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sensing elements (aperture), independently of the 
number of time samples or the signal-to-noise ratio 
(SNR).

One might think that the limitations on aperture 
could be solved by using a large number of sensors 
(dense sensor array) and by using large-sized 
sensors. However, this cannot be always achieved 
in practice [18]. First, because sensors might 
be costly, but mainly due to the fact that adding 
many of them would result in an increase of 
computational cost. This is the result of the output 
of the spatial filter being a linear combination of the 
data acquired by M  sensors at N  time samples.

The computational cost increases as the number 
of sensors is increased, this is due to spatial filters 
being dependent on the covariance matrix and its 
inverse, which is calculated from raw data. Thus, 
the more sensors are considered, the greater 
the data matrix would be and therefore it will 
be more mathematically complex to calculate the 
covariance matrix and its inverse

Given the limitations previously mentioned, 
spatial filters in biomedical applications were 
initially used only for interference removal, such 
as the case of fetal heart monitoring in [28]. A 
spatial filtering method for localizing sources of 
brain electrical activity suited for MEG recordings 
was first described and analyzed in [27]. However, 
their analysis only considered a sphere to model 
the head given the limitations in computer power at 
the time.

The advent of high speed digital computers 
nowadays has led to the emergence of many 
numerical techniques and with the rapidly growing 
computing capabilities, numerous problems of

Abstract. The increase ؛n computer power of the (ast 
few decades has allowed the resurgence of the theory 
behind spatial filtering (a.k.a. beamforming) and its 
application to array signal processing. That is the case 
of magnetoencephalographic (MEG) data, which relies 
on dense arrays of detectors in order to measure the 
brain activity non-invasively. In particular, spatial filters 
are used in MEG signal processing to estimate the 
magnitude and location of the current sources within 
the brain. This is achieved by calculating different 
beamformer-based indexes which usually involve a large 
computational complexity. Here, a new perspective 
on how today’s computers make it possible to handle 
such complexity is presented, up to the point when 
new and ever more complex neural activity indexes can 
be developed. Such is the case of indexes based on 
eigenspace projections and reduced-rank beamformers, 
whose applicability is shown in this paper for the case of 
using real MEG measurements and realistic models.
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1 Introduction

The aim in spatio-temporal processing is to recover 
signals coming from a direction of interest, while 
attenuating signals from other directions. The 
processing element that allows such selective 
recovery/attenuation is known as a spatial filter or 
beamformer [26].

Although new implementations of spatial filters 
may improve their poor resolution when resolving 
signals originating from closely-located regions [2], 
they also suffer of a fundamental limitation: their 
performance directly depends on the number of
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position r s during the measurements period. The 
ECD model holds in practice for evoked response 
and event-related experiments [19]. Then, the 
MEG data can be grouped, for the case of k =  
1 ,2 ,..., K  independent experiments (trials), into a 
spatio-temporal matrix Yk of size M  X N  at the kth 
trial such that

(1)

v i(N ) 
V2 (N )

Vm ( n  )

y i (1) y i (2)

Vm  (1) Vm  (2)

Yk

where Vm(t) is the measurement at the mth sensor, 
for m =  1 ,2 ,..., M , and acquired at time sample 
t =  1 ,2 ,..., N . Under these conditions, the 
following measurement model can be proposed:

(2)Yk =  A (r  s )S +  Vk,

where A ( r s) is the M  X 3 array response matrix, 
S =  [ و(1) ··· و (N )] is the 3 X N  dipole
moment matrix, and Vk is the noise matrix. 
The array response matrix is derived using the 
quasi-static approximation of Maxwell’s equations, 
which connect time-varying electric and magnetic 
fields produced by an equivalent current dipole on 
a volume that approximates the head’s geometry 
(see [15], [7], and references therein). Then, in a 
physical sense, A ( rs) represents the material and 
geometrical properties of the medium in which the 
sources are submerged.

2.2 Spatial Filtering

A spatial filter W ( rs), such that S =  W T( r s)Yk, 
can be designed in order to satisfy the following 
condition:

(3)
/  if r  =  r  s
0 if r  =  r  s

W T(rs )A (r)

Note that the unit response in the recovery band 
is enforced by

(4)/,W T(rs )A(rs

while zero response at any point r  in the 
attenuating band implies W (rs) must also satisfy

(5)W T ( r  s)A ( r ) =  0.

real engineering interest can now be solved with 
relative ease and in a much shorter time. Applying 
new numerical techniques in the solution of the 
inverse problem using a realistic model as a 
conductive model would result in an increased 
resolution, then making the estimation of the 
magnitude and location of a current source within 
the brain more accurate.

In this paper, a new perspective on how 
today’s computers make it possible to handle the 
mathematical complexity involved in MEG array 
signal processing is presented, up to the point 
when new and ever more complex neural activity 
analysis methods can be developed and realistic 
geometries to model the head can be used.

2 Methods

This section briefiy reviews the concepts related to 
spatial filters, then the processing steps involved 
in their use for MEG source localization are 
explained.

2.1 Measurement Model

MEG is a non-invasive technique that allows 
the measurement of ongoing brain activity pro­
duced by the activation of multiple neurons 
(i.e.,50,000-100,000) in a specific area generating 
a measurable but extremely small magnetic 
field oriented at an orthogonal direction outside 
the head. Therefore, MEG requires an array 
of extremely sensitive superconducting quantum 
interference devices (SQUIDs) that can detect and 
amplify the magnetic fields generated by neurons 
a few centimeters away from the sensors. MEG 
is an attractive technology to study brain activity 
since magnetic fields pass unimpeded through 
the skull, resulting in a undistorted signature of 
neural activity that can be recorded at the scalp 
level [13, 10].

MEG measurements are assumed to be 
produced by a neural source that can be modeled 
by an equivalent current dipole (ECD), whose 
magnitude is given by و(t) =  [sx(t), sy(t), sz(t)]T 
(assuming a Cartesian coordinate system) and 
located within the brain. The dipole is allowed 
to change in time but it remains at the same
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in a similar way as in (10), the noise variance is 
given by

(11)varV(rs) =  tr  j  AT ( r s)Q 1A ( rs)

where Q corresponds to an estimate of the covari­
ance matrix of the noise. This matrix is usually 
estimated from portions of the measurements 
where the neural source due to the stimulus is 
not active (e.g., pre-stimulus interval or base level 
of brain activity). Therefore, an estimate of the 
source localization based on (10) and (11) can be 
computed as

max nLCMV(r), (12)
vars( r ) 

max - ; :
r  var„ ( r )

which is equivalent to maximizing the source's 
variance (normalized by the variance of the noise) 
as a function of r.

Equation (12) provides an accurate estimate 
of r  under the assumption that regions of ء
large variance presumably have substantial neural 
activity [27]. For that reason, ^LCMV( r ) in (12) 
is often referred to as a neural activity index. 
However, the sensitivity of the LCMV filter 
to imperfections in the model knowledge is a 
well-documented fact [21]. The main approach to 
remedy this problem is to improve the conditioning 
of the covariance matrix R via an eigenspace 
projection, under the consideration that its signal 
and noise contributions belong to orthonormal 
subspaces [20, 24]:

(13)Π^ =  UoUoT,

where Π^ corresponds to the projection matrix of 
the data onto the null space of the covariance 
matrix, and U0 is the matrix wh^se columns are 
the orthonormal eigenvectors of R that correspond 
to its zero eigenvalues. Hence, motivated by 
the “classical” LCMV solution in (9), the following 
structure can be proposed [9]:

(rs )n ^A (rs )] AT (rs )n ^ . (14)W ( r  s)EIG

There are many ways to compute W ( rء). One of 
them is the linearly constrained minimum variance 
(LCMV) spatial filter, which offers an alternative to 
design an optimal filter, that is to find W (rs) such 
that the variance at the filter's output is minimum 
while satisfying the linear response constraint (4). 
Let us consider that the variance of the signal is 
given by

var؟،()

t r { W T( r s)E[YYT]W (r ، ) ] } ,  (6)

where tr { ·}  indicates the trace. Note that 
R =  E [Y Y T] corresponds to the data's covariance 
matrix. Hence, (6) can be written as

Rء(7) W (r؛(tr  { W T( r = )،؟(var

Therefore, the LCMV spatial filtering problem is 
posed mathematically as

(8)

Rء)أ W (r؛(min tr  { W T ( r
..............................W (r  s)

/. = (subject to W T ( r s)A (rs

The solution to (8) may be obtained using 
Lagrange multipliers (which is the classical method 
for finding local minima of a function subject to 
equality constraints) and completing the square, 
which results in [25]

*A (r s)]-W ( r  s ر LCMV
(9)

For the case of unknown R, a consistent 
estimate of this covariance matrix (denoted by R) 
can be used

Applying (9) to the original MEG measurements 
provides an estimate of the dipole moment at 
location r s. Furthermore, the estimated variance 
or strength of the activity at rs is the value of the 
cost function in (8) at the minimum. Then, after 
some algebra, the estimated variance of the neural 
source is given by

(10)va?s(rs) =  t r ^  AT( r s)R *A (rs )

Note that in (14) the inverse of the matrix 
has been replaced by the generalized inverse

It is also useful to estimate the amount of 
variance that can be credited to the noise. Hence,
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cause huge changes in H (r s)-1 ؛f the termer is 
ill-ccnditicned [5]. Furthermcre, ill-ccnditicning 
<̂ an alsc be the result cf using the estimates 
R and Q instead cf R and و , respectively, 
which is a ccmmcn practice in scurce lccalizaticn 
techniques based in EEG/MEG reccrdings. in 
crdertc alleviate the afcrementicned shcrtccmings 
cf the multi-scurce activity index defined in (18), 
a reduced-rank extensicn has been introduced 
in [16] asfcllcws:

RRMAIT i ( r  s,م ) =

tr {G (r s)PR(G(r s )p )H  ( r  21) , } م ة)-1- )

where م is a natural number such that > ل
 where / is the unkncwn number cf ,/م < 3
ccncurrently active scurces, and PR(G(rs )p) is the 
crthcgcnal prcjecticn matrix cntc the subspace 
spanned by م eigenvectcrs ccrrespcnding tc the 
largest eigenvalues cf G (rs). The RRMAIT 1( r s,م ) 
achieves its maximum when the ccvariance matrix 
H ( r s)-1 is replaced by a well suited estimatcr, 
such as the cne prcpcsed in [17, 29]. Based cn 
that, ancther reduced-rank activity index can be 
defined as [16]

R R M AIt 2 ( r  s,م ) =

tr {G ( rs)PR(H(rs )p )H (rs )-1 } - م, (22  )

where PR(H(r s )p ) is the crthcgcnal prcjecticn ma­
trix cntc the subspace spanned by م eigenvectcrs 
corresponding tc the largest eigenvalues cf H ( r s).

3 Numerical Exam ples
in this secticn, the applicability cf the neural 
activity indexes in (12), (17), (18), and (22) is 
shewn thrcugh numerical examples using real 
MEG data ccrrespcnding tc measurements cf 
visual respcnses. The gcal cf these experiments 
is tc shew the use cf these spatial filters in finding 
the lccaticn cf neural scurces frcm the MEG data.

The data used fcr these experiments is available 
at the MEG-SIM pcrtal, which is a repcsitcry 
that ccntains an extensive series cf real and 
simulated MEG measurements freely available fcr 
testing purpcses [1]. The data were acquired 
at a sampling rate cf 1200 Hz, and they were

(dencted by [·]-  ) because it is a reduced-rank 
beamfcrmer [8].

While (10) uses the classical neural activity index 
based cn an estimate cf the signal's variance, 
a similar calculaticn based cn (14) will prcduce 
an estimate cf the sparsity as a functicn cf the 
pcsiticn [30]. Such estimate is cbtained by 
replacing R-1 by Π^ in (10), which results in

s ^ ( r s )  =  t r ا  [AT(rs )n ^A (rs إ , (15 [( )

while a similar sparsity measure can be defined fcr 
the case cf the ncise:

s ^ ( r s )  =  t r ا [م (rs )n ^A (rs إ , (16 [( )

where Π^ is the prcjecticn matrix cf the ncise 
cntc the null space. Therefcre, an estimate cf the 
scurce lccalizaticn based cn (10) and (11) can be 
ccmputed as

[^s]EIG = " τ | ξ ( ( r )) =  " r  ÊIG( r ) , (17)

which is equivalent tc minimizing the scurce's 
sparsity (ncrmalized by the sparsity cf the ncise) 
as a functicn cf r . Hence, ^EIG( r ) will be referred tc 
as the neural sparsity index.

Gcing back tc the prcperties cf the “classical” in­
dex in (12), they have been thcrcughly investigated 
in [27] and derived wcrks. Its main drawback has 
been fcund tc be its sensitivity tc ccrrelated scurce 
cancellaticn and its pccr perfcrmance under lcw 
SNR ccnditicns. Tc circumvent this difficulty, a 
multi-scurce extensicn has been recently prcpcsed 
in [14]. Namely, the fcllcwing multi-scurce activity 
index (MAI) has been prcpcsed fcr the case cf / 
neural scurces as

M AI(rs) = t r {G ( rs )H ( rs ) -1 } -  3/, (18)

where
G (r s) =  AT ( r  s)Q-1A (r  s), (19)

and
H (rs) â  AT( r s)R-1A ( rs). (20)

The applicability cf M A I(rs) has been already 
demcnstrated in [14]. Nevertheless, it shall 
be ncted that small changes in H ( r s) may
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Fig. 1. Head model used in our experiments (only the 
scalp and the brain are shown). The asterisks indicate 
the position of the magnetometers above the head

response matrix A was calculated using the 
computer implementation provided in [22], which 
corresponds to a solution of based on the bound­
ary element method (BEM) of the quasi-static 
approximation of Maxwell's equations. BEM is 
a numerical method for so ling  partial differential 
equations (in this case Maxwell's equations) with 
the ad٧antage of reformulating them as discrete 
integral equations that then are solved on simple 
geometrical elements of a boundary mesh [12]. 
The data covariance matrix R and the noise 
covariance matrix Q were estimated from the data 
acquired in the 240 ms following the stimulus and 
the previous 240 ms, respectively. For comparison 
purposes, we considered the case of 1 =  active ي 
source in the calculation of MAI and RRMAI^2.

Figures 2 and 3 show the results of computing 
the index values for each of the beamformers. 
Given that the magnitudes of the indexes are 
very different, we decided to compare them in 
terms of their distributions. Therefore, we show 
the histogram of each index, where the red bars 
indicate the percentiles that were necessary to 
display so that the positions r  with most significant 
index values (the minimum for the case of the 
sparsity-based index and the maximum values for 
the others) had an anatomical correspondence 
with the expected position neural source. Note that 
most of the positions indicated with red dots on the

band-pass filtered between (0.5, 40) Hz with a 
sixth-order Butterworth filter. The data correspond 
to the response of Subject #1 to small visual 
patterns of two sizes (1.0 and 5.0 degrees visual 
angle) which were presented at 3.8 degrees 
eccentricity in the right and left visual fields, 
respectively. The small visual pattern was 
designed to activate 4 ئ mm2 of tissue in 
primary visual cortex (located in the occipital lobe 
of the brain), while the large stimulus activate 
 mm2 of visual cortex. In both cases, the ئ 20
activation in the brain is expected to appear in the 
contra-lateral hemisphere (i.e., opposite to the side 
of the presentation of the stimulus). The subject 
passively viewed a small fixation point at the center 
of the screen while the stimuli were randomly 
presented to the left and right visual fields for a 
duration of 500 ms and at a rate of 800-1300 ms 
(slightly randomized to avoid expectation). Two 
hundred individual responses for each of 2 stimulus 
conditions were acquired.

The m e g  measurements were obtained with 
an array of M  =  275 channels with the spatial 
distribution of the VSM MedTech MEG system 
considered at the MEG-SIM portal. There, the 
anatomical MRI data of the subject is provided 
as well. Hence, a realistic head model can 
be created by first segmenting the MRI images 
with BrainVISA [3], next tessellated meshes were 
generated from the segmented volumes using 
Brainstorm [23]. If a more refined and specific 
segmentation of brain structures is required as an 
aid in the source localization, brain atlases may be 
used to find homologous points or structures [11]. 
Here, the head model was composed by three 
tessellated meshes which were nested one inside 
the other in order to approximate the geometry of 
the scalp, skull, and brain. Each volume was given 
a homogeneous conductivity of 0.33, 0.0041, and
0.33 S/m, respectively. In particular, the volume 
corresponding to the brain was constructed with 
11520 triangles. A full rendering of the head model 
and the position of the magnetometers is shown in 
Figure 1.

Based on those conditions, the beamformers 
were evaluated at the position r  corresponding to 
the centroid of each of the triangles comprising 
the brain mesh. In both cases, the array
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is much larger than the allowed error in source 
localization for clinical applications, such as in 
neurosurgery, where the sources must be located 
with a precision of at least 1 mm. Hence, for 
clinical applications, a much more dense brain 
mesh (i.e., more triangles in the tessellation) 
must be used. Still, such increase in the 
computing complexity is something that can be 
handled through many different types of hardware 
(e.g., graphic processing units), and with different 
algorithms to implement the beamformer (see, e.g., 
[4]). In fact, thanks to the increase in computer 
power, beamforming has been resurrected as a 
suited technique for analysis of brain activity.

4 Conclusions

The use of spatial filters in the solution of 
the neuroelectric inverse problem involves very 
complex mathematical calculations. However, it is 
possible to manage such calculations with today's 
computer power. Furthermore, new spatial filters, 
such as those based on eigenspace projections, 
can be used to improve the classical LCMV 
solution originally proposed in [27].

Here, different indices of neural activity (all of 
them based on beamforming) were compared in 
terms of their ability to provide a focalized and 
anatomically correct estimation of a neural evoked 
response. Therefore, we looked for a beamformer 
to generate significant index values (i.e., at the 
tail of the distribution) and with an accurate 
correspondence with the expected location of the 
neural activity (primary visual cortex in this case). 
However, the methods here analyzed showed little 
consistency, that is, a single method not always 
provided good results for the same type of data.

Nevertheless, we do not expect to find a spatial 
filter that performs well for all types of data. 
For example, in the case of the sparsity-based 
index, we believe it did not provide good results 
for the evoked responses here tested as it is 
better suited for data with low SNR (i.e., with 
larger sparsity). Another example is the MAI, 
which is known to perform better for cases where 
correlated sources are involved, then MAI can be 
computed within a region-of-interest (ROI) in order 
to provide a focalized estimation. Therefore, it

surface of the brain's mesh coincide with a neural 
activation located at the primary visual cortex, but 
different portions of the respective distributions of 
the indexes were accounted for in order to achieve 
such correspondence. In all cases, we show the 
mesh modeling the head in an orientation such that 
the occipital lobe is fully seen from the back of the 
head.

In the case of a large visual stimulus presented 
to the left visual field (Figure 2), both MAI and 
RRMAIt 2 provide very good results in terms 
of focalization of the source, but RRMAIT2 

outperforms MAI as its most significant index 
values correspond with the tail of the distribution. 
The classical beamformer also achieves good 
results in those terms, but the position of the 
estimated source location is biased. Finally, 
the sparsity-based index is accurate in detecting 
the region with less-sparse-sources (i.e., those 
more likely to be related with the stimulus), 
but fails in terms of focalization. Clearly, an 
extreme-value distribution would be the most 
desired outcome in the index calculation process, 
but the sparsity-based index tends to be better 
described by a Gaussian distribution.

For a small visual stimulus presented to the right 
visual field (Figure 3), we obtained similar results 
as those previously described in terms of the shape 
of the distributions. However, in this case RRMAIt 2 

fails to estimate the source location (an ipsi-lateral 
patch is detected instead). This can be credited 
to the fact that we maintained the same value of م 
in (22) for all our calculations, while it is well-known 
that such parameter requires to be adjusted in a 
case-to-case fashion (see [16] for a full account of 
that issue).

In terms of the computational cost, the 
calculation of each of the indices here tested was 
fully implemented in Matlab ®, and the computer 
used was a HP ProLiant ML110 G7 server with 
a Xeon E3-1220 processor, 3.1 GHz of speed, 
and with 6 GB of RAM memory. Under those 
conditions, computing the sparsity neural index 
(which is the most mathematically complex of 
the four) took 42.3095 minutes. Nevertheless, 
the distance between the two possible solutions 
(i.e., the distance between the centroids of two 
triangles sharing a side) was 4.7 millimeters, which
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corresponding index. In the histogram, the red bars indicate the percentile that corresponds with the index values that 
are displayed

Computacló□ y Sistemas, Vol. 20, No. 1, 2016, pp. 115-125
doi: 10.13053/CyS-20-1-2185



ISSN 2007-9737

122 Claudia Carolina Zaragoza-Martinez, David Gutierrez

0.985 0.99 0.995 1 1.005 1.01 1.015 1.020 1.025 1.03 1-035

Index values

4000

3500

3000

2500

2000

1500

1000

500

0

Class!cal

Spars!ty-
based

MAI

RRMA)t2

-0.26 1.02 2.30 3.58 4.85 6.12 7.40 8.68 9.95 11.23 ؛٠؛

Index values * 10

Fig. 3. MEG source localization of a small visual stimulus presented on the right side of the visual field for one subject. 
The red dots are superimposed in the brain mesh in order to highlight the location of the most significant values of the 
corresponding index. In the histogram, the red bars indicate the percentile that corresponds with the index values that 
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is necessary tc ccntinue with the develcpment cf 
new indexes based cn mcre ccnsistent estimates, 
as well as characterize the respcnse cf different 
beamfcrmers fcr different types cf data.

Finally, it is wcrth menticning that the methcds 
here tested are nct mutually exclusive, and infcr- 
maticn cbtained frcm a ccmbinaticn cf methcds 
may imprcve the cverall result. An example cf 
such apprcach has already been presented in 
a preliminary versicn cf this paper (see [6]), in 
which the scluticns cf the classical neural activity 
and the sparsity-based indexes were ccmbined in 
crder tc increase the fccusing in the estimaticn 
cf auditcry evcked respcnses. Therefcre, we 
believe new techniques in brain scurce lccalizaticn 
may benefit frcm using hybrid techniques that take 
advantage cf ccmplementary infcrmaticn. Such 
ccmplementarity cculd be further extended tc the 
jcint analysis cf electrcencephalcgraphic (EEG) 
and MEG data. While fcr this paper cnly MEG data 
was available, new acquisiticn systems allcw fcr 
the simultanecus measurement cf EEG and MEG.
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