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coex؛stence of different radio systems in the same 
spectral potion increasing the spectral efficiency of the 
HetNet, but at teh same time the inte^erence is 
increased. In this paper, we tackle with the problem of 
spectrum sharing in a HetNet composed of a macrocell 
and several femtocells. We propose a strategy, in which 
macrocell and femtocells can share simultaneously the 
available bandwidth while avoiding intra-tier
inte^erence. Our approach is formulated as a binary 
optimization problem. The fitness is evaluated
considering techniques of binary optimization with 
memory to overcome the problem of premature
convergence or loss of diversity that Socio-Cognitive 
Panicle Swarm Optimization (SCPSO) presents. The 
results show that by using the Memory Binary Particle 
Swarm Optimization (MBPSO) algorithm, the system’s 
capacity is improved in comparison with solutions 
obtained using SCPSO. Also the performance of 
MBPSO is compared with Angle Modulated PSO 
(AMPSO) and Modified BPSO (ModBPSO) algorithms.

Keywords. Spectrum sharing, spectral efficiency,
heterogeneous networks, MBPSO.

1. )ntroducción

Hoy en día existe una diversidad de dispositivos 
que ofrecen servicios de comunicación 
inalámbrica, ya sea voz, video o datos; que 
permiten comunicarnos en cualquier momento y 
lugar. Actualm ente existen a nivel mundial más de 
un trillón de dispositivos móviles que cuentan con 
algún tipo de interfaz inalámbrica, por lo que el 
consumo de datos de banda ancha está 
aumentando vertig inosam ente [1]. Para atender

Resumen. Compa^ir espectro es una de las soluciones 
que permitirá que Redes Heterogéneas (HetNet), 
formada por diversas tecnologías de acceso 
inalámbricos, dispongan de recurso espectral adicional. 
Con esto se promueve la coexistencia entre los 
diferentes sistemas de radio, incrementando con ello su 
eficiencia espectral, pero también la inte^erencia en el 
sistema. En este trabajo se implementa una estrategia 
que controla la inte^erencia y asignación de canal en 
una HetNet, con el fin de maximizar la tasa de datos y la 
cantidad de usuarios que compa^en espectro 
concurrentemente. Para resolver este problema se 
utilizó la técnica de Optimización Binaria por Cúmulo de 
Pa^ículas con Memoria (MBPSO). A diferencia de la 
técnica optimización por Cúmulo de Pa^ículas Socio- 
Cognitiva (SCPSO), MBPSO evita la convergencia 
prematura en óptimos locales y la perdida de diversidad. 
[os resultados muestran que al utilizar MBPSO se 
mejoran las soluciones sobre la capacidad del sistema 
que cuando se utiliza SCPSO. Además se compara el 
desempefio de MBPSO con las técnicas PSO 
Modificado (ModBPSO) y Optimización por Cúmulo de 
Pa^ículas con Modulación Angular (AMPSO), ya que 
estas últimas también cuentan con la habilidad de 
explorar y explotar diversos espacios de soluciones.

Palabras clave. Compa^ición de espectro, eficiencia 
espectral, redes heterogéneas, MBPSO.

Memory Binary Particle Swarm 
Optimization (MBPSO) Applied 
to a Spectrum Sharing Problem

Abstract. Spectrum sharing is one of the solutions for 
Heterogeneous Networks (HetNets) for achieving 
additional spectral resource. The aim is to promote the
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permite que el usuario utilice los recursos de la red, 
en caso contrario, el usuario será bloqueado.

El problema de espectro compartido se 
considera como un problema combinatorio de gran 
complejidad (NP-difícil), debido al gran consumo 
en recursos com putacionales necesarios para 
encontrar una solución global óptima, los cuales 
crecen de form a exponencial con respecto al 
tam afio  del problema [3-5]. En este caso, la 
complejidad del problema se incrementa conforme 
se incrementa el número de usuarios que le 
solicitan a otra red un canal de comunicación 
compartido. En la literatura se reportan algunas 
propuestas que resuelven el problema de espectro 
compartido considerando la interferencia como su 
principal restricción [4-10].

En [4], los autores maxim izan la cantidad de 
datos transm itidos (throughput) en una red 
heterogénea de espectro compartido utilizando 
una técnica basada en la programación 
geométrica secuencial.

Utilizando el Método Montecarlo, en [5] se 
generan más un millón de escenarios distintos a 
partir de diferentes combinaciones para 
determ inar la ubicación espacial de los usuarios 
secundarios y la tasa de datos trasm itidos durante 
la detección de canales disponibles en bandas 
reguladas de televisión.

En [6], los autores proponen una estrategia 
para que los usuarios exploten bandas de 
frecuencia en una de dos modalidades; (i) 
concurrentemente con usuarios de diferentes 
sistemas o, (ii) esperar a que una banda se libere 
para e x p lo ta r la ا. a decisión para conm utar entre 
una modalidad y otra, la toman con base a no 
sobrepasar un nivel de interferencia permitido en 
la red.

En [7], los autores aplican Teoría de Juegos 
para m axim izar la tasa de datos de una HetNet. 
Definen un comprom iso que consiste en que la 
macrocelda venda una porción de su ancho de 
banda a solicitud de la femtocelda, permitiéndole 
transm itir simultáneamente en su m isma banda de 
frecuencia El costo del ancho de banda es 
directam ente proporcional a la cantidad de 
espectro solicitado por la femtocelda, pero se 
reduce proporcionalmente con la cantidad de 
usuarios m acrocelulares que la fem tocelda pueda 
atender con esa m isma cantidad de espectro. 
Entre mayor sea la cantidad de espectro solicitado,

las demandas de ancho de banda y Calidad de 
servicio (QoS), las nuevas generaciones de redes 
móviles e inalám bricas requerirán del trabajo 
conjunto de múltiples redes y tecnologías de 
acceso de radio (RATs: Radio Access
Technologies), conocidas como Redes 
Heterogéneas (HetNets: Heterogeneous
Networks). Una HetNet se compone 
principalmente por una combinación de celdas de 
gran tam afio  (macro-celdas) y celdas pequefias 
(micro-celdas, pico-celdas y fem to-celdas). Las 
redes y aplicaciones inalámbricas están reguladas 
mediante una política de asignación de espectro 
fija. El Estado regula, adm inistra y asigna la 
utilización de las diferentes bandas de frecuencia 
a distintas empresas, usuarios y/o servicios. Con 
esta administración fija  del espectro se le garantiza 
a cada tecnología inalámbrica protección contra la 
interferencia pero por otro lado, provoca que sea 
más difícil encontrar bandas libres para el 
despliegue de HetNets, generando la idea de una 
escasez de espectro.

Por lo anterior, se ha considerado la necesidad 
de introducir reformas, no sólo para m ejorar su 
utilización, sino también para proveer de nuevo 
espectro a las nuevas aplicaciones de banda 
ancha móvil. Una solución que perm itirá que los 
sistemas de comunicación inalám brica que no 
dispongan de recurso espectral propio, puedan 
acceder al recurso espectral disponible de otras 
redes, es la de com partir bandas de frecuencia. El 
esquem a de espectro compartido promueve la 
coexistencia entre d iferentes sistemas de radio en 
la m isma porción espectral sin im portar la banda 
de frecuencia de operación que el Estado les 
asignó originalm ente [2]. Entre mayor sea la 
cantidad de usuarios que utilicen un canal 
concurrentemente, mayor será la eficiencia en el 
uso del espectro, aunque también mayor será la 
interferencia a la que estarán expuestos los 
usuarios de la red que participan en la 
compartición de espectro [3].

Se considera que la interferencia es dafiina si 
es lo suficientemente elevada como para causar 
una interrupción en el servicio a cualquiera de los 
usuarios de la red. Para controlarla, se propone 
controlar el acceso de usuarios al sistema 
mediante una asignación efectiva de canales de 
transm isión. Si se cumple la restricción de 
admisión impuestas por el algoritmo, entonces se
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a cantidad de dates transm؛ itidos (throughput) en 
 a cantidad de usuarios؛ a red y, esta depende de؛
fem tocelulares ه  secundarios (SUs) que utilicen e  ؛
mismo canal primario que los usuarios de la 
macrocelda o primarios ^ U s ) .L a  asignación de 
un canal primario a un SU depende del nivel de 
interferencia que éstos generan a los PUs y, a 
aquellos SUs que utilizan el m ismo canal primario. 
Los resultados obtenidos con la técnica MBPSO 
se comparan con los obtenidos con SCPSO, 
considerada como una adaptación binaria del 
algoritmo PSO para espacios continuos. Además 
de presentar una análisis comparativo con las 
técnicas AM PSO y ModBPSO.

El resto del artículo está organizado de la 
siguiente manera, en la sección 2 se describe la 
m etaheurística MBPSO, la estrategia de control de 
admisión y asignación de canal en una HetNet y la 
integración de la técnica MBPSO se describe en la 
sección 3 . En la sección 4 se describe el escenario 
de evaluación y se analizan los resultados, las 
conclusiones de este trabajo se presentan en la
sección 5.

2. Opt؛m؛zac؛<؛>n binaria por cúmulo de 
partículas con memoria (MBPSO)

21  PSO

La Optim ización por Cúmulo de Partículas 
(PSO) es una técnica heurística desarrollada por 
Kennedy y Eberhart [11], basada en la simulación 
del comportam iento social observado en las aves 
dentro de una parvada. En PSO, cada individuo 
representa una partícula que viaja a través de un 
espacio de soluciones del problema. Cada 
partícula tiene asignada una posición Xid, que 
representa una posible solución al problema a 
resolver, y un valor de velocidad Vd, que regula el 
movim iento en la posición de la partícula. La 
calidad de la posición de cada partícula (aptitud) 
se relaciona con una o varias funciones objetivo 
que representan el problema a resolver. Para 
promover la exploración amplia del espacio de 
búsqueda, las posiciones y velocidades iniciales 
asignadas a cada partícula se generan de form a 
aleatoria. Conforme avanza el algoritmo, la 
velocidad y la posición cambian en función de la 
interacción social basada en la tendencia social de

mayor será la tasa de datos que logre transm itir la 
femtocelda, al igual que el costo y la interferencia 
generada hacia usuarios macrocelulares. Aunque 
estos trabajos resuelven para un gran número de 
usuarios secundarios que pueden com partir un 
canal, requieren de una excesiva complejidad 
computacional para encontrar el óptimo global.

En contraste con los trabajos anteriores, en [8­
10], los autores utilizan técnicas de inteligencia 
computacional inspirados en procesos naturales 
para encontrar soluciones “buenas” al problema de 
espectro compartido, en un tiempo y consumo de 
recursos aceptables. Tal es el caso de Algoritmos 
Genéticos (GA) [8], Optim ización por Colonia de 
Horm igas (ACO) [9] y Optim ización por Cumulo de 
Partículas (PSO) [10]. La ventaja de aplicar estos 
algoritmos es que son sencillos de implem entar y 
requieren poca información sobre el espacio de 
búsqueda de posibles soluciones.

En un trabajo previo [12], utilizamos la técnica 
de optim ización por Cúmulo de Partículas Socio- 
Cognitiva (SCPSO) [19] para maxim izar la 
cantidad de datos transm itidos (throughput) en una 
HetNet y la cantidad de usuarios que 
concurrentemente utilizan el m ismo canal. Sin 
embargo, debido a un posible estancam iento o 
convergencia prematura en óptimos locales que 
presenta la técnica SCPSO como se reporta en 
[13-18], las soluciones obtenidas en [12] no se 
consideran como suficientemente “buenas” . Para 
resolver lo anterior, en la literatura se reportan 
algunas propuestas que permiten que el enjambre, 
en la técnica PSO, se mueva hacia distintas 
regiones, para lograr mayor diversidad del cúmulo 
y evitar que se concentren en una región reducida 
del espacio de soluciones. Ejemplos de ellas son; 
Optim ización Binaria por Cúmulo de Partículas 
Modificado (ModBPSO) [14], Optim ización por 
Cúmulo de Partículas con Modulación Angular 
(AMPSO) [15] y Optim ización Binaria por Cúmulo 
de Partículas con Memoria (MBPSO) [16].

En este trabajo se propone resolver el problema 
de espectro compartido en una HetNet aplicando 
la técnica de optim ización MBPSO. Una HetNet 
está form ada por una macro-celda (conocida como 
la red primaria) y por un conjunto de celdas más 
pequefias o fem to-celdas (denominada la red 
secundaria) que operan en la m isma banda de 
frecuencia que la red primaria tiene asignada. El 
problema de optim ización consiste en maxim izar
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a entre gbest y pbest como una nueva؛stanc؛a d؛ 
dad. La؛oc؛ón de ve؛zac؛؛ón de actua؛ecuac 

ada por el؛uenc؛nf؛ tm o es؛gor؛a ؛convergencia de 
ón؛m ens؛a d؛ número de partículas en el cúmulo y 
ta؛o que para problemas de a؛ del problema, por 
ón؛uc؛ca no converge a una so؛a técn؛ dad؛com ple j 

ere de más؛e y en algunos casos requ؛ab؛conf 
.ones para converger؛terac؛ 

ca MBPSO [16] propone algunas؛a técnا 
as cuales؛ ,tm o SCPSO؛gor؛a ؛ones a؛cac؛f؛m od 

dez؛ón se propague con rap؛nform ac؛ tan que la؛ev 
entre las partículas y se agrupen alrededor del 

mo local que encuentran. En M BPSO,؛mer ópt؛pr 
ón de la partícula Xid, se؛c؛el valor de la pos 

a. En؛ón prev؛c؛za con base a su pos؛؛actua 
dad de que un؛؛؛SCPSO, Vid representa la probab 

entras que en M BPSO,؛e a 1, m؛t cam b؛b 
t؛dad de que un b؛l؛representa la probab 

endo de uno de؛o depend؛n cam b؛permanezca s 
los cuatro estados esperados (ver tabla 1), la cual 

t del؛r de pbest y gbest. Cuando el b؛conoce a part 
smo que el del estado؛estado actual es el m 

t del estado؛za el valor del b؛t m em or؛objetivo, el b 
smo valor, de lo؛ene con el m؛actual y se m ant 

dad de que el؛؛؛ncrementará la probab؛ o se؛contrar 
e de estado. Los valores de 0 y 1 que؛t cam b؛b 

r de la؛enen a part؛t se obt؛puede tom ar el b
:ó n؛ente expres؛gu؛s

(1)
1 + ٠sig (yk;v:

dad؛ón de ve loc؛do, la representac؛En este sent 
r de؛nan a part؛ón de la partícula se determ؛c؛y pos 

:ones؛entes expres؛gu؛las s

(2)

(3)

vM + =  wvM +  ci X ri X Equal(Pid, xid))

+c2 X r2 X Equal( pgd, xkd)),

i f  (rand () < sig (v^ ) )
otro

\ xd 
xd ا

t de velocldad de la؛Tabla 1 Valores del estado de b 
partícula

Estado
actual

Estado
objet™؛

Resultado

1 0 0 o؛n camb؛S

2 0 1 o؛Camb
3 1 0 o؛Camb
4 1 1 o؛n camb؛S

duos؛v؛nd؛ to de otros؛duo a em ular el éx؛v؛nd؛ cada 
ón de cada؛c؛o en la pos؛ón. El cam b؛en la poblac 

ento y؛m؛o conoc؛partícula depende de su prop 
o se؛cho cam b؛ente, ya que en d؛o am b؛m ed 

tada por la partícula؛s؛ón v؛c؛dera la m ejor pos؛cons 
duo del؛v؛nd؛ tada por algún؛s؛ón v؛c؛y la m ejor pos 

tmo؛gor؛da que el a؛enjambre (pbest). A m ed 
avanza, las partículas se concentran en zonas con 

o de؛dad del espac؛ones de buena ca l؛soluc 
tmo؛gor؛zar, el a؛؛na؛búsqueda (gbest). Al f 

tada por algún؛s؛ón v؛uc؛devuelve la m ejor so
duo del enjam bre.؛v؛nd؛

A pesar de que PSO y algunas de sus 
cas؛deran técn؛antes, como SCPSO, se cons؛var 

versos؛onar complejos y d؛robustas para soluc 
entes al؛c؛ón, son def؛zac؛m؛problemas de opt 

sfacer un balance entre la exploración؛tratar de sat 
ere a la؛y explotación. La exploración se ref 

tm o de moverse dentro de un؛dad del a lgor؛capac 
o, de tal form a que no؛o de búsqueda ampl؛espac 

no que؛ón, s؛te a buscar en una sola reg؛m؛se l 
o, la explotación es la؛explore otras. En cam b 

ca para evaluar؛dad que ofrece la técn؛l؛hab 
ar a la؛cu؛ar a las part؛ón y gu؛localmente una reg 

ncrementar solo la؛ .mo local؛búsqueda del m ín 
ca resulta en una búsqueda؛ón de la técn؛explorac 
o del problema, y mejorar؛n؛a en el dom؛aleator 

ón resultará en una؛camente la explotac؛ún 
.ones؛uc؛es so؛b؛a prematura a pos؛convergenc

x■;' =2.2. MBPSO

(4)
1 si(a  ==  b) 

—1 otro

donde

Equal (a, b) ■■

ó para resolver؟؛se؛onal se d؛PSO convenc 
entras que؛nuo, m؛o cont؛problemas de espac 

ón de problemas؛ca en la resoluc؛SCPSO se apl 
ón؛eren una representac؛ón que requ؛zac؛m؛de opt 

ón se؛ones. En esta vers؛a de sus soluc؛nar؛b 
endo؛ntroduc؛ dad en el cúmulo؛vers؛ene la d؛m ant
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Fig. 1. Red Heterogénea, formada por var؛as 
femtoceldas desplegadas sobre una macrocelda

La Relación Sefial-lnterferencia (SIR) es la 
métrica que evalúa la relación entre la potencia de 
transm isión del usuario y la potencia que éste 
percibe de otros transm isores que transm iten en el 
mismo canal (interferencia). La selección de 
aquellos SUs que se les puede asignar un canal 
primario depende de la interferencia que éstos 
generen a los PUs y a aquellos SUs que utilicen el 
mismo canal primario. Para determ inar el nivel de 
interferencia que experimenta cualquiera de los 
enlaces en el sistema, las expresiones (6) y (7), 
permiten determ inar el va lor de SIR  que observa 
el receptor secundario y prim ario respectivamente:

س (6) س ءء , ه ء

SIRU

=  l k e % Pk /d s s (k ,u )n  +  Pv /dps (v, u )n '

Para la expresión (6), Pv  es la potencia del V- 
ésimo transm isor primario, ldp(v) es la distancia 
entre el v-ésimo transm isor-receptor primario y )  
es el exponente de perdidas por propagación que 
puede tom ar valores entre 2 y 4. Pk  es la potencia 
de transm isión del k-ésimo transm isor secundario, 
dps(k,v) es la distancia entre el v-ésimo receptor 
primario y el k-ésimo transm isor secundario y Φ es 
el conjunto de SUs activos que comparten un 
canal primario con el V-ésimo PU , esto representa

Optimización binaria por cúmulo de partículas con memoria

a, b toman el valor correspondiente a Pid, Xid ,o Pgd,
Xid según corresponda, w,c1, c2 son el peso de 
inercia y las constantes cognitiva y social 
respectivamente; r1 ,r 2 son números aleatorios 
uniformemente distribuidos entre [0,1], Pid es la 
m ejor solución encontrada (pbest) por la partícula 
i y pgd es la m ejor solución encontrada (gbest) por 
la partícula g. La función rand() genera un número 
entero aleatorio con distribución uniforme entre 0 
y N  .

Finalmente, en SCPSO se consideran valores 
grandes de peso de inercia (ω) para m ejorar la 
búsqueda global de soluciones o, valores 
pequefios para m ejorar la búsqueda local. En 
MBPSO se propone una estrategia lineal 
decreciente para determ inar el peso de inercia, la 
cual está definida por la siguiente expresión:

ω = ωΜΑχ- (ω Γ  (° mra  ̂X ítercurrenl, (5)

donde هذ  y ωm؛n son el límite superior e inferior 
de ω respectivamente, Iterm a x  es el número 
máximo de iteraciones que se le permiten a la 
mejor solución (valor de aptitud) perm anecer sin 
cambio, m ientras que Ite rc k r r e n t representa el 
número de iteraciones consecutivas durante las 
que la m ejor solución no mejora.

3. Procedimiento para la asignación de 
canal en la HetNet

En una red heterogénea distintas tecnologías 
inalámbricas coexisten con el fin de increm entar la 
capacidad del sistema en aquellas zonas de mayor 
dem anda de recursos, distribuyendo el tráfico 
entre las celdas pequefias para que no se generen 
cuellos de botella en la m acro-celda (ver Fig.1).

Al operar en un esquem a de espectro 
compartido, la HetNet requiere de una estrategia 
para controlar el acceso a los SUs y asignarles un 
canal de comunicación de alguna de las bandas 
de frecuencia d isponibles en el sistema.

Para garantizar la transm isión exitosa entre los 
usuarios que comparten simultáneamente un 
canal, es necesario m antener el nivel de 
interferencia del sistema por debajo de un valor de 
umbral predeterminado.
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por propagación degraden la comunicación entre 
SU-femtocelda y PU-macroBS y, que el algoritmo 
de optim ización no converja a alguna solución, se 
limitaron las distancias a 1000 m y 30 m 
respectivamente.

Σ " ’
Max

c''v  =  Blog2 (1 + S IR v ), (9)

c 'U = B lo g 2(1 + S IR U), (10)

SIRU >  a, (11)

SIRV > β. (12)

El algoritmo 1 muestra la implementación de 
MBPSO para resolver el problema de espectro 
compartido. Cada partícula que se utiliza en el 
algoritmo representa una posible solución al 
problema, esto es, el conjunto de SUs que 
maximizan la capacidad de la HetNet. Cada 
partícula del cúmulo cuenta con tres vectores D- 
dimensionales asociados (donde d=1,2...D  
representa el número de SUs desplegados en la 
HetNet), de velocidad V, de posición X y el que 
almacena las mejores soluciones p. Cada 
componente de la partícula Xid , puede tom ar un 
valor de entre {0 , l} , m ientras que la velocidad, Vid, 

puede tom ar un valor de entre [ - V m ax ,m a x], donde 
¥™ax es la velocidad máxima. Durante la Fase de 
inicialización, se genera aleatoriamente el espacio 
de búsqueda inicial de posibles soluciones.

Se proponen tres nuevos vectores; X', que 
contiene el canal asignado de cada SU, p', que 
contiene la m ejor asignación de canal encontrada 
hasta el momento para cada partícula y el vector 
Estado del espectro, que indica el canal primario 
(índice) asignado a un PU  (contenido). Este vector 
se inicializa aleatoriamente y su tam afio  depende 
de la cantidad de PUs que se consideren en el 
problema.

La aptitud de la partícula se refiere a la cantidad 
de datos total que el sistema tiene capacidad de 
transm itir en un instante de tiempo, este valor 
depende principalmente del ancho de banda del 
canal, B, y, de la interferencia presente en la 
HetNet generada por los PUs y SUs. La

la interferencia que perciben los PUs debido a las 
transm isiones de los SUs. Por otra parte, para la 
ecuación (7), pu  es la potencia del u-ésimo 
transm isor secundario, lds(u) es la distancia entre 
el u-ésimo transm isor-receptor secundario. 
M ientras que, dss(k,u) es la d istancia entre el u- 
ésimo receptor secundario y el k-ésimo transm isor 
secundario, dps(v,u) es la distancia entre el u- 
ésimo receptor secundario y v-ésimo el transm isor 
primario.

La capacidad de la HetNet se define por la 
máxima tasa de datos que la red transporta y, ésta 
depende de la cantidad de SUs con permiso para 
transm itir en un canal primario. La función objetivo 
(8) permite contabilizar la suma total de datos que 
se genera en la HetNet, m ientras que las 
expresiones (9) y (10) calculan respectivamente la 
tasa de datos de aquellos SUs y PUs que cumplen 
con la restricción de no generar interferencia 
dafiina entre ellos, garantizando con ello una QoS 
en ambas redes. En este caso xu  es una variable 
binaria que indica si a un SU  se le asignó un canal 
para considerarlo en el cálculo de la tasa de datos.

La función objetivo está sujeta a que se 
garantice una QoS tanto para los SUs (11) como 
para los PUs (12). En este sentido, a y  β  
representan el nivel de interferencia máximo que 
pueden to lerar las redes secundaria y primaria 
respectivamente, con el fin de mantener un nivel 
de QoS a los usuarios de la HetNet

Con base a la Recomendación W T-T G.174 de 
la Unión ؛nternacional de Telecomunicaciones, en 
la que se establecen los objetivos de calidad de 
transm isión para los sistemas digitales terrestres 
móviles que utilizan term inales portátiles para 
acceder a la red telefónica, m antener un valor de 
a  y β  igual o superior a los 4 dB significa que los 
usuarios de la HetNet que utilicen un servicio que 
requiera condiciones de tráfico bajo (por ejemplo; 
servicio de mensajería) no experimentarán una 
interrupción de su servicio durante el tiempo que 
lo utilicen.

Por otro lado, para mantener sin interrupción a 
aquellos servicios o aplicaciones que demandan 
tráfico alto (por ejemplo, transm isión/recepción de 
video en tiem po real) la HetNet debe mantener un 
nivel de S  ,R igual o superior a los 14 dB (esto es؛
α=β>14 dB).

Comunicación del PU  que está utilizando el 
m ismo canal primario. Para evitar que las pérdidas
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ente j؛gu؛S 
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Fig 2. Convergenda de soludones al problema de espectro compa^do, PU=6, SU=20, ؛termax=20, Vmax=6

Tabla 2.- Parâmetros utWzados durante la evaluac؛ón

Para MBPSO [16] Valor

Tamano del cúmulo (S) 40

(teradones (Tmax؛ mo de؛Número Máx 100

al؛va y soc؛t؛Constantes cogn 2

Omax 1.4

Omin 0.1

Itermax 5,10,15,20,25

Vmax 4,6,8

Para desplieg^e de la HetNet [19] Valor

(os (SU؛os secundar؛Número de usuar 20,50,100

(os (PU؛mar؛os pr؛Número de usuar 6,12,30

os؛mar؛Canales pr 6,12,30

α, β  (en dB) 4,6,8,10,12,14

Ancho de banda del canal (B en MHz) 20

ntel® Xeon® E5-2609 v3 (15MB؛ Procesador ncrementar؛ En estas curvas se observ-a que al
®ndows؛vo W؛stema operat؛Caché, 1.90 GHz) y s ento de QoS, la tasa de datos؛m؛el requer

t, 32 GB DDR4 a 2133 MHz؛onal, 64-b7؛ Profess .nuye؛sm؛o d؛prom ed

a de los؛g. 2 se muestra la convergenc؛En la F ncrementarse el؛ do a que al؛Esto sucede deb
resultados encontrados para cada valor de SIR. a tolerable en el؛nterferenc؛ valor de SIR , la

tud؛o de la apt؛Cada curva corresponde al promed tmo؛culta al a lgor؛f؛stema es menor, lo que d؛s
nado valor de؛de la tasa de datos para un determ gnar un canal a todos los SUs, por lo que la tasa؛as

SIR . .nuye؛sm؛de datos d
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dB Itermax Aptitud (Mbps) Enlaces Secundários 
seleccionados iteraciones

5 1151479 20 24

10 11621.15 20 36
4 15 11732.38 20 57

20 1181728 20 83
25 11732.38 20 79
5 11995.20 20 43
10 1121968 20 69

6 15 11533.32 20 90
20 12057.84 20 88
25 11533.32 20 1
5 11465.85 20 50
10 11345 10 20 47

8 15 11400.56 20 65
20 11748.95 20 58
25 11400.56 20 83
5 10993.44 20 36
10 10822.56 20 39

10 15 11140.75 20 87
20 1151311 20 75
25 11337 41 20 82
5 10239.63 20 34
10 1115814 20 68

12 15 10841.29 20 83
20 11779.87 20 77
25 11468.96 20 81
5 10300 16 20 46
10 10778.87 20 64

14 15 10825 01 20 46
20 11053.89 20 45
25 10862.54 20 72

increm entar el va lor de Itermax, el va lor de aptitud 
se incrementa, sin embargo para valores de 
Itermax=25, no se observa una mejora 
significativa, incluso para valores de SIR=12,14 
dB, el valor de aptitud se reduce, por lo que parece 
que este parámetro presenta un límite en

En las Tablas 3 y 4 se presenta la evaluación 
del impacto de los parámetros Iterm a x  y Vmax sobre 
la técnica MBPSO, respectivamente.

En la Tabla 3 se muestran los resultados de la 
mejor solución de la tasa de datos obtenida en 
cada experimento. Se puede observar que al
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Tabla 4. Soluciones encontradas para distintos valores de ٧̂ ^ ,̂ SU=20, PU=6,Itermax=20

α=β
dB

Vmax Aptitud (Mbps) Enlaces Secundarios
seleccionado« iteraciones

4 11544.65 20 58

4 6 1171728 20 83
8 11852.34 20 52
4 11609.82 20 95

6 6 11757.84 20 88
8 1161090 20 1
4 11426.29 20 97

8 6 11748.95 20 58
8 11288.92 20 77
4 11147.94 19 90

10 6 11337 41 20 75
8 11289 28 20 76
4 11024 31 20 52

12 6 11779 87 19 77
8 10956 57 20 62
4 10744.46 19 76

14 6 11053 89 18 45
8 11343 0,5 19 94

Además, considerando que SCPSO carece de ؛a 
habilidad de recordar soluciones de buena calidad 
ya encontradas, le es difícil converger a una 
solución óptim a debido al incremento de 
aleatoriedad que se produce conform e las 
iteraciones avanzan, quedando atrapado en 
óptimos locales. Al igual que MBPSO, ModBPSO 
[14] memoriza las mejores soluciones encontradas 
para que la aleatoriedad de la actualización de 
posición de la partícula no le afecte, 
incrementando con ello su velocidad de 
convergencia.

“'ب;، ؛ ؛o, (ا3)

1 -

vk+1 > o ’
+،('*ء-اي؛

k +1 ١T (v

Itermax=20 a partir del cual no hay una mejora 
significativa en la aptitud. Los resultados de la 
evaluación de aptitud para distintos valores de 
Vmax se presentan en la Tabla 4. Los resultados 
muestran que las mejores soluciones de la tasa de 
datos para distintos umbrales de SIR  se obtiene 
para valores de Vmax=6.

4.3. Análisis comparativo

Para realizar un análisis comparativo también 
se implementaron las técnicas MBPSO, SCPSO, 
AMPSO, ModBPSO para resolver el problema de 
espectro compartido. A continuación se describe 
brevemente su operación.

4.3.1. Descripción de ModBPSO y AMPSO

Sin embargo, la modificación principal consiste 
en utilizar una nueva función de transferencia, 
definida en (13), que influye significativamente en

Vid cercanos a 0, indica la convergencia del 
algoritmo y los bits de la partícula se modificarán a 
pesar de que se realizó una menor exploración.
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(17)A =  2 π χ  c ( x -  a )

evitar que el algoritmo converga prematuramente donde 
en óptim os locales. Además en (14), se definen las 
reglas para actualizar la posición de la partícula;

x  representa un solo va lor (o muestra) de un 
conjunto de intervalos espaciados uniformemente, 
este valor depende de la cantidad de bits utilizados 
en una partícula (esto es, la dimensión de la 
partícula), a es el desplazam iento horizontal de la 
función, b y c representan la frecuencia máxima de 
la función seno y coseno respectivamente y, e 
representa el desplazam iento vertical de la 
función. En AMPSO, la técnica PSO convencional 
se aplica entonces para optim izar la tupla form ada 
por (a,b,c,d) en (16) y (17), en lugar de evolucionar 
toda la cadena de bits que form a una partícula de 
n-dimensiones. Una vez que se ejecutaron las 
iteraciones con PSO, los valores obtenidos de 
(a,b,c,d) se sustituyen de nuevo en (16) para 
generar una nueva función de tiempo continuo. En 
cada intervalo de la función resultante se toman 
muestras x  que permitirán generar un bit (0 o 1) 
por cada intervalo, el conjunto de bits que se 
forman por todos los intervalos de la función 
representa el vector solución (partícula) del 
problema. A esta nueva partícula se le evalúa su 
adaptabilidad o fitness de la m isma form a como se 
hace con PSO convencional, la velocidad Vid y 
posición xid, se actualizan mediante (18):

(18)= wv id + (ci ri ( P id -  x id )) + C2 r2( P gd -  x id
=  x k  +  vl

4.3.2 Resultados con MBPSO, ModBPSO y 
AMPSO

Los parámetros de operación utilizados por las 
técnicas MBPSO, AM PSO y ModBPSO se 
muestran en la Tabla 5 y, para una comparación 
justa, los parámetros de evaluación de la HetNet 
considerados durante la simulación son los 
m ismos que se muestran en la Tabla 2 [12]. La Fig.
3 muestra la convergencia de las mejores 
soluciones encontradas con cada una de las 
técnicas de optim ización para un escenario de 
evaluación con SU=100, PU=30 y α=β=8 dB. Se 
puede observar en la Fig.3 que AMPSO y MBPSO 
presentan una menor velocidad de convergencia

and 0 > ي  أ
and 14) .0 يل >  )

0, if rand () < T (vku+1
if rand () < T (vl ,ل d 1)

if rand() > T (vikd

Para increm entar la diversidad del cúmulo y 
reducir la probabilidad de que el algoritmo quede 
atrapado en un óptimo local, se incluye una 
operación de mutación. Con esto, en la k-ésima 
iteración, cada posición binaria de la i-ésima 
partícula cambiará a su valor opuesto en función 
de una probabilidad de mutación rmu definida 
en (15):

(15)
إ ل  -  xd , if rand () <: 

otro , نح|

donde rand() es un número aleatorio distribuido 
uniformemente entre [0,1]. rmu es la probabilidad 
de que un bit en la partícula cambie de 1 a 0 o de 
0 a 1.

Por otro lado, AMPSO [15] no incluye la 
característica de mem orizar la m ejor solución 
encontrada para reducir la convergencia en 
óptimos locales, sino que aplica una técnica de 
modulación angular para m apear el problema de 
optim ización binario a espacios de búsqueda 
continuos y viceversa. Además de increm entar la 
diversidad del cúmulo, AMPSO mejora la 
deficiencia que presenta SCPSO para resolver 
problemas de alta dimensionalidad.

Para problemas de optim ización en espacio 
discreto, en los que la partícula se representa por 
una cadena de bits, la dim ensionalidad se refiere 
al número de bits que representan una solución del 
problema a resolver. Problemas de gran 
dimensión, no solamente incrementan el espacio 
de búsqueda de posibles soluciones sino que 
también incrementan la complejidad 
computacional. Para generar la cadena de bits, los 
autores en [15] utilizan las expresiones en (16):

(16), + ( (η ( 2 π ( x  -  a ) X b X c o s (A8؛ = (x) ء

Computación y S istem as, Vol. 20, No. 1, 2016, pp. 153-168
doi: 10.13053/CyS-20-1-2198



ISSN 2007-9737

ه16  Esteban Martinez, Ángel G. Andrade, Anabel Martinez-Vargas, G uillerm o Galaviz

SCPSO, los algoritmos MBPSO y AMPSO 
encuentran una solución en el que los 20 SUs 
logran com partir un canal primario con alguno de 
los PUs o usuarios macrocelulares desplegados 
en la HetNet. También se puede observar que, 
como se reporta en la literatura, SCPSO converge 
prematuramente en óptim os locales, ya que las 
soluciones que presenta las obtiene en etapas 
tempranas de ejecutar la evaluación.

En la Tabla 7 se muestran los resultados de 
capacidad de la HetNet, para el caso en el que se 
produce interferencia alta, representada por el 
despliegue de 100 femtoceldas, con un usuario 
fem tocelular o SU  en cada una y, en la que cada 
SU, puede com partir uno de los 30 canales 
primarios con que cuenta la red macrocelular. Otra 
característica que se presenta con este escenario, 
es que el problema se vuelve de alta 
dimensionalidad, en comparación con el caso 
anterior (resultados de la Tabla 6), ya que cada bit 
de una partícula identifica un enlace secundario, 
esto es una conexión entre estación base 
fem tocelular y su correspondiente SU. En la Tabla 
7 se observa que con la técnica MBPSO, AMPSO 
y ModBPSO se obtienen mejores soluciones para 
requerim ientos bajos de QoS (S/R=6,8,10 dB) en 
el sistema en comparación con los obtenidos con 
la técnica SCPSO.

Sin embargo, para valores de S/R=12,14 dB, 
en los que se increm enta el requerim iento de QoS 
de las redes primaria y secundaria, las técnicas 
SCPSO y ModBPSO no encuentran una solución 
(no converge). M ientras que con MBPSO y 
AMPSO, se obtiene una solución sobre la 
capacidad del sistema, así como también, 
encuentran una configuración en la que se asignan 
uno de los 30 canales primarios a un usuario 
femtocelular, por ejemplo, para niveles de S/R=12 
dB, con MBPSO se logra una asignación al 44% 
de los S U ’s desplegados en la HetNet y con 
AMPSO del 53%, para un S/R  =14 dB es del 38% 
y 43%  respectivamente.

Se debe notar que por su característica de 
resolver problemas de alta dimensionalidad, 
AMPSO resuelve el problema de espectro 
compartido con mejores resultados que los 
encontrados por MBPSO para niveles altos de 
QoS (S/R  de 12 y 14 dB).

Iteraciones

|— I— AMPSO—e— MBPSO X ModBPSO Π SCPSO|

Fig. 3. Convergenc؛a de la apt؛tud de la HetNet para 
SU=20, PUs=6, α=β=8 dB

en comparación con SCPSO y ModBPSO. Sin 
embargo, no existe diferencia significativa en las 
soluciones obtenidas.

Para evaluar la capacidad de la HetNet en 
térm inos de la tasa de datos y enlaces secundarios 
seleccionados, se consideraron dos escenarios, (i) 
de interferencia baja, representada por pocos 
usuarios en la red, esto es, 20 fem toceldas y un 
usuario fem tocelular en cada una (SU=20), y una 
red m acroceluar con 6 usuarios m acrocelulares o 
primarios (PU=6), (ii) de interferencia alta, cuando 
se tienen SU=100 y PU=30 usuarios en la HetNet. 
En la Tabla 6 se presenta un comparativo del 
promedio de la tasa de datos, para distintos 
valores de umbral S/R, determ inada a partir de un 
total de 500 experimentos.

lo s  resultados de la Tabla 6 describen la 
capacidad de la red para el escenario en el que 
existe poca interferencia, ya que solo se 
despliegan 20 femtoceldas, las cuales pueden 
compartir uno de los 6 canales primarios con que 
cuenta la red macrocelular. De los resultados, se 
puede observar que con las técnicas MBPSO, 
AMPSO y ModBPSO se obtienen mejores 
resultados de la tasa de datos que la HetNet puede 
transm itir con respecto a cuando se utiliza 
SCPSO. Considerando el caso de S/R=10 dB, la 
ganancia en la tasa de datos obtenida con MBPSO 
es del 19.62%, 0.8% y 8.6%  con respecto a la 
obtenida con SCPSO, AMPSO y ModBPSO 
respectivamente. Además, para todos los casos 
de S/R  evaluados, a d iferencia de ModBPSO y
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Tabla 5. Parâmetros utilizados por las técnicas AMPSO, ModBPSO, MBPSO
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Para MBPSO [16] Valor

Itermax 20

Vmax 6

Para AMPSO [15] Valor

[a,b,c,d] [0,1,1,0]
intervalos Igual al valor de SU

Para ModBPSO [14] Valor

Velocidad [vmax, Vmin] [-6,6]
rmu 0.02

Tabla 6. Evaluación de aptitud para SU=20, PU=

dB
Técnica Aptitud (Mbps) Enlaces secundário» iteraciones

MBPSO 11357 84 20 88

ء AMPSO 10987 32 20 75
u

ModBPSO 10547 78 20 35
SCPSO 9286.54 18 1
MBPSO 11748 95 20 58

٥ AMPSO 11545 34 20 ه34
ModBPSO 11367 21 20 56

SCPSO 9546.39 16 13
MBPSO 11337 41 20 75

.ه .م AMPSO 11245 98 20 لاا89
ModBPSO 10431 74 20 78

SCPSO 9477.38 16 9
MBPSO 11779 87 20 77

12
AMPSO 12032 67 20 64

ModBPSO 10356 12 19 34
SCPSO 9323.47 16 18
MBPSO 11053 89 20 45

14
AMPSO 11256 89 20 89

ModBPSO 9876.25 18 78

SCPSO 5856 60 13 23

reducir el número de fem toceldas que deben 
desplegarse en la HetNet.

Una densidad m enor de fem toceldas genera 
una menor interferencia en la HetNet lo que 
permite m antener requerim ientos altos de QoS. En

Es importante resaltar que incrementar los 
valores de ٠ y β  representa un requerim iento 
mayor de QoS para servicios que así lo 
demanden. Así, para umbrales de SIR  altos, la 
Tabla 7  sugiere que para mantenerlos, se debe
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Tabla 7. Evaluadón de apt؛tud para SU=100, PU=30
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d B  Técnica Aptitud (Mbps) Enlaces secundarios iteraciones

MBPSO 36886 17 67 46

AMPSO 35652.23 68 67

ModBPSO 33589 12 63 87

SCPSO 31286.76 51 13

MBPSO 34993.85 64 76

AMPSO 33562.21 62 87

ModBPSO 34901.19 59 92

SCPSO 32467 16 44 23

MBPSO 28973.70 51 13

AMPSO 32681.98 53 43

ModBPSO 27987.65 41 86

SCPSO 18848.65 27 19

MBPSO 22761.72 44 54

AMPSO 27497.51 53 72

ModBPSO No converge - -

SCPSO No converge - -

MBPSO 21569.56 38 61

AMPSO 23763.49 43 78

ModBPSO No converge - -

SCPSO No converge - -

5. Conclusiones

ó un problema de؛v؛En este trabajo se reso 
cas؛cando las técn؛do apl؛espectro com part 

MBPSO, AMPSO, ModBPSO. Los resultados 
ntas redes؛st؛ble que d؛demuestran que es pos 

multáneamente, y en؛compartan espectro s 
ncrementar el uso del؛ a se logre؛consecuenc 

espectro. Además, se demuestra que al m ejorar la 
ón de las؛ón y explotac؛ca de explorac؛característ 

enen؛cas basadas en PSO, se obt؛cas heuríst؛técn 
ones. Los resultados demuestran؛uc؛mejores so 

enen el؛cas MBPSO y AMPSO mant؛que las técn 
ma tasa de؛so entre lograr una m áx؛com prom

contraste, tasas de datos altas solo pueden 
a ba ja؛ .nterferenc؛ ones de؛c؛alcanzarse en cond

Por ejemplo, observando los resultados de la 
o de؛c؛un proveedor de serv ؛Tabla 7, s 

os؛c؛ere ofrecer serv؛es requ؛؛ones móv؛cac؛com un 
valente؛en una HetNet con una QoS de 8  dB (equ 

os de voz) y la red m acrocelular solo؛c؛a serv 
r؛ ,bles para com part؛spon؛cuenta con 30 canales d 

64 mo؛r como m áx؛st؛entonces solo deben ex 
femtoceldas desplegadas.

ere mantener en la؛se requ ؛Por otra parte, s 
gual a 14 dB, entonces el؛ HetNet un SIR  mayor o 

43 mo de؛proveedor solo deberá desplegar un máx 
.stem a؛femtoceldas en el s
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j.asoc.2012.10.016.
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Improved PSO Algorithm with a Territorial Diversity- 
Preserving Scheme and Enhanced Exploration- 
Explotation Balance. Swarm and Evolutionary 
Computation, Vol. 11, pp. 1-15. DOI: 10.1016/ 
j.swevo.2012.12.004.

14. Mirjalili, S.ه  Lewis, A. (2013). S-shaped versus V-
shaped transfer functions for binary panicle swarm 
optimization. Swarm and Evolutionary Computation, 
Vol. 9, pp. 1-14. DOI: 10.1016/j.swevo.
2012 09 002

15. Pampara, G., Franken, N., ه . Engelbrecht, A.P. 
(2005). Combining particle swarm optimisation with 
angle modulation to solve binary problems. IEEE 
Congress on Evolutionary Computation, pp. 89-96. 
DOI: 10 1109/CEC 2005 1554671

16. Ji, Z., Tian, T., He, S., ه  Zhu, Z. (2012). A memory 
binary panicle swarm optimization. IEEE Congress 
on Evolutionary Computation (CEC), pp. 1-5.

17. Deep, K. ه  Bansal, J.C. (2008). A Socio-Cognitive 
Particle Swarm Optimization for Multi-Dimensional 
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Engineering and Technology Conference (ICETET), 
pp. 355-360. DOI: 10.1109/ICETET.2008.163.

18. Nápoles, G., Grau, ا., Bello, M., ه  Bello, R. (2014).
Toward Swarm Diversity: Random Sampling in 
Variable Neighborhoods Procedure Using a Lévy 
Distribution. Computación y Sistemas, Vol. 18, No. 
1, pp. 79-95. DOI: 10.13053/CyS-18-1-2014-020.

datos del sistema con m ínima interferencia para 
los casos de interferencia baja y alta y para 
exigencias de QoS desde 6 dB hasta 14 dB.

Para algunos casos, las soluciones obtenidas 
con MBPSO mejoran aproxim adam ente en un 
25%  la tasa de datos de la red obtenida con 
SCPSO, m ientras que en otros casos es del 80%  
(SU=20, PU=6, SIR=12dB). MBPSO y AMPSO 
son técnicas confiables que puede aplicarse para 
aquellos casos en que la complejidad 
computacional del problema es alta.
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