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donde j  e N , es la dimension de la matriz. Los 
resultados muestran que es posible reconstruir la 
senal observable con una buena aproximacion en un 
sentido de probabilidad, basado en la estimacion por 
diagonales.

Palabras clave. Estimacion recursiva, gradiente es- 
tocastico, sistema tipo caja negra.

Diagonal and Recursive Parameter 
Estimation for Black-box Systems with 

Bounded Inputs and Outputs

Abstract. Estimation theory is a branch of stochastic 
and signal processing that deals with estimating the 
parameter values based on an observable known signal 
as a random variable. The parameters describe an 
underlying physical setting in such a way that their value 
affects the distribution of the observable known signal. 
An estimator attempts to approximate the unknown 
parameters using the stochastic signal. In the estimation 
theory it is assumed that the output signal is random with 
the probability depending on the interest parameters. 
The estimation takes the measured observable signal 
as an input and produces an estimation of internal 
unknown gains. It is also preferable to derive an 
estimation that exhibits optimality, achieving minimum 
average error over some class, for example, an unbiased 
minimum variance as estimation. This paper presents 
the development of an optimal stochastic estimator 
for a black-box system in a m-dimensional space, 
observing noise with an unknown dynamics model. 
The results are described in a state space, with a 
discrete stochastic estimator and noise characterization. 
The results are obtained by an algorithm to construct 
the diagonal form for the state space system. Thus,

Resumen. La Teoria de la Estimacion Estocastica 
se emplea para obtener informacion de la operacion 
interna con respecto a la respuesta observable de 
un sistema tipo caja negra. Un problema por resolver 
es describir a los parametros internos, a partir de 
un modelo de referencia. Se ha considerado que 
las dinamicas de los parametros en un sistema 
estocastico esta descrita por la relacion de la varianza 
y covarianza de la senal observable. El metodo de los 
momentos de probabilidad permite obtener resultados 
que convergen a la respuesta deseada en un sentido 
de probabilidad. La estimacion para sistemas MIMO 
(Multiple Input, Multiple Output) requiere del calculo 
de la matriz pseudoinversa aunque se considere que 
es optimo el modelo por el metodo del gradiente, 
al aplicar esa tecnica se propone un vector propio 
y valores propios afines para la seleccion de los 
parametros, haciendo que la estimacion pierda gran 
parte de sus propiedades de convergencia. Esta artículo 
presenta el desarrollo de un estimador estocastico 
optimo para un modelo de sistemas tipo caja negra 
con ruido en un espacio m -dimensional. Se describe 
un algoritmo para evaluar y construir la forma diagonal 
del sistema en un espacio de estados con el proposito 
de estimar las ganancias internas. Los resultados 
presentan una solucion sin perdida de generalidad de 
las características del modelo de referencia. La tecnica 
de estimacion usada se basa en el gradiente estocastico 
junto con la variable instrumental para eiicientar su nivel 
de convergencia. Este tipo de matriz de contribucion 
es optima en un sentido de probabilidad. El algoritmo 
permite eliminar el calculo de matrices pseudoinversas 
que tiene una complejidad computacional de orden 
no lineal. La propuesta de la matriz diagonal sugiere 
una menor complejidad que los metodos utilizados 
tradicionalmente, ya que es de orden lineal, O(j)
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el comportamiento de ؛a senal, tambien puede 
implicar el filtrado, s i e l  control permite depender 
de observaciones ruidosas ه  parciales de la senal.

literatura moderna del filtrado comienza 
con la contribucion de Kalman y Bucy, quienes 
formularon y resolvieron el modelo para el caso 
en el cual x (t) es una distribucion gaussiana 
y w (t) es browniano. Su resultado principal 
prueba que la funcion de densidad condicional 
de x (t) es gaussiana y provee un método para 
calcular la esperanza condicional y la covarianza 
recursivamente. Para pocos casos es una solucion 
completa y facilmente construible [4]. Sin embargo, 
dos caracterizaciones muy poderosas de filtros 
optimos son conocidas y se cumplen en algunas 
situaciones generales.ا a primera es una formula 
tipo Bayes, la cual es debida a Kallianpur y 
Striebel, esta es valida para ruido browniano 
con minimas restricciones Cuando la senal es 
markoviana, puede ser caracterizada como la 
solucion de una ecuacion diferecial estocastica 
(Fujisaki, Kallianpur y Kunita). En general, no 
puede ser encontrada de este resultado porque 
los coeficientes de la ecuacion del filtro involucran 
estimaciones optimas para diferentes funciones. 
Asi, es que se requieren ecuaciones adicionales 
las cuales se necesitan estimar de otras funciones. 
El sistema resultante de ecuaciones es en general 
infinito-dimensional [5]. La formulacion mas limpia 
de esta dimensionalidad infinita es la ecuacion 
diferencial parcial estocastica de Zakai, para 
una version no normalizada de la funcion de 
densidad condicional, asumiendo que esta funcion 
de densidad existe.

Finalmente, muchos recientes desarrollos pro- 
meten nuevas ideas. V. Benes ha desarrollado 
ejemplos de problemas de filtrado explicitamente 
resueltos y Brockett, Clark y Mitter han aplicado 
tecnicas y operadores de L ie al estudio de ecua- 
ciones de densidad condicional [6]. Lo anterior, 
es una breve descripcion de los resultados que 
constituyen las vetas principales de la Teoria 
de Filtrado, pero a pesar de su profundidad 
matematica, ellas permanecen incompletamente 
desarrolladas [6, 7].

El articulo esta organizado de la siguiente forma. 
La Seccion 1, con el proposito de poner en 
contexto el trabajo realizado, introduce los trabajos

the matrix is estimated in probabi(ity considering the 
distribution function. The estimation technique is used on 
the instrumental variable based on a gradient stochastic 
matrix. This kind of matrix contribution is optimal in 
the probability sense. This is a new technique for an 
instrumental variable tool, and a diagonalization process 
avoiding the calculation of pseudo-inverse matrices is 
presented with a linear computational complexity O(j ) 
and j  as the diagonal matrix dimension. The results 
show that it is possible to reconstruct the observable 
signal with a probability approximation. The advantages 
with respect to traditional solutions are focused on 
estimating the matrix contribution on line with a linear 
complexity.

Keywords. Recursive estimator, stochastic gradient, 
black-box system.

1. Introduction

La Teoria de Filtrado es el estudio de 
una variedad de problemas en la estimacion 
de procesos estocasticos. Un ejemplo típico 
concierne a la estimacion de una se nal con 
ruido aditivo, en esta situacion, son de interes las 
propiedades del proceso estocastico. El proposito 
del filtrado es estimar el estado de un sistema 
dinamico el cual es gobernado por perturbaciones 
aleatorias (ruidos), dando un proceso observado 
con ruido [1]. El procedimiento paso a paso para la 
construccion de un filtro es el siguiente. Primero, 
modelar los estados del sistema y su evolucion 
dinamica mas la dinamica de los ruidos y entradas 
desconocidas. Segundo, analizar el modelo si 
es lineal o no, si los ruidos son gaussianos o 
no y la observabilidad del sistema. Tercero, el 
diseno de un filtro adaptandose al modelo, donde 
la minimizacion del error cuadratico medio es 
el criterio general elegido. Asi, en la Teoria de 
Filtrado Lineal el proposito es producir la mejor 
estimacion que es un funcional lineal de las salidas 
del sistema [2].

El interes por los problemas de filtrado se debe 
a su papel central en varios temas de aplicacion. 
Por ejemplo, en la Teoria de Comunicaciones, 
es comun el modelo para una senal enviada en 
un canal con ruido; la transmision exitosa de 
informacion requiere extraer la senal del ruido [3]. 
Problemas de Control Estocastico, en el cual un 
control debe ser elegido con el fin de infiuir en
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Toda matriz diagonal es simetrica, triangular y 
normal s isus entradas provienen de un cuerpo R o 
C. Sea D  =  d iag(n i) ع R 1x m, con i = 1 , 2 , . . . ,  m. 
El det(D) =  n nit es invertible sي iy  solo s icada  
n  =  0, por lo tanto existen y k- 1, W k - R ع 1 1x ™.

Sean Yk y W k, variedades diferenciables afines 
en el espacio de estados. Por lo tanto, {Yk} «  
{W k} s iy  s<5lo siexiste una relacion lineal afin Yk ع 
Rmx m tal que A , I Rm ع  x m constantes, satisfacen 
la combinacion lineal Yk =  AYk- 1 +  I W k.

S i l  =  / ,  entonces

Yk =  AYk - 1 +  Wk. (1)

Asi, de la relacion (1), se define el modelo del 
sistema tipo caja negra que satisface el Resultado
2.1.

Resultado 2.1 Sea la salida acotada y k ع R 1x ™ 
con dominio e^ N (μ, σ2 < to ). Existe ٧٨ estim ador 
estocastico A k dadop or(2 )

Ak =  E  {Yk M + - } -  E  {W k M + - }, (2)

donde W k ع R 1x ™ y  M + _ Rmx ع 1 m son e l ruido 
del proceso y  la m atriz de correlacion.

Se verifica por induccion sobre la dimension del 
espacio de estados.

diag(Yk) =  d ia g (^ 1k )diag(Y1k- 1 )+  

d ia g (^ 2k )diag(Y2k- 1 ) +  diag(Wk), 

diag(Yk) -  diag(W k) =  d ia g (^ 1k)diag(Y1k- 1 )+  

d ia g (^ 2k)diag(Y2k- 1 )diag(Yk -  Wk)

=  d ia g (^ 1k Y1k- 1 ) +  d ia g (^ 2k Y2k- 1 )

=  diag(^1k Y1k- 1 +  ^2kY2k- 1)

=  diag(^«k)diag(Y«k - 1 )diag(Yk-W k )diag(Y«k- 1 )^ 

=  diag(^«k )diag(Y«k- 1 )diag((Y«k - 1 ) ^ )

=  diag(A^k )diag(Y«k- 1 (Y«k- 1 ^ )

=  diag(^«k)diag(M k - 1 ).

.·. diag(^«k) =

diag(Yk -  Wk)diag(Y«k - 1 )^d iag(M - - 11)

=  diag(Yk -  Wk)diag(Y^k - 1 M - 11 )

de la Teoria de Filtrado. ا a Seccion 2, se dedica 
integramente a la deduccion te^rica del modelo 
del estimador estocastico m-dimensional descrito 
en el Resultado 2.1. Los resultados obtenidos 
se presentan al final de la seccion resaltando el 
proceso de transformation diagonal del espacio 
de estados para el filtrado. La Seccion 3 presenta 
una aplicacion del estimador para dos senales, 
verificando su optimalidad. Por ultimo, se concluye 
con sugerencias para trabajo a futuro.

2. Pr؛nc؛pales resultados

Dentro del desarrollo de los estimadores es 
comun usar el gradiente para la obtencion del 
modelo de construction de parametros; pero al 
hacer uso de la pseudoinversa la optimizacion se 
transforma en una region, la cual esta acotada por 
el grado de exactitud del algoritmo de inversion.

En el caso S  SO (Single input Single Output)؛
esta situacion no es observada. Para los casos 
M؛SO (Multiple input Single Output), SIMO (Single 
Input Multiple Output) y MIMO (Multiple Input 
Multiple Output), el problema de encontrar una 
buena convergencia se limita al proceso de 
Penrose. La problemática principal se encuentra 
en la eleccion del vector propio que permita la 
inversion del vector seleccionado. Se observa que 
una inversion por pseudoinversa no permite una 
buena convergencia [8].

Para que la estimacion no pierda sus propieda- 
des optimas se propone una transformacion que 
permite el desarrollo de un algoritmo sin perdida 
de generalidad. Los principales resultados de la 
investigacion son presentados a continuation

2.1. Estim ador estocastico

El espacio de estados es un espacio de pro­
babilidades, con espacio de medida Euclideano. 
El operador E, esperanza matemática, es un 
operador lineal en el espacio de estados.

Los vectores Yk, Wk ع R 1x ™ son variables 
aleatorias linealmente independientes (v.a.l.i.) 
N (μ, σ2 < to) y se corresponden con las matrices 
diagonales y k, W k ع Rm x m con todas sus 
entradas distintas de cero.
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Resultado 2.3 Sea V jk e l operador gradiente 
estocastico respecto a la m atriz de param etros 
estimada A k. Entonces V A fc J k =  0, m inimiza 
e l funcional del error y  existe una vecindad de 
convergencia optima dada p o r (7) en casi todos los 
puntos (c.t.p.).

(7)kم
Para verificarlo, se evalua el gradiente es- 

tocastico c؟ n respecto a la matriz de parametros 
estimada ٨ .

v ^ ع   ’

رده-ل — 2234 ؤ - i A k : k - i

2 .k - iW 2 .

^ k ا,2  . -  % - iA ,Yk-1 - ح2  م ح- ي

% - iA ,  Yk-1 +

لآ1ءم -  Y k-i(3 ? 2 -i)-1

Y k-iW 2 ( :2 -1  )-1 , 

Ak .k2- i(^ k 2- i ) -1 +  ^k2 ( ^ k - i ) -1

0

+

د ءص2آ

~  Ak + ص--1  !

- p. Ak ± = ;ء ء 

■٨١■■

■٨١■■

■٨١ ·

El principal resultado obtenido en la tesis 
resuelve este problema, mediante la evaluacion de 
la matriz inversa , con una descomposicion 
de matrices diagonales en forma de Jordan, que 
sin necesidad del calculo de los valores propios 
es posible realizar de forma directa la inversion 
de la matriz. Y computacionalmente tiene muchas 
ventajas, ya que su complejidad es de orden 
lineal, dependiente de la dimension del espacio de 
estados, como se muestra en la figura 1.

Finalmente, el resultado de la minimizacion del 
funcional del error garantiza la existencia de una 
vecindad de convergencia optima, la cual esta 
completamente determinada por ±W k3؛-;- l11.

3. Ejemplo de aplicacion

Esta seccion presenta un ejemplo con m =  2. 
Donde, las senales observables, yi1k, son numeros 
reales aleatorios con una funcion de distribution 
normal N (0 ^ ,y el ruido (ل, i1k, esta acotado por

=  diag(^k -  Wk)diag(M+-1 ) 

[diag(^k) -  d iag(^k)]d iag (M +^1)

Ak =  [ :  - W k  ] M ^ i ·

Para el caso del modelo de sistema (1) se 
tiene una representation estimada dada por (2). 
El estimador ه  queda definido por (3).

(3)

E { [ .k  - W k ]M + - i }  

E { . k M + i } -  E {W k M + _ i}

2.2. E rror y  funciona l de error

En principio, el espacio de estados es una 
variedad diferenciable y el objetivo es hacer que 
el error de identification sea cero. Cada una de 
las formas de minimizar ese error es un metodo 
de implementar los filtros adaptativos. Aqui, se 
propone minimizar el funcional del error J k =  
E {£ k£%} aplicando el gradiente estocastico que 
proporciona la direccion de maximo descenso en 
la superficie de error. Esto se establece en los 
Resultados 2.2 y 2.3.

R e s u lta ^  2.2 Sea ة  e l error de identificacióp, 
definido en forma diagonal como ^  :=  : k -  : k. 
E l funcional del error J k, esta dado de manera 
recursiva por (4)

(4)J k =  72 [(k -  1 )2 jk-1 + '

Para verificarlo, supongase que s i£ k =  : k -  34, 
entonces se cumple (5) y s i e s  estacionario se 
tiene (6) .

(5)

ه(6) ك [ + ت ، ، i (k - ل)2 
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primera senal observable, y11k, y en rojo la primera 
.n «11kؤءاficacاdentا

(و)

a11k 0 | 0 0
0 a22k | 0 0

- 0- - 0-  -
a12k

- 0-

0 0 | 0 a21k

^ 21k- 1 0 | 0 0
0 y21k-1 1 0 0

0 0 | y21k- 1 ٥
0 0 | 0 لإ'س-1 .

La figura 2b) muestra en azul la segunda 
senal observable, y21k, y en rojo la segunda 
identificacion, «21k. Como se muestra, el estimador 
es muy preciso, porque mantiene la razon de 
cambio de cada senal. La figura 2c) muestra los 
valores estimados para A k. Finalmente, la figura 
2d) muestra la superficie correspondiente a cada 
uno de los datos «1 1 k, «12k j «2 1k, "'22k

4. Conclusiones y trabajo a futuro

Se considero un sistema de entradas y salidas 
acotadas BIBO (Bounded input Bounded Output) 
tipo MIMO estacionario de forma rigida; es decir, 
que toda entrada acotada produce una salida 
acotada, ademas la funcion de distribuci^n del 
proceso permanece invariante con respecto al 
tiempo y asi sus dos primeros momentos de 
probabilidad. Dada la respuesta de un sistema tipo 
caja negra, se propuso un modelo autorregresivo 
de media movil de orden uno con una matriz 
de parâmetros desconocidos, con base a esto, 
se presento de manera recursiva el estimador 
matricial de parâmetros.

El filtro de estimacion se contruyo con base 
al segundo momento de probabilidad aplicado al 
modelo de diagonales extendido para describir la 
matriz de parâmetros con la variable instrumental

Fig. 1. Comparacion de la complejidad computacional: 
a) M^todo de la pseudoinversa, b) M^todo de 
descomposicion en diagonales

[0,0,01] con i e [1, m]. El sistema para m =  2 esta 
dado por (8). La figura 2, muestra una simulacion 
para m =  2. La senal observable esta en azul 
y la senal estimada en rojo. La senal estimada 
tiene una buena aproximacion en probabilidad con 
{|a j؛؛ | }  < 1 and a 2{w ij} <  TO.

El modelo para el caso m =  2 es escrito como 
(8), donde Yk, Yk- 1 , ^ k  e R [2x 1] y ^ k  e ء[لص  :

11k؟/ = a11k a12k 1-11k؟/
21k؟/ a2 1k a22k 1-21k؟/

(8)+  ^11k
^21k

La forma diagonal para (8) esta dada por (10),
donde 11̂  = - kمح1   W11k, 21̂  = - kمح2   ^21k, = مح3
^21k -  ^21kj d4 =  ^11k -  ^11k.

Para el caso m =  2, la figura 2 muestra 
separadamente cada una de las componentes 
del sistema. La figura 2a) muestra en azul la
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Fig. 2. Caso m=2. La senal observable y la 'dent'ficac'(3n de sus componentes. a) Primera componente, y iik , y ii k, 
b) Segunda componente, 21 إا21اء, إا k, c) Valores estimados para A k , d) Grafica 3-dimensional de una supe^icie 
representando Ak

diagonal sugirio una menor complejidad que los 
metodos utilizados tradicionalmente, siendo de 
orden lineal, O (j)  donde j N ع  , es la dimension 
de la matriz. Los resultados mostraron que es 
posible reconstruir la senal observable con una 
buena aproximacion en un sentido de probabilidad, 
basado en la estimacion por diagonales.

El metodo de diagonalizacion propuesto ha 
demostrado ser efectivo en resolver problemas de 
identification y estimacion de parametros internos 
en sistemas tipo caja negra. De forma inmediata, 
se puede utilizar en la estimacion de sistemas 
de redes neuronales artificiales para determinar 
los pesos de la red de forma dinamica. Tambien, 
posteriormente sera muy interesante aplicarlo 
como predictor de la evolucion de sistemas

en diagonales. Este tipo de matriz de contribution 
es optima en un sentido de probabilidad. Los 
resultados presentaron una solucion sin perdida 
de generalidad de las caracteristicas del modelo 
de referencia. La tecnica de estimacion que se 
uso se bas(5 en el gradiente estocastico junto con 
la variable instrumental para eficientar su nivel de 
convergencia.

Se establecio que el estimador es optimo porque 
el gradiente estocastico del funcional del error 
de la senal observable correspondio a la relacion 
descrita por el modelo de estimacion mediante el 
segundo momento de probabilidad. El algoritmo 
permitio eliminar el calculo de matrices pseudoin- 
versas que tiene una complejidad computacional 
de orden no lineal. La propuesta de la matriz
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