bigram can be used instead of its probability. An
example of this approach is the work of Shin and
Nation [38] which presents most frequent
collocations found by the authors in the spoken
section of the British National Corpus (BNC). The
article includes a list of 100 collocations ranked by
their frequency in the BNC and in Table 2 we
reproduce the upper part of this list which includes
the most frequent word combinations.

The number of the bigram occurrences
represented as the joint probability of two words
occurring together P(xy) can be compared with
probabilities of individual words P(xy) and P(xy)
in combinations with the words other than the one
in the bigram xy.

A drawback of using the joint probability P(xy)
is that this measure does not capture the direction
of the relation between the word x and the word y.
It means that the joint probability does not
distinguish if x is more predictive of y or the other
way round. That is, this measure (and the majority
of other association measures) is bidirectional or
symmetric [12]. In other words, the joint probability
mixes two different probabilities: the conditional
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Table 2. Most frequent collocations in the spoken section of the British National Corpus

Rank Collocation ?:?ggsg:]ig;
1 you know 27348
2 I think (that) 25862
3 a bit 7766
4 (always [155], never [87] used to {INF}) 7663
5 as well 5754
6 a lot of {N} 5750
7 {No.} pounds 5598
8 thank you 4789
9 {No.} years 4237
10 in fact 3009
11 very much 2818
12 {No.} pounds 2719
13 talking about {sth} 2489
14 (about [91] {No.} percent (of sth [580], in sth [54], on sth [44], for sth [38])) 2312
15 | suppose (that) 2281
16 at the moment 2176
17 a little bit 1935
18 looking at {sth} 1849
19 this morning 1846
20 (not) any more 1793

probability P(y|x) and the reverse conditional
probability P(x|y) defined by the following

equations:
_ f(xy)
PO = o+ Gy
_ f&xy)
PO = Feoy + 7wy

An example of the conditional probabilities
approach is the works of Michelbacher, Evert, and
Schiitze [20, 21] where P(y|x) and P(x|y) are used
for exploring adjective and/or noun collocates in a
window of 10 words around node words in the
British National Corpus.

The value of the conditional probability P(y|x) or
the reverse conditional probability P(x|y) can also
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be compared with the product of individual
probabilities P(x*) and P(xy). As a result of such
comparison, it can be determined if the word y
occurs independently of the word x, and in such
case we get P(y|x) = P(x*)P(*y), or the
occurrence of y depends on the occurrence of x,
that is, P(y|x) # P(x*)P(*y). If we work with the
reverse conditional probability, we can verify
whether P(x|y) # P(x*)P(*y). If the two words
under consideration occur independently, then we
deal with a free word combination, and a
collocation otherwise.

6. Information-Theoretic Measures

The association measures in this section belong to
Approach 3 and are based on such concepts as
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mutual information and entropy. These metrics
measure the mutual dependency between two
words x and y which are constituents of a
bigram xy.

6.1 Mutual Information (MI)

MI is a well-known information-theoretic notion
used to judge about dependence of two random
variables. Its application as an association
measure for collocation extraction was suggested
by Church and Hanks [6]. MI is an estimation of
how much one word x tells about the other word y
and it is computed according to the formula

_ P(xy)
MI = logm;
where the probabilities are calculated using data
from the contingency table (see Table 1). We
remind the reader that P(xy) is the joint probability
of x and y co-occurrence:

f(xy)
N )

P(xy) =

and P(x) and P(y) are individual, or marginal,
probabilities of x and y, respectively:

As it is seen from the formula for MI, the
collocation hypothesis is expressed as the
probability P(xy) actually observed in a corpus,
and the null hypothesis suggests that x and y are
independent, i.e. constitute a free word
combination, therefore, the probability of co-
occurrence P(xy) has the property

P(xy) = P(x*)P(*y).

If MI = 0, the null hypothesis is proved, if MI >
8, where @ is a threshold estimated experimentally,
then x and y are associated with the constituents
of a collocation.

Strictly speaking, the metric we have just
considered is pointwise mutual information. But in
the NLP literature it is referred to as simply mutual
information according to the tradition started in [6],
since we are interested not in mutual information of

two random variables over their distribution, but
rather in mutual information between two particular
points.

Pecina and Schlesinger compared the
effectiveness of 82 association measures given in
their article [26] and demonstrated experimentally
that pointwise mutual information works as the best
association measure to identify collocations.
However, this metric becomes problematic when
data is sparse; it is also not accurate for low-
frequency word combinations.

Two versions of mutual information are also
applied to estimate the association strength of the
words x and y in a bigram xy, these are average
mutual information calculated according to the
formula

average-MI = Z fij- log&
5j fij

and local mutual information for a given bigram xy
which is estimated as follows:

local-MI = f(xy) - log]i(xy)

flxy)

In these formulas f;; is frequency in a cell of i x
Jj contingency table, in our example of 2 x 2 table
(see Table 1), the cells are fi1, fi2, fo1, f22-

6.2 Evaluation

Upon obtaining a list of collocation candidates,
evaluation of the list must be done to check what
candidate phrases are true collocations.

Evaluation can be manual or automatic. Results
are presented in terms of conventional precision
and recall. Given a finite set of word combinations,
precision P is the number of word combinations
correctly identified as collocations by the method
under evaluation compared to all word
combinations identified as collocations by the
method; recall R is the same number of correctly
identified collocations compared to all collocations
in the dataset:

#correctly identified as collocations

#identified as collocations
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#correctly identified as collocations

#collocations

Manual evaluation is fulfilled using three
methods. The retrieved list of candidates is
ordered and the first n-best candidates (with
highest values of association measure applied in
the extraction process) can be

— checked by a native speaker who has
sufficient training in linguistics or by a
professional lexicographer;

— compared against a dictionary, however, the
evaluation results will depend on quality and
coverage of the dictionary;

—  evaluated using a hand-made gold standard
(a list of collocations manually identified in a
Corpus).

Although manual evaluation is very accurate, it
suffers certain limitations. If collocation candidates
are evaluated by human experts, they may have
disagreements on the status of some expressions.
This is due to a lack of formality in the definitions
of collocations as well as to the nature of this
linguistic phenomenon since there are no clear-cut
boundaries among various types of collocations
and between collocations and free word
combinations.

On the other hand, when evaluation is
performed against a dictionary, the scope of work
is restricted by the inventory of phrases in the
selected dictionary. However, when collocations
are extracted from very large corpora, the list of
candidates is much bigger than the expressions
found in the dictionary, therefore, a good portion of
true collocations might be lost in the evaluation
process.

Concerning a hand-made golden standard, the
limit is time and financial resources because
manual work is always costly in both senses. A
very serious limitation of manual evaluation is the
impossibility to estimate recall for very large lists of
collocations candidates. It may seem that the
problem can be solved with the data size reduction
(to 50-200 samples), but association measures do
not work well on small datasets.

To overcome the drawbacks of manual
evaluation, automatic evaluation methods have
been proposed. A well-known and widely used
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method was developed by Evert and Krenn [9].
Instead of manually annotating only a small (in the
sense of automatic language processing) number
of n-best collocation candidates, Evert and Krenn
suggested to compute precision and recall for
several n-best samples of an arbitrary size
comparing them against a golden standard of
about 100 collocations (true positives, TPs). Then,
in this case, precision is the proportion of TPs in
the n-best list, and recall is the proportion of TPs in
the base data that are also contained in the n-best
list, the base data being an unordered list of all
extracted collocation candidates.

7 Likelihood Measures

The association measures in this section belong to
the first approach.

7.1 Log-Likelihood Ratio

The alternative terms for this measure found in
literature are G-test and maximum likelihood
statistical significant test. Log-likelihood ratio is
computed with the formula

LR = —ZZ fij log&.
ij fij

Similar to the formula of average mutual
information given in the previous subsection, f;; is
frequency in a cell of i x j contingency table, in our
example of 2 x 2 table (see Table 1), the cells are
fi fiz, f21, f22- The expected frequency fi,j is
computed as if data items were independent, i.e.,
according to the formula given for the case of our
contingency table

» _ f(dataltem,)f (dataltem,)

ij = N )
where dataltem is either x, y, X, or y, depending
on what cell is considered.

Another option is to determine the squared log
likelihood ratio according to the following formula:

log f;2
squared LR = —ZZ %f” .

fij

ij
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7.2 Multinomial Likelihood

This measure termed multinomial likelihood (ML)
estimates the probability of the observed
contingency table point hypothesis assuming the
multinomial sampling distribution:

ML =
N GF@n) ™ Fen)™ - Gen) ™ - Fe) ™
o TGt fGn! - G fGE)!

7.3 Hypergeometric Likelihood
Another version is the hypergeometric likelihood

(HL) computed under the general null hypothesis
of independence P(xy) = P(x )P (* y):

(f (Cxly)) ' <R1 —C;(xy))
v :
(v,)

where R, = fi; + fiz and C; = fi; + f5;.

HL =

7.4 Binomial Likelihood

Under the assumption of the binomial distribution,
we can compute the total probability of all
contingency tables for f(xy) according to the
formula and obtain the binomial likelihood (BL):

BL = ( N )(f(’@’)) flxy) (1 _ @) N-f(xy),

fGy))\ N

7.5 Poisson Likelihood

If we replace the binomial distribution with the
Poisson distribution, this will increase the
computational efficiency and will provide results
with a higher accuracy. In this case, the
corresponding association measure is called
Poisson likelihood (PL) and is calculated as
follows:

i !

7.6 Poisson-Stirling Approximation

This is another association measure calculated
under the assumption of the Poisson distribution. If
we take the negative logarithm of the Poisson
likelihood and approximate the factorial f;,! in the
formula for the Poisson likelihood given in the
previous section with the Stirling formula n! =

n
2mn (Z) , we obtain the following association

measure called the Poisson-Stirling measure
(PSM):

PSM = f(xy) - (log f(xy) —log f(xy) — 1).

8 Exact Statistical Hypothesis Tests

The association measures belonging to Approach
1 and estimated using the concept of likelihood as
in the previous sections may suffer from very small
values of probabilities which may be obtained in
some cases. However, one can provide evidence
concerning the independent occurrence of the
words x and y in a bigram xy using what is called
exact or strict hypothesis tests. These tests
evaluate the probability of the null hypothesis H,
(stating that P(xy) = P(x *)P(xy)) against the
alternative hypothesis H; of the words x and y
being the collocation constituents. The probability,
at which the decision to favor or reject the null
hypothesis is made, is called the significance level
of the test, and values of 10%, 5%, or 1% are
usually used. The low the value of the significance
level, the stricter the test is.

For the binomial distribution, the following metric
is used:

- 5 00212

k=f(xy)

For the Poisson distribution, the following metric
is used:

© Py k
pP= Z e—Fey) (f(;i}")) .

k=f11
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Another exact test can be developed using the
hypergeometric likelihood function, this gives what
is called the Fisher’s exact test:

min{Ry,C1} (C1) ( G, )
k Rl - k
k=f(xy) R

_FG L) )
NF G G Gy f )Y

where R, = f(xy) + f(xy) and C; = fi; + f5;.

9. Asymptotic Statistical Hypothesis
Tests

The methods in this group belong to Approach 1,
they operate under the assumption of the normal
distribution. The asymptotic theory is also called
the large sample theory, and of course, natural
language corpora are very large samples of
linguistic data. Different from statistic tests of other
groups which work on a finite data sample of size
N, the asymptotic tests assume that that the
sample size grows infinitely and estimate test
statistics for N - co. Within the framework of the
asymptotic theory, various test statistics have been
developed and now we will consider the most
common of them.

9.1 z-score

This is the simplest test statistic in this group of
association measures. It is a simplification of
computing the binomial measure approximating
the discrete binomial distribution with the
continuous normal distribution. Figure 2 borrowed
from [8] shows how this approximation works.

The z-score is computed with the formula

_ Je-fe)
Jran (1= (Fanm))
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Fig. 2. Normal approximation Y to binomial
distribution X

9.2 Yates’ Continuity Correction

The Yate's function is applied to the normal
approximation to the binomial distribution. This
correction is made to adjust observed frequencies
towards the expected frequencies thus obtaining
the corrected frequencies ﬁj-"”e“edaccording to the

formulas:

corrected __
ij - fl j

iffi; > fij,

| = N =

d _ : £
i(]:'orrecte — fl] + > lffl] <fl]

Figure 3 shows that Yates’ continuity correction
is a closer approximation to the binomial
distribution, compare it with the Figure 2.

9.3 t-score

This metric, also called the Student's t-test,
compares the observed co-occurrence frequency
f(xy) and the expected co-occurrence frequency
f(xy) as random variates. The t-score is
computed according to the formula

‘e flxy) — flxy) _
Jren( - gaim)

This test estimates whether the means of two
groups of data are statistically different. Applying it
to measuring the association of words in a bigram
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Fig. 3. Normal approximation with Yates’ correction

xy, one thus compares the observed and expected
frequencies. The above formula corresponding to
the t-test measure is a ratio. The numerator is the
difference between the observed and expected
frequencies, and the denominator includes a
measure of the variability of the observed
frequency. The t-test requires the normal
approximation and assumes that the mean and
variance of the distribution are independent.

9.4 Pearson’s y? Test

The standard test for the independence of the rows
and the columns in the contingency table is
Pearson’s x? test. It is a two-sided association
measure computed according to the formula

2 _ (fl] _fij)z
X _izj fij .

Another version of this test is based on the null
hypothesis of homogeneity and is estimated
according to the following formula:

XZ

_ N(f y)f (&9) = f (e f (%y))?
(FGey) + F@M)fF @) + FED)fay) + fF @) F @) + f &)

9.5 Dunning’s Log-Likelihood

This test is a likelihood ratio test, and its metric LD
is computed according to the formula

LG, 6 LY G
SLUF @), Com) - LUy, 1)

= Lo+ CP)
N

LD = -21

where L(k,n,1) =rk(1—r)"k,

_ fxy) _ f(xy)

L7 ram+f @) 2T fap+f )

As it can be seen from the formula, this test
compares the likelihood of two hypotheses about
the words in a bigram xy, the first hypothesis
is P(y|x) = P(y|x), and the second hypothesis
states that P(y|x) # P(y|x).

In order to estimate the statistical significance of
the calculated metric, it is multiplied by —2, and
then one has to consult the y? table at the degree
of freedom equal to one.

10 Coefficients of Association
Strength

The methods in this section belong to Approach 2.
The techniques within this approach measure the
degree of association between the words x and y
in a bigram xy by estimating one of the coefficients
of association strength from the observed data.

10.1 Odds Ratio

Odds ratio is the ratio of two probabilities, that is,
the probability that a given event occurs and the
probability that this event does not occur. This ratio
is calculated as ad/bc, where a, b, ¢, and d are
taken from the contingency table presented earlier
(see Table 1).

The odds ratio is sometimes called the cross-
product ratio because the numerator is based on
multiplying the value in cell a times the value in cell
d, whereas the denominator is the product of cell b
and cell c. A line from cell a to cell d (for the
numerator) and another from cell b to cell ¢ (for the
denominator) creates an x or cross on the two-by-
two table.

10.2 Relative Risk
This measure estimates the strength of association

of the words x and y in a bigram xy according to
the formula
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+
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where a, b, ¢, and d are taken from the contingency
table presented earlier (see Table 1). The name of
the measure is explained by the fact that this metric
is commonly used in medical evaluations, in
particular, epidemiology, to estimate the risk of
having a disease related to the risk of being
exposed to this disease. However, it also can be
applied to quantifying the association of words in a
word combination.

Relative risk is also called risk ratio because, in
medical terms, it is the ratio of the risk of having a
disease if exposed to it divided by the risk of having
a disease being unexposed to it.

This ratio of probabilities can also be used in
measuring the relation between the probability of a
bigram xy being a collocation versus the
probability of this bigram to be a free word
combination.

10.3 Liddell’s Difference of Proportions

This measure (LDP) is the maximum likelihood
estimation for the difference of proportions and is
calculated according to the formula

fCy)f &) = fap)f (xy)
fENf ) '

This metric has been applied to text statistics in
[19], where one can find a detailed discussion of its
advantages compared to the conditional exact test
without randomization.

LDP =

10.4 Minimum Sensitivity

Minimum sensitivity (MS) is an effective measure
of association of the words x and y in a bigram xy
and has been used successfully in the collocation
extraction task. This metric is calculated according
to the formula

fey) f (xJ/)}.

us = min{z e o
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In fact, what this measure does is comparing two
conditional probabilities P(y|x) and P(x|y) and
selecting the lesser value thus taking advantage of
the notion of conditional probability.

However, [12] suggests that MS has not to be
trusted without a proper consideration in spite
of its good performance. The reason is that the
value of this metric does not specify what
association is taken into account, i.e., the
association between x and y or the association
between y and x. The author gives an example of
the collocation because of and states that if the
value MS = 0.2 is obtained, this number does not

; fey)
reveal whether the 0.2 is NP P(ylx) or

foy) ) o
TN ) P(x|y), that is, whether it is

P(of |because) or P(because|of).
10.5 Geometric Mean Coefficient

This association measure is calculated according
to the formula

gmean = —LC¥)
V) f(*y)
or
_ )
gmean = ————

INF @y |

The geometric mean is similar to the arithmetic
mean, however, they are different in the operation
over which the average value is calculated. The
arithmetic mean is applied when several numbers
are added together to produce a total value. The
arithmetic mean estimates the value that each of
the summed quantities must have to produce the
same total. That is, if all the summands had the
same value, what this value would be to give the
same total. Analogously, the geometric mean is
applied to multiplication of several factors, and it
estimates the value that each of the factors must
have (the same value for all the factors) to produce
the same value of the product.
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Table 3. Collocates of break extracted using t-score, M1, and Dice coefficient

Collocate flxy) t-score Collocate flxy) MI
the 11781 99.223 spell-wall 5 11.698
8545 83.897 deadlock 84 10.559
, 8020 80.169 hoodoo 3 10.430
be 6122 69.439 scapulum 3 10.324
and 5183 65.918 Yasa 7 10.266
to 5131 65.918 intervenient 4 10.224
a 3404 52.214 Preparedness 21 10.183
of 3382 49.851 stranglehold 18 10.177
down 2472 49.412 logjam 3 10.131
have 2813 48.891 irretrievably 12 10.043
in 2807 47.157 Andernesse 3 10.043
into 1856 42.469 irreparably 4 10.022
he 1811 39.434 Theif 37 9.994
up 1584 39.038 THIEf 4 9.902
Collocate fxy) Dice coefficient
down 2472 0.0449
silence 327 0.0267
into 1856 0.0210
leg 304 0.0203
off 869 0.0201
barrier 207 0.0191
law 437 0.0174
up 1584 0.0158
heart 259 0.0155
neck 180 0.0148
news 236 0.0144
rule 292 0.0142
out 1141 0.0135
away from 202 0.0135
bone 151 0.0130
Applied to the contingency table (see Table 1), numerator and avoids the overestimation for low-
the geometric mean is equal to the square root of frequency bigrams.
the heuristic M2 measure defined by the following
formula:
2 (FOy))? 10.6 Dice Coefficient
MI* = log——"—.

fxy)

Therefore, the geometric mean increases the
influence of the co-occurrence frequency in the

This association measure (D) is calculated
according to the formula
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__ )
fCex) + f(xy)

This coefficient is one of the most common
association measures used to detect collocations;
moreover, its performance happens to be higher
than the performance of other association
measures.

For example, Rychly [37] experimented with
various association measures including t-score,

3 . P3(xy) .
MI, MI® (defined as logm), minimum
sensitivity, MI log frequency (defined as MI x
log f (xy)), and Dice coefficient with the objective
to extract collocations from a corpus for
lexicographic purposes.

The experiments showed that Dice coefficient
outperformed the other association measures.
Besides, collocations detected with Dice coefficient
were relevant for a collocation dictionary. To show
this, in Table 3 we reproduce the results of applying
three measures, namely, t-score, MI, and Dice
coefficient, to extract collocations of break in [37].

10.7 Jaccard Coefficient

The Jaccard coefficient (J) is monotonically related
to the Dice coefficient and measures similarity in
asymmetric information on binary and non-binary
variables. It is commonly applied to measure
similarity of two sets of data and is calculated as a
ratio of the cardinality of the sets’ intersection
divided by the cardinality of the sets’ union. It is
also frequently used as a measure of association
between two terms in information retrieval.

To estimate the relation between the words x
and y in a bigram xy, the Jaccard coefficient is
defined by the following formula:

a

]:a+b+c'

where the values of a, b, and ¢ are as given in the
contingency table (see Table 1).

The Jaccard coefficient as well as the Dice
coefficient are often called normalized matching
coefficients because the way to assess the
similarity of two terms is to count the total number
of each combination in a contingency table as
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presented in Table 1. Jaccard is similar to the
cosine coefficient (cos) defined by the following
formula:

a
J(@@a+b)x/(a+c)

where the values of a, b, and ¢ are as given in the
contingency table (see Table 1) and on average,
Jaccard and cosine have more that 80%
agreement (for example, see the results of
experiments in [5]).

10.8 Confidence-Interval Estimate for Mutual
Information

Point estimates of association between words in a
phrase operate well for words which have
sufficiently high frequency, however, these metrics
are not reliable when words or word combinations
have few occurrences in a corpus. This fact results
in a low performance of point estimates, for
example, of mutual information, as shown in [9].
This issue can be resolved by using interval
estimates from exact hypothesis tests which
correct for random variation and evade
overestimation.

The confidence-interval estimate for mutual
information (MIconf) is defined as

MIconf

= log min {,u >0

N £ k
S N C LD a}_

11 Rule-Based and Hybrid Strategies
to Measure Word Co-occurrence

Statistical methodology requires large collections
of data, otherwise estimations of frequencies and
probabilities of word co-occurrences become
imprecise and untrustworthy.

However, the Zipfs Law asserts that the
frequency of a word in a corpus is inversely
proportional to its rank in the frequency table.
Therefore, a great deal of words (from 40% to 60%
of large corpora, according to [18]) are hapax
legomena, i.e., they are used only once in a
corpus.
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Table 4. Candidate selection rules

Criteria

Rules

Frequency

(Rulel) Frequency heuristic: frequency = 2 for simplex words vs. frequency = 1 for NPs

(Rule2) Length heuristic: up to length 3 for NPs in non-of-PP form vs. up to length 4 for

NPs

Length in of-PP form

(e.g. synchronous concurrent program vs. model of multiagent interaction)

(Rule3) of-PP form alternation

(e.g. number of sensor = sensor number, history of past encounter = past encounter

Alternation history)

(Rule4) Possessive alternation

(e.g. agent’s goal = goal of agent, security’s value = value of security)

(Rule5) Noun Phrase = (NN|NNS|NNP|NNPS|JJ]JIR[IIS)a(NN|NNS|NNP|NNPS)
(e.g. complexity, effective algorithm, grid computing, distributed web-service discovery

) architecture)
Extraction

(Rule6) Simplex Word/NP IN Simplex Word/NP

(e.g. quality of service, sensitivity of VOIP traffic (VOIP traffic extracted),
simplified instantiation of zebroid (simplified instantiation extracted))

Low-frequency phenomenon also extends to
collocations. Baldwin and Villavicencio [1] indicate
that two-thirds of verb-particle constructions occur
at most three times in the overall corpus.

An example of the rule-based method can be
found in [17]. The authors use candidate selection
rules for key phrase extraction from scientific
articles. Key phrases are simplex noun or noun
phrases that represent the key ideas of the
document. Examples of rules are presented in
Table 4.

On the other hand, rule-based techniques
usually depend on language and lack flexibility.
The latter characteristic harms the extraction of
collocations which permit syntactic variation.

Also, making hand-crafted rules is time
consuming. Moreover, such rules have limited
coverage and will hardly discover new restricted
word combinations appearing in language.

To combat these disadvantages, hybrid
methods have been proposed. The latter use rules
to extract candidate restricted constructions and
apply statistical methods to improve the obtained
results.

For example, in [15], machine learning is used
together with simple patterns to identify functional
expressions in Japanese. Their experiments show
that the hybrid method doubles the coverage of
previous approaches to resolving this issue, at the
same time preserving high values of precision.

12 Conclusions

In this article we presented a detailed survey of
word co-occurrence measures used in natural
language processing. Such measures are called
association measures and they are applied to
determine the degree of word cohesiveness in
phrases. If the value of such measure is high in a
given word combination, the latter is called
collocation. Collocations are different from free
word combinations, in which the degree of
cohesiveness is low. It is important in natural
language processing to determine which word
combination is a collocation since they must be
treated in a way different from phrases in which
words combine freely.
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We described the association measures
grouping them in classes depending on
approaches and mathematical models used to
formalize word co-occurrence. The three
approaches were presented: statistical, rule-
based, and hybrid approaches. Most association
measures belong to the statistical approach in
which there are many types distinguished:
frequency-based measures, information-theoretic
measures, likelihood measures, statistical
hypothesis tests (exact and asymptotic), and
coefficients of association strength. The measures
are described indicating their formulas, basic
principles of their definition, their advantages and
disadvantages.

In the last decade, the area of NLP has changed
racially with the progress of deep learning. There
is a number of directions to improve the co-
occurrence measure for collocation detection, such
as the use of concepts and common sense
knowledge [27, 32, 35, 36], as well as sentiment
and emotion information in the text [29, 33]. In
addition word2vec-like techniques can be used to
improve the co-occurrence measure for collocation
spotting. Word2vec is a vector-space language
model learned using deep learning, which has
shown good performance on text [2-4] and
multimedia [28, 30, 31] analysis. Co-occurrence
methods can be useful for personality detection
[34] and textual entailment-based techniques
[22-24].
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