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Resumen. Compartir espectro es una de las soluciones
que permitirA que Redes Heterogéneas (HetNet),
formada por diversas tecnologias de acceso
inalambricos, dispongan de recurso espectral adicional.
Con esto se promueve la coexistencia entre los
diferentes sistemas de radio, incrementando con ello su
eficiencia espectral, pero también la interferencia en el
sistema. En este trabajo se implementa una estrategia
que controla la interferencia y asignacién de canal en
una HetNet, con el fin de maximizar la tasa de datos y la
cantidad de wusuarios que comparten espectro
concurrentemente. Para resolver este problema se
utilizé la técnica de Optimizacién Binaria por Cumulo de
Particulas con Memoria (MBPSO). A diferencia de la
técnica optimizacién por Cumulo de Particulas Socio-
Cognitiva (SCPSO), MBPSO evita la convergencia
prematura en optimos locales y la perdida de diversidad.
Los resultados muestran que al utilizar MBPSO se
mejoran las soluciones sobre la capacidad del sistema
que cuando se utiliza SCPSO. Ademés se compara el
desempefio de MBPSO con las técnicas PSO
Modificado (ModBPSQ) y Optimizacién por Cimulo de
Particulas con Modulacién Angular (AMPSO), ya que
estas Ultimas también cuentan con la habilidad de
explorar y explotar diversos espacios de soluciones.

Palabras clave. Comparticién de espectro, eficiencia
espectral, redes heterogéneas, MBPSO.

Memory Binary Particle Swarm

Optimization (MBPSO) Applied

to a Spectrum Sharing Problem
Abstract. Spectrum sharing is one of the solutions for

Heterogeneous Networks (HetNets) for achieving
additional spectral resource. The aim is to promote the

coexistence of different radio systems in the same
spectral portion increasing the spectral efficiency of the
HetNet, but at teh same time the interference is
increased. In this paper, we tackle with the problem of
spectrum sharing in a HetNet composed of a macrocell
and several femtocells. We propose a strategy, in which
macrocell and femtocells can share simultaneously the
available  bandwidth  while  avoiding intra-tier
interference. Our approach is formulated as a binary
optimization problem. The fitness is evaluated
considering techniques of binary optimization with
memory to overcome the problem of premature
convergence or loss of diversity that Socio-Cognitive
Particle Swarm Optimization (SCPSO) presents. The
results show that by using the Memory Binary Particle
Swarm Optimization (MBPSO) algorithm, the system’s
capacity is improved in comparison with solutions
obtained using SCPSO. Also the performance of
MBPSO is compared with Angle Modulated PSO
(AMPSQ) and Modified BPSO (ModBPSO) algorithms.

Keywords. Spectrum sharing, spectral -efficiency,
heterogeneous networks, MBPSO.

1. Introduccién

Hoy en dia existe una diversidad de dispositivos
que ofrecen servicios de comunicacién
inalambrica, ya sea voz, video o datos; que
permiten comunicarnos en cualquier momento y
lugar. Actualmente existen a nivel mundial mas de
un trillén de dispositivos méviles que cuentan con
algun tipo de interfaz inalambrica, por lo que el
consumo de datos de banda ancha esta
aumentando vertiginosamente [1]. Para atender
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las demandas de ancho de banda y Calidad de
servicio (QoS), las nuevas generaciones de redes
méviles e inaldmbricas requerirdn del trabajo
conjunto de multiples redes y tecnologias de

acceso de radio (RATs: Radio Access
Technologies), conocidas como Redes
Heterogéneas (HetNets: Heterogeneous
Networks). Una  HetNet se  compone

principalmente por una combinacion de celdas de
gran tamano (macro-celdas) y celdas pequenas
(micro-celdas, pico-celdas y femto-celdas). Las
redes y aplicaciones inalambricas estan reguladas
mediante una politica de asignacién de espectro
fija. El Estado regula, administra y asigna la
utilizacién de las diferentes bandas de frecuencia
a distintas empresas, usuarios y/o servicios. Con
esta administracién fija del espectro se le garantiza
a cada tecnologia inalambrica proteccion contra la
interferencia pero por otro lado, provoca que sea
mas dificil encontrar bandas libres para el
despliegue de HetNets, generando la idea de una
escasez de espectro.

Por lo anterior, se ha considerado la necesidad
de introducir reformas, no sélo para mejorar su
utilizacién, sino también para proveer de nuevo
espectro a las nuevas aplicaciones de banda
ancha mévil. Una solucién que permitird que los
sistemas de comunicacién inalambrica que no
dispongan de recurso espectral propio, puedan
acceder al recurso espectral disponible de otras
redes, es la de compartir bandas de frecuencia. El
esquema de espectro compartido promueve la
coexistencia entre diferentes sistemas de radio en
la misma porcién espectral sin importar la banda
de frecuencia de operaciéon que el Estado les
asigné originalmente [2]. Entre mayor sea la
cantidad de usuarios que utilicen un canal
concurrentemente, mayor sera la eficiencia en el
uso del espectro, aungque también mayor seréa la
interferencia a la que estardn expuestos los
usuarios de la red que participan en la
comparticion de espectro [3].

Se considera que la interferencia es dafina si
es lo suficientemente elevada como para causar
una interrupcion en el servicio a cualquiera de los
usuarios de la red. Para controlarla, se propone
controlar el acceso de usuarios al sistema
mediante una asignacion efectiva de canales de
transmision. Si se cumple la restricciéon de
admisién impuestas por el algoritmo, entonces se
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permite que el usuario utilice los recursos de lared,
en caso contrario, el usuario sera bloqueado.

El problema de espectro compartido se
considera como un problema combinatorio de gran
complejidad (NP-dificil), debido al gran consumo
en recursos computacionales necesarios para
encontrar una solucién global 6ptima, los cuales
crecen de forma exponencial con respecto al
tamano del problema [3-5]. En este caso, la
complejidad del problema se incrementa conforme
se incrementa el ndmero de usuarios que le
solicitan a otra red un canal de comunicacion
compartido. En la literatura se reportan algunas
propuestas que resuelven el problema de espectro
compartido considerando la interferencia como su
principal restriccion [4-10].

En [4], los autores maximizan la cantidad de
datos transmitidos (throughput) en una red
heterogénea de espectro compartido utilizando
una técnica basada en la programacion
geométrica secuencial.

Utilizando el Método Montecarlo, en [5] se
generan mas un milldbn de escenarios distintos a
partir de diferentes combinaciones para
determinar la ubicacién espacial de los usuarios
secundarios y la tasa de datos trasmitidos durante
la deteccién de canales disponibles en bandas
reguladas de television.

En [6], los autores proponen una estrategia
para que los usuarios exploten bandas de
frecuencia en una de dos modalidades; (i)
concurrentemente con usuarios de diferentes
sistemas o, (ii) esperar a que una banda se libere
para explotarla. La decisiéon para conmutar entre
una modalidad y otra, la toman con base a no
sobrepasar un nivel de interferencia permitido en
la red.

En [7], los autores aplican Teoria de Juegos
para maximizar la tasa de datos de una HetNet.
Definen un compromiso que consiste en que la
macrocelda venda una porciéon de su ancho de
banda a solicitud de la femtocelda, permitiéndole
transmitir simultdneamente en su misma banda de
frecuencia. El costo del ancho de banda es
directamente proporcional a la cantidad de
espectro solicitado por la femtocelda, pero se
reduce proporcionalmente con la cantidad de
usuarios macrocelulares que la femtocelda pueda
atender con esa misma cantidad de espectro.
Entre mayor sea la cantidad de espectro solicitado,
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mayor sera la tasa de datos que logre transmitir la
femtocelda, al igual que el costo y la interferencia
generada hacia usuarios macrocelulares. Aunque
estos trabajos resuelven para un gran namero de
usuarios secundarios que pueden compartir un
canal, requieren de una excesiva complejidad
computacional para encontrar el 6ptimo global.

En contraste con los trabajos anteriores, en [8-
10], los autores utilizan técnicas de inteligencia
computacional inspirados en procesos naturales
para encontrar soluciones “buenas” al problema de
espectro compartido, en un tiempo y consumo de
recursos aceptables. Tal es el caso de Algoritmos
Genéticos (GA) [8], Optimizacion por Colonia de
Hormigas (ACO) [9] y Optimizacién por Cumulo de
Particulas (PSO) [10]. La ventaja de aplicar estos
algoritmos es que son sencillos de implementar y
requieren poca informacién sobre el espacio de
blasqueda de posibles soluciones.

En un trabajo previo [12], utilizamos la técnica
de optimizacion por Camulo de Particulas Socio-
Cognitiva (SCPSO) [19] para maximizar la
cantidad de datos transmitidos (throughput) en una
HetNet y la cantidad de wusuarios que
concurrentemente utilizan el mismo canal. Sin
embargo, debido a un posible estancamiento o
convergencia prematura en 6ptimos locales que
presenta la técnica SCPSO como se reporta en
[13-18], las soluciones obtenidas en [12] no se
consideran como suficientemente “buenas”. Para
resolver lo anterior, en la literatura se reportan
algunas propuestas que permiten que el enjambre,
en la técnica PSO, se mueva hacia distintas
regiones, para lograr mayor diversidad del camulo
y evitar que se concentren en una region reducida
del espacio de soluciones. Ejemplos de ellas son;
Optimizacién Binaria por Cumulo de Particulas
Modificado (ModBPSO) [14], Optimizacién por
Cumulo de Particulas con Modulacién Angular
(AMPSO) [15] y Optimizacién Binaria por Camulo
de Particulas con Memoria (MBPSO) [16].

En este trabajo se propone resolver el problema
de espectro compartido en una HetNet aplicando
la técnica de optimizacion MBPSO. Una HetNet
esta formada por una macro-celda (conocida como
la red primaria) y por un conjunto de celdas mas
pequenas o femto-celdas (denominada la red
secundaria) que operan en la misma banda de
frecuencia que la red primaria tiene asignada. El
problema de optimizacién consiste en maximizar

la cantidad de datos transmitidos (throughput) en
la red y, esta depende de la cantidad de usuarios
femtocelulares o secundarios (SUs) que utilicen el
mismo canal primario que los usuarios de la
macrocelda o primarios (PUs). La asignacion de
un canal primario a un SU depende del nivel de
interferencia que éstos generan a los PUs y, a
aquellos SUs que utilizan el mismo canal primario.
Los resultados obtenidos con la técnica MBPSO
se comparan con los obtenidos con SCPSO,
considerada como una adaptacién binaria del
algoritmo PSO para espacios continuos. Ademas
de presentar una analisis comparativo con las
técnicas AMPSO y ModBPSO.

El resto del articulo estd organizado de la
siguiente manera, en la seccién 2 se describe la
metaheuristica MBPSO, la estrategia de control de
admisién y asignacion de canal en una HetNet y la
integracion de la técnica MBPSO se describe en la
seccion 3. En la seccidn 4 se describe el escenario
de evaluacién y se analizan los resultados, las
conclusiones de este trabajo se presentan en la
seccion 5.

2. Optimizacion binaria por cumulo de
particulas con memoria (MBPSO)

2.1. PSO

La Optimizaciéon por Cumulo de Particulas
(PSO) es una técnica heuristica desarrollada por
Kennedy y Eberhart [11], basada en la simulacién
del comportamiento social observado en las aves
dentro de una parvada. En PSO, cada individuo
representa una particula que viaja a través de un
espacio de soluciones del problema. Cada
particula tiene asignada una posicidon xq, que
representa una posible solucién al problema a
resolver, y un valor de velocidad vis, que regula el
movimiento en la posicion de la particula. La
calidad de la posicién de cada particula (aptitud)
se relaciona con una o varias funciones objetivo
que representan el problema a resolver. Para
promover la exploracién amplia del espacio de
blasqueda, las posiciones y velocidades iniciales
asignadas a cada particula se generan de forma
aleatoria. Conforme avanza el algoritmo, la
velocidad y la posicion cambian en funcién de la
interaccion social basada en la tendencia social de
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Tabla 1.- Valores del estado de bit de velocldad de la

particula
atual  objetivo  Pesultado
1 0 0 Sin cambio
2 0 1 Cambio
3 1 0 Cambio
4 1 1 Sin cambio

cada individuo a emular el éxito de otros individuos
en la poblacion. El cambio en la posicién de cada
particula depende de su propio conocimiento y
medic ambiente, ya que en dicho cambic se
considera la mejor posicion visitada por la particula
y la mejor posicion visitada por algun individuo del
enjambre (pbest). A medida que el aigoritmo
avanza, las particulas se concentran en zonas con
soluciones de buena calidad del espacio de
busqueda (gbest). Al finaiizar, el aigoritmo
devuelve la mejor soiucién visitada por algun
individuo del enjambre.

A pesar de que PSO y algunas de sus
variantes, como SCPSO, se consideran técnicas
robustas para solucionar complejos y diversos
problemas de optimizacién, son deficientes al
tratar de satisfacer un balance entre la exploracion
y explotacion. La exploracion se refiere a la
capacidad del algoritmo de moverse dentro de un
espacio de basqueda amplio, de tal forma que no
se limite a buscar en una sola regién, sino que
explore otras. En cambio, la explotacion es la
habilidad que ofrece la técnica para evaluar
localmente una regién y guiar a las particuiar a la
basqueda del minimo local. incrementar solo la
exploracién de la técnica resulta en una bisqueda
aleatoria en el dominio del problema, y mejorar
Unicamente la explotacién resultard en una
convergencia prematura a posibies soiuciones.

2.2. MBPSO

PSO convencional se disené para resolver
problemas de espacio continuoc, mientras que
SCPSO se aplica en la resolucién de problemas
de optimizacién que requieren una representacion
binaria de sus soluciones. En esta versién se
mantiene la diversidad en el cimulo introduciendo
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ia distancia entre gbesty pbest como una nueva
ecuacion de actuaiizacion de veiocidad. La
convergencia dei aigoritmo es infiuenciada por el
numero de particulas en el cimulo y ia dimensién
del problema, por io que para problemas de aita
complejidad ia técnica no converge a una soiucion
confiabie y en algunos casos requiere de mas
iteraciones para converger.

La técnica MBPSO [16] propone algunas
modificaciones ai aigoritmo SCPSOQO, ias cuales
evitan que la informacién se propague con rapidez
entre las particulas y se agrupen alrededor del
primer 6ptimo local que encuentran. En MBPSO,
el valor de la posicion de la particula xi, se
actuaiiza con base a su posicion previa. En
SCPSO, vis representa la probabiiidad de que un
bit cambie a 1, mientras que en MBPSO,
representa la probabilidad de que un bit
permanezca sin cambio dependiendo de uno de
los cuatro estados esperados (ver tabla 1), la cual
conoce a partir de pbest y gbest. Cuando el bit del
estado actual es el mismo que el del estado
objetivo, el bit memoriza el valor del bit del estado
actual y se mantiene con el mismo valor, de lo
contrario se incrementara la probabiiidad de que el
bit cambie de estado. Los valores de 0 y 1 que
puede tomar el bit se obtienen a partir de la
siguiente expresion:

. N 1
sigVy) = ——=r. Q)
14+e

En este sentido, la representacion de velocidad
y posicién de la particula se determinan a partir de
las siguientes expresiones:

k+1 k k
v, =wv, +c XnXEqual(p,,.x,;))

k @
+CZ X }”2 XEqual(pgd , xid ))7

Xy otro

i {x; if (rand () < sig (v;™))
d T\ =k »

donde

1 sila==>b)

Equal(a,b) = {
-1 otro
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a, btoman el valor correspondiente a Pid, Xid,o Pgd,
Xid segun corresponda, w,ci1,c2 son el peso de
inercia y las constantes cognitiva y social
respectivamente; ri,r2 son numeros aleatorios
uniformemente distribuidos entre [0,1], Pid es la
mejor solucién encontrada (pbest) por la particula
iy pgdes la mejor solucién encontrada (gbest) por
la particula g. La funcién rand() genera un niimero
entero aleatorio con distribucién uniforme entre 0
y N.

Finalmente, en SCPSO se consideran valores
grandes de peso de inercia (W) para mejorar la
basqueda global de soluciones o, valores
pequefios para mejorar la busqueda local. En
MBPSO se propone una estrategia lineal
decreciente para determinar el peso de inercia, la
cual esta definida por la siguiente expresion:

W= OMA- (w0l CmanX iterouren, 5)

donde y wmnson el limite superior e inferior
de W respectivamente, Itermax es el numero
maximo de iteraciones que se le permiten a la
mejor solucién (valor de aptitud) permanecer sin
cambio, mientras que Iterckrrent representa el
numero de iteraciones consecutivas durante las
gue la mejor solucién no mejora.

3. Procedimiento para la asignacion de
canal en la HetNet

En una red heterogénea distintas tecnologias
inalambricas coexisten con el fin de incrementar la
capacidad del sistema en aquellas zonas de mayor
demanda de recursos, distribuyendo el trafico
entre las celdas pequefias para que no se generen
cuellos de botella en la macro-celda (ver Fig.1).

Al operar en un esquema de espectro
compartido, la HetNet requiere de una estrategia
para controlar el acceso a los SUs y asignarles un
canal de comunicacion de alguna de las bandas
de frecuencia disponibles en el sistema.

Para garantizar la transmision exitosa entre los
usuarios que comparten simultaneamente un
canal, es necesario mantener el nivel de
interferencia del sistema por debajo de un valor de
umbral predeterminado.
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Fig. 1. Red Heterogénea, formada por varas
femtoceldas desplegadas sobre una macrocelda

La Relacion Sefial-Interferencia (SIR) es Ila
métrica que evalla la relacién entre la potencia de
transmision del usuario y la potencia que éste
percibe de otros transmisores que transmiten en el
mismo canal (interferencia). La seleccién de
aquellos SUs que se les puede asignar un canal
primario depende de la interferencia que éstos
generen a los PUs y a aquellos SUs que utilicen el
mismo canal primario. Para determinar el nivel de
interferencia que experimenta cualquiera de los
enlaces en el sistema, las expresiones (6) y (7),
permiten determinar el valor de SIR que observa
el receptor secundario y primario respectivamente:

, )6(

SIRu

= | kew Pk/dss(k,u)n + R/dps (v,u)n’

Para la expresion (6), P es la potencia del V-
ésimo transmisor primario, ldp(v) es la distancia
entre el v-ésimo transmisor-receptor primario y )
es el exponente de perdidas por propagaciéon que
puede tomar valores entre 2 y 4. Pk es la potencia
de transmision del k-ésimo transmisor secundario,
dps(k,v) es la distancia entre el v-ésimo receptor
primario y el k-ésimo transmisor secundario y ® es
el conjunto de SUs activos que comparten un
canal primario con el V-ésimo PU, esto representa
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la interferencia que perciben los PUs debido a las
transmisiones de los SUs. Por otra parte, para la
ecuacion (7), P, es la potencia del u-ésimo
transmisor secundario, lds(u) es la distancia entre
el wu-ésimo transmisor-receptor secundario.
Mientras que, dss(k,u) es la distancia entre el u-
ésimo receptor secundario y el k-ésimo transmisor
secundario, dps(v,u) es la distancia entre el u-
ésimo receptor secundario y v-ésimo el transmisor
primario.

La capacidad de la HetNet se define por la
maxima tasa de datos que lared transporta y, ésta
depende de la cantidad de SUs con permiso para
transmitir en un canal primario. La funcion objetivo
(8) permite contabilizar la suma total de datos que
se genera en la HetNet, mientras que las
expresiones (9) y (10) calculan respectivamente la
tasa de datos de aquellos SUsy PUs que cumplen
con la restriccion de no generar interferencia
danina entre ellos, garantizando con ello una QoS
en ambas redes. En este caso x, es una variable
binaria que indica si a un SU se le asign6 un canal
para considerarlo en el calculo de la tasa de datos.

La funcion objetivo estd sujeta a que se
garantice una QoS tanto para los SUs (11) como
para los PUs (12). En este sentido, ¢ y S
representan el nivel de interferencia maximo que
pueden tolerar las redes secundaria y primaria
respectivamente, con el fin de mantener un nivel
de QoS a los usuarios de la HetNet.

Con base a la Recomendacion UIT-T G.174 de
la Unién Internacional de Telecomunicaciones, en
la que se establecen los objetivos de calidad de
transmision para los sistemas digitales terrestres
méviles que utilizan terminales portatiles para
acceder a la red telefénica, mantener un valor de
o'y pigual o superior a los 4 dB significa que los
usuarios de la HetNet que utilicen un servicio que
requiera condiciones de trafico bajo (por ejemplo;
servicio de mensajeria) no experimentaran una
interrupcién de su servicio durante el tiempo que
lo utilicen.

Por otro lado, para mantener sin interrupcion a
aquellos servicios 0 aplicaciones que demandan
trafico alto (por ejemplo, transmisién/recepcién de
video en tiempo real) la HetNet debe mantener un
nivel de SIR igual o superior a los 14 dB (esto es,
o=p>14 dB).

Comunicacién del PU que esta utilizando el
mismo canal primario. Para evitar que las pérdidas
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por propagacion degraden la comunicacion entre
SU-femtocelda y PU-macroBS y, que el algoritmo
de optimizacién no converja a alguna solucion, se
limitaron las distancias a 1000 m y 30 m
respectivamente.

su PU
Max Z c'ux, + 2 "y (8)
u=1 v=1

c", = Blog,(1 + SIR,), 9)
¢', = Blog,(1 + SIR,), (10)
SIR, = «a, (11)
SIR, > B. (12)

El algoritmo 1 muestra la implementaciéon de
MBPSO para resolver el problema de espectro
compartido. Cada particula que se utiliza en el
algoritmo representa una posible solucion al
problema, esto es, el conjunto de SUs que
maximizan la capacidad de la HetNet. Cada
particula del camulo cuenta con tres vectores D-
dimensionales asociados (donde ¢=12...D
representa el nimero de SUs desplegados en la
HetNet), de velocidad V, de posicion X y el que
almacena las mejores soluciones P. Cada
componente de la particula xw, puede tomar un
valor de entre {0,1}, mientras que la velocidad, vi4,
puede tomar un valor de entre [—Vmax,max], donde
Vmax €S la velocidad maxima. Durante la Fase de
inicializacion, se genera aleatoriamente el espacio
de busqueda inicial de posibles soluciones.

Se proponen tres nuevos vectores; X', que
contiene el canal asignado de cada SU, P’, que
contiene la mejor asignacion de canal encontrada
hasta el momento para cada particula y el vector
Estado del espectro, que indica el canal primario
(indice) asignado a un PU (contenido). Este vector
se inicializa aleatoriamente y su tamano depende
de la cantidad de PUs que se consideren en el
problema.

La aptitud de la particula se refiere a la cantidad
de datos total que el sistema tiene capacidad de
transmitir en un instante de tiempo, este valor
depende principalmente del ancho de banda del
canal, B, y, de la interferencia presente en la
HetNet generada por los PUs y SUs. La
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interferencia en el sistema se mide en términos del
SIR, si el nivel de SIR de alguno de los SUs o PUs
gque comparten algun canal esta por debajode a y
B respectivamente, entonces se considera una
soiucién no vélida y la aptitud se penaiiza con un
valor 0. En caso contrario, se calcula la tasa de
datos para cada red utiiizando (9 y 10).

El vector P, guarda la mejor soiucion
encontrada por la particula hasta el momento, asi
como en P/’ se almacena la mejor asignacion de
canal. Por uitimo, se generan nuevas soiuciones
candidatas con base a las ecuaciones (1 y 5). En
esta fase, se genera un nuevo valor en la posicién
x;de dimensién d del vector Xiy un nuevo valor de
velocidad v; correspondiente a la misma
dimension d del vector V;, para la particula j.

La mejor soiucién encontrada por el aigoritmo
consiste en; (i) la cantidad de SUs seieccionados
que pueden utilizar un canal primario
concurrentemente con los PUSs, (ii) su ubicacion
espacial, (i) el canal primario que estan
compartiendo PUs y SUs vy, (iv) la tasa de datos
maxima que ofrece el sistema f(Py).

Parametros de entrada: SU considerados en la HetNet,
PU considerados en la HetNet, umbral de calidad
requerido para la red primaria y secundaria («, S
respectivamente), tamafio del cimulo (S particulas),
nimero de iteraciones (Tmax), Vmax limite superior e
inferior de ® (wmax, Wmin), vector de posicién (X), vector
de mejores soluciones (P), vector de velocidad (V),
vector que contiene el canal asignado de cada SU (X)),
vector que contiene la mejor asignhacién de canal
encontrada hasta el momento para cada particula (P).

Algoritmo 1. Pseudocédigo para resolver el problema
de espectro compartido aplicando la técnica MBPSO.

1: Desplegar aleatoriamente PUs y SUs
: Inlclalizar aleatoriamente X, X',V y vector
Estado del espectro.
Hacer P=X, P=X"
Repite
Parai=1a$§
Hacer mapeo de X’y Estado del espectro
para calcular niveles de S/IRen SUs y PUs
5: Hacer mapeo de P’y Estado del espectro
para calcular niveles de S/IRen SUs y PUs.
Calcular aptitud f(X7)
Calcular aptitud f(Py)
Si f(Xi’) > f{(Pr) entonces
Para j= 1 a nimero de dimensiones
P = Xj
Pii=Xj

o

Siguiente j
Fin Si

10: gt=i-1

11: Paraj=1a$§

12: Hacer mapeo de Pjy Estado del espectro
para calcular niveles de S/IRen SUs y PUs.

13: Hacer mapeo de Py Estado del espectro
para calcular niveles de S/IRen SUs y PUs.

14; Calcular aptitud f(Py)

15; Si f(Pj) > f{(P'gt) entonces gt = §

16: Siguiente j

17: Para j= 1 a nimero de dimensiones

18: vi = wvj + cirn X Equal(pixj ) + carz x
Equal(pg - X; )

19: Calcular sig(vy)

20: Si rand()<sig(vy) entonces xj = xj

21: Si xj=1 entonces asignar aleatoriamente un
nuevo canal primario a x7j

22: Siguiente j

23: Siguiente i

24: Hasta que se cumpla Tmax

25: Regresar parametros de salida: Tasa Maxima de
datos lograda en la Hetnet (f(Py)), conjunto de SUs
seleccionados (Pg), vector de Estado de espectro
en el que se informa con que canal primario quedé
asignado cada SU seleccionado.

4.2. Evaluacion del problema de espectro
compartido utilizando MBPSO

En esta subseccién se anaiiza el desempefo
de MBPSO para distintos parametros de itermax y
Vinax, para esto se utiliza como caso de estudio el
problema de espectro compartido descrito en la
seccién 4.1. Para evaluar la capacidad de la
HetNet se reaiizaron 500 experimentos, por cada
experimento se reaiizan 30 corridas
independientes y cada una de ellas consiste de un
nuevo despiiegue (aieatorio) de SUs y PUs [12].
En cada corrida se evaldan un conjunto de
posibles combinaciones de asignacién de un canal
primario a un SU, la cantidad de combinaciones
depende de la cantidad de particulas e iteraciones.
Los valores de a y g establecen la QoS (medido
en términos de SIA) en las redes primaria y
secundaria respectivamente. Con base a [16] y
[19], en la Tabla 2 se muestran los parametros
utiiizados durante los experimentos.

El algoritmo de evaluacion y las técnicas de
optimizacién se implementaron en Lenguaje C,
ejecutandose en una estacién de trabajo Dell
Precision Tower 7910, la cual incluye un

Computacidn y Sistemas, Vol. 20, No. 1, 2016, pp. 153-168
doi: 10.13053/CyS-20-1-2198



ISSN 2007-9737

160

Fig 2. Convergenda de soludones al problema de espectro compa”do, PU=6, SU=20, termax=20, Vmax=6

Tabla 2.- Parametros utWzados durante la evaluac 6n

Para MBPSO [16]

Tamano del camulo (S)
Numero Max mo de teradones (Thax(
Constantes cogntvay soc al
Omex
Qnin
Itermex
Virex

Para desplieg”e de la HetNet [19]

Numero de usuar os secundaros (SU(

Numero de usuaros prmaros (PU(

Canales pr maros
a, B (en dB)
Ancho de banda del canal (B en MHz)

Procesador ntel® Xeon® E5-2609 v3 (15MB
Caché, 1.90 GHz) y s stema operatvo W ndows®
Profess 7onal, 64-bt, 32 GB DDR4 a 2133 MHz

En la Fg. 2 se muestra la convergenc a de los
resultados encontrados para cada valor de SIR.
Cada curva corresponde al promed o de la apttud
de la tasa de datos para un determ nado valor de
SIR.
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Valor
40
100
2
1.4
0.1
5,10,15,20,25
4,6,8
Valor
20,50,100
6,12,30
6,12,30
4,6,8,10,12,14
20

En estas curvas se observ-a que al ncrementar
el requermento de QoS, la tasa de datos
promed o d sm nuye.

Esto sucede deb do a que al ncrementarse el
valor de SIR, la nterferenca tolerable en el
s stema es menor, lo que dfculta al algortmo
as gnar un canal atodos los SUs, por lo que latasa
de datos d sm nuye.
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Tabla 3. Soluciones encontradas para distintos valores de /termax, SU=20,PU=6, Vinax=6

z:ég ltermax Aptitud (Mbps) EnI:gtle:cgiicnuarLia;ios iteraciones
5 11514,79 20 24
10 11621.15 20 36
4 15 11732.38 20 57
20 11817.28 20 83
25 11732.38 20 79
5 11995.20 20 43
10 11219.68 20 69
6 15 11533.32 20 90
20 12057.84 20 88
25 11533.32 20 1
5 11465.85 20 50
10 11345.10 20 47
8 15 11400.56 20 65
20 11748.95 20 58
25 11400.56 20 83
5 10993.44 20 36
10 10822.56 20 39
10 15 11140.75 20 87
20 11513.11 20 75
25 11337.41 20 82
5 10239.63 20 34
10 11158.14 20 68
12 15 10841.29 20 83
20 11779.87 20 77
25 11468.96 20 81
5 10300.16 20 46
10 10778.87 20 64
14 15 10825.01 20 46
20 11053.89 20 45
25 10862.54 20 72

En las Tablas 3 y 4 se presenta la evaluacién
delimpacto de los pardmetros Iter;, ., ¥ Vimax SObre
la técnica MBPSO, respectivamente.

En la Tabla 3 se muestran los resultados de la
mejor solucién de la tasa de datos obtenida en
cada experimento. Se puede observar que al

incrementar el valor de lternax, €l valor de aptitud
se incrementa, sin embargo para valores de
Iter,..=25, no se observa wuna mejora
significativa, incluso para valores de SIR=12,14
dB, el valor de aptitud se reduce, por lo que parece
que este parametro presenta un limite en
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Tabla 4. Soluciones encontradas para distintos valores de Vmax, SU=20, PU=8, ltermax=20

TI?;B Vmax Aptitud (Mbps) Enl:gf: cgi?)cnuar::l(j)a; los iteraciones
4 11544.65 20 58
4 6 11717.28 20 83
8 11852.34 20 52
4 11609.82 20 95
6 6 11757.84 20 88
8 11610.90 20 1
4 11426.29 20 97
8 6 11748.95 20 58
8 11288.92 20 77
4 11147.94 19 90
10 6 11337.41 20 75
8 11289.28 20 76
4 11024.31 20 52
12 6 11779.87 19 77
8 10956.57 20 62
4 10744.46 19 76
14 6 11053.89 18 45
8 11343.05 19 94

Iter,,,,=20 a partir del cual no hay una mejora
significativa en la aptitud. Los resultados de la
evaluacion de aptitud para distintos valores de
Vimax S€ presentan en la Tabla 4. Los resultados
muestran que las mejores soluciones de la tasa de
datos para distintos umbrales de SIR se obtiene
para valores de Vimax=6.

4.3. Analisis comparativo

Para realizar un andlisis comparativo también
se implementaron las técnicas MBPSO, SCPSO,
AMPSO, ModBPSO para resolver el problema de
espectro compartido. A continuacién se describe
brevemente su operacion.

4.3.1. Descripcion de ModBPSO y AMPSO

Vie cercanos a 0, indica la convergencia del
algoritmo y los bits de la particula se modificaran a
pesar de que se realizd una menor exploracion.
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Ademas, considerando que SCPSO carece de la
habilidad de recordar soluciones de buena calidad
ya encontradas, le es dificil converger a una
solucion 6ptima debido al incremento de
aleatoriedad que se produce conforme las
iteraciones avanzan, quedando atrapado en
optimos locales. Al igual que MBPSO, ModBPSO
[14] memoriza las mejores soluciones encontradas
para que la aleatoriedad de la actualizacién de
posicion de la particula no le afecte,
incrementando con ello su velocidad de
convergencia.

1-—2—, Vi7" <0
T(V E+ly _ Texp(—vh ? id

id/ — ’

2 1 k+1

—_—— v, >0
T+exp(—vEh) ’ id

(13)

Sin embargo, la modificacién principal consiste
en utilizar una nueva funcién de transferencia,
definida en (13), que influye significativamente en
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evitar que el algoritmo converga prematuramente
en 6ptimos locales. Ademas en (14), se definen las
reglas para actualizar la posicién de la particula;

0, if randO<TOWSY and V' <0
=1, if randO<STOYY) and V>0.(14)
2 if randO)>TOWEY

Para incrementar la diversidad del cimulo y
reducir la probabilidad de que el algoritmo quede
atrapado en un O6ptimo local, se incluye una
operacién de mutaciéon. Con esto, en la k-ésima
iteracién, cada posicion binaria de la i-ésima
particula cambiard a su valor opuesto en funcién
de una probabilidad de mutacién ry, definida
en (15):

X, =

. {l—xi’;, if rand()<rmu’ 15)

k
X, otro

donde rand() es un namero aleatorio distribuido
uniformemente entre [0,1]. rm €S la probabilidad
de que un bit en la particula cambie de 1 a 0 0 de
0ail.

Por otro lado, AMPSO [15] no incluye la
caracteristica de memorizar la mejor solucién
encontrada para reducir la convergencia en
optimos locales, sino que aplica una técnica de
modulacién angular para mapear el problema de
optimizacién binario a espacios de busqueda
continuos y viceversa. Ademas de incrementar la
diversidad del cumulo, AMPSO mejora la
deficiencia que presenta SCPSO para resolver
problemas de alta dimensionalidad.

Para problemas de optimizacién en espacio
discreto, en los que la particula se representa por
una cadena de bits, la dimensionalidad se refiere
al nimero de bits que representan una solucién del
problema a resolver. Problemas de gran
dimensién, no solamente incrementan el espacio
de busqueda de posibles soluciones sino que
también incrementan la complejidad
computacional. Para generar la cadena de bits, los
autores en [15] utilizan las expresiones en (16):

g(x)=sin(2z(x—a)xbxcos(A))+e, (16)

donde
A=2nxxc(x—a), (17)

x representa un solo valor (0 muestra) de un
conjunto de intervalos espaciados uniformemente,
este valor depende de la cantidad de bits utilizados
en una particula (esto es, la dimensién de la
particula), a es el desplazamiento horizontal de la
funcion, by crepresentan la frecuencia maxima de
la funcidbn seno y coseno respectivamente y, e
representa el desplazamiento vertical de la
funcion. En AMPSO, la técnica PSO convencional
se aplica entonces para optimizar la tupla formada
por (a,b,c,d)en (186) y (17), en lugar de evolucionar
toda la cadena de bits que forma una particula de
n-dimensiones. Una vez que se ejecutaron las
iteraciones con PSO, los valores obtenidos de
(a,b,c,d) se sustituyen de nuevo en (16) para
generar una nueva funcién de tiempo continuo. En
cada intervalo de la funcidn resultante se toman
muestras x que permitiran generar un bit (0 0 1)
por cada intervalo, el conjunto de bits que se
forman por todos los intervalos de la funcién
representa el vector solucion (particula) del
problema. A esta nueva particula se le evalia su
adaptabilidad o fitness de la misma forma como se
hace con PSO convencional, la velocidad vig y
posicion xi, se actualizan mediante (18):

kel k k k
Vg = wvy + (e (P — X))+ CZrZ(pgd = Xy )

k+1 __ k k+1
Xig = Xg t Vo

(18)

4.3.2 Resultados con MBPSO, ModBPSO y
AMPSO

Los parametros de operacién utilizados por las
técnicas MBPSO, AMPSO y ModBPSO se
muestran en la Tabla 5 y, para una comparacién
justa, los parametros de evaluacién de la HetNet
considerados durante la simulacién son los
mismos que se muestran en la Tabla 2 [12]. La Fig.
3 muestra la convergencia de las mejores
soluciones encontradas con cada una de las
técnicas de optimizacion para un escenario de
evaluaciéon con SU=100, PU=30 y a=$=8 dB. Se
puede observar en la Fig.3 que AMPSO y MBPSO
presentan una menor velocidad de convergencia
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lteraciones

| —— AMPSO—e— MBPSO X ModBPSO 1 SCPSO|

Fig. 3. Convergenc a de la apttud de la HetNet para
SU=20, PUs=6, a=3=8 dB

en comparacién con SCPSO y ModBPSO. Sin
embargo, no existe diferencia significativa en las
soluciones obtenidas.

Para evaluar la capacidad de la HetNet en
términos de latasa de datos y enlaces secundarios
seleccionados, se consideraron dos escenarios, (i)
de interferencia baja, representada por pocos
usuarios en la red, esto es, 20 femtoceldas y un
usuario femtocelular en cada una (SU=20), y una
red macroceluar con 6 usuarios macrocelulares o
primarios (PU=6), (ii) de interferencia alta, cuando
se tienen SU=100 y PU=30 usuarios en la HetNet.
En la Tabla 6 se presenta un comparativo del
promedio de la tasa de datos, para distintos
valores de umbral S/R, determinada a partir de un
total de 500 experimentos.

los resultados de la Tabla 6 describen la
capacidad de la red para el escenario en el que
existe poca interferencia, ya que solo se
despliegan 20 femtoceldas, las cuales pueden
compartir uno de los 6 canales primarios con que
cuenta la red macrocelular. De los resultados, se
puede observar que con las técnicas MBPSO,
AMPSO y ModBPSO se obtienen mejores
resultados de latasa de datos que la HetNet puede
transmitir con respecto a cuando se utiliza
SCPSO. Considerando el caso de S/R=10 dB, la
ganancia en latasa de datos obtenida con MBPSO
es del 19.62%, 0.8% y 8.6% con respecto a la
obtenida con SCPSO, AMPSO y ModBPSO
respectivamente. Ademas, para todos los casos
de S/R evaluados, a diferencia de ModBPSO vy
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SCPSO, los algoritmos MBPSO y AMPSO
encuentran una solucion en el que los 20 SUs
logran compartir un canal primario con alguno de
los PUs o usuarios macrocelulares desplegados
en la HetNet. También se puede observar que,
como se reporta en la literatura, SCPSO converge
prematuramente en Optimos locales, ya que las
soluciones que presenta las obtiene en etapas
tempranas de ejecutar la evaluacion.

En la Tabla 7 se muestran los resultados de
capacidad de la HetNet, para el caso en el que se
produce interferencia alta, representada por el
despliegue de 100 femtoceldas, con un usuario
femtocelular o SU en cada una y, en la que cada
SU, puede compartir uno de los 30 canales
primarios con que cuenta la red macrocelular. Otra
caracteristica que se presenta con este escenario,
es que el problema se vuelve de alta
dimensionalidad, en comparacion con el caso
anterior (resultados de la Tabla 6), ya que cada bit
de una particula identifica un enlace secundario,
esto es wuna conexiobn entre estacion base
femtocelular y su correspondiente SU. En la Tabla
7 se observa que con latécnica MBPSO, AMPSO
y ModBPSO se obtienen mejores soluciones para
requerimientos bajos de QoS (S/R=6,8,10 dB) en
el sistema en comparacién con los obtenidos con
latécnica SCPSO.

Sin embargo, para valores de S/R=12,14 dB,
en los que se incrementa el requerimiento de QoS
de las redes primaria y secundaria, las técnicas
SCPSO y ModBPSO no encuentran una solucién
(no converge). Mientras que con MBPSO vy
AMPSO, se obtiene una solucibn sobre la
capacidad del sistema, asi como también,
encuentran una configuracién en la que se asignan
uno de los 30 canales primarios a un usuario
femtocelular, por ejemplo, para niveles de S/R=12
dB, con MBPSO se logra una asignacion al 44%
de los SU5s desplegados en la HetNet y con
AMPSO del 53%, para un S/R =14 dB es del 38%
y 43% respectivamente.

Se debe notar que por su caracteristica de
resolver problemas de alta dimensionalidad,
AMPSO resuelve el problema de espectro
compartido con mejores resultados que los
encontrados por MBPSO para niveles altos de
QoS (S/Rde 12 y 14 dB).
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Tabla 5. Pardmetros utilizados por las técnicas AMPSO, ModBPSO, MBPSO

Para MBPSO [16] Valor
Itermax 20
Vimax 6
Para AMPSO [15] Valor
[a,b,cd] [0,1,1,0]
intervalos Igual al valor de SU

Para ModBPSO [14] Valor

Velocidad [Vmax, Vmin] [-6,6]

Fmu 0.02

Tabla 6. Evaluacién de aptitud para SU=20, PU=6
Téﬁ Técnica Aptitud (Mbps) Enlaces secundarios iteraciones

MBPSO 11357.84 20 88
AMPSO 10987.32 20 75
® ModBPSO 10547.78 20 35
SCPSO 9286.54 18 1
MBPSO 11748.95 20 58
AMPSO 11545.34 20 34
8 ModBPSO 11367.21 20 56
SCPSO 9546.39 16 13
MBPSO 11337.41 20 75
AMPSO 11245.98 20 89
10 ModBPSO 10431.74 20 78
SCPSO 9477.38 16 9
MBPSO 11779.87 20 77
AMPSO 12032.67 20 64
12 ModBPSO 10356.12 19 34
SCPSO 9323.47 16 18
MBPSO 11053.89 20 45
AMPSO 11256.89 20 89
1 ModBPSO 9876.25 18 78
SCPSO 5856.60 13 23

Es importante resaltar que incrementar los
valores de a y B representa un requerimiento
mayor de QoS para servicios que asi lo
demanden. Asi, para umbrales de SI/R altos, la
Tabla 7 sugiere que para mantenerlos, se debe

reducir el nimero de femtoceldas que deben

desplegarse en la HetNet.

Una densidad menor de femtoceldas genera
una menor interferencia en la HetNet lo que
permite mantener requerimientos altos de QoS. En
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Tabla 7. Evaluacién de aptitud para SU=100, PU=30

Téﬁ Técnica Aptitud (Mbps) Enlaces secundarios iteraciones
MBPSO 36886.17 67 46
AMPSO 35652.23 68 67
° ModBPSO 33589.12 63 87
SCPSO 31286.76 51 13
MBPSO 34993.85 64 76
AMPSO 33562.21 62 87
® ModBPSO 34901.19 59 92
SCPSO 32467.16 44 23
MBPSO 28973.70 51 13
AMPSO 32681.98 53 43
10 ModBPSO 27987.65 41 86
SCPSO 18848.65 27 19
MBPSO 22761.72 44 54
AMPSO 27497.51 53 72
12 ModBPSO No converge - -
SCPSO No converge - -
MBPSO 21569.56 38 61
AMPSO 23763.49 43 78
14 ModBPSO No converge - -
SCPSO No converge - -

contraste, tasas de datos altas solo pueden
alcanzarse en condiciones de interferencia baja.

Por ejemplo, observando los resultados de la
Tabla 7, si un proveedor de servicio de
comunicaciones moviies requiere ofrecer servicios
en una HetNet con una QoS de 8 dB (equivalente
a servicios de voz) y la red macrocelular solo
cuenta con 30 canales disponibles para compartir,
entonces solo deben existir como maximo 64
femtoceldas desplegadas.

Por otra parte, si se requiere mantener en la
HetNet un S/R mayor o igual a 14 dB, entonces el
proveedor solo debera desplegar un maximo de 43
femtoceldas en el sistema.
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5. Conclusiones

En este trabajo se resoivid un problema de
espectro compartido aplicando las técnicas
MBPSO, AMPSO, ModBPSO. Los resultados
demuestran que es posible que distintas redes
compartan espectro simultdneamente, y en
consecuencia se logre incrementar el uso del
espectro. Ademas, se demuestra que al mejorar la
caracteristica de exploracién y explotacion de las
técnicas heuristicas basadas en PSO, se obtienen
mejores soiuciones. Los resultados demuestran
que las técnicas MBPSO y AMPSO mantienen el
compromiso entre lograr una mdaxima tasa de



datos del sistema con minima interferencia para
los casos de interferencia baja y alta y para
exigencias de QoS desde 6 dB hasta 14 dB.

Para algunos casos, las soluciones obtenidas
con MBPSO mejoran aproximadamente en un
25% la tasa de datos de la red obtenida con
SCPSO, mientras que en otros casos es del 80%
(SU=20, PU=6, SIR=12dB). MBPSO y AMPSO
son técnicas confiables que puede aplicarse para
aquellos casos en que la complejidad
computacional del problema es alta.
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