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to the complementary point. A collection of 
connectable vertex pair poses the simple problem 
to find explicitly connecting paths for each vertex 
pair. Evidently, some supplementary conditions 
may be imposed, e.g., the located connecting 
paths should have the shortest possible lengths, 
or the paths should not cross among themselves, 
or the collection of connecting paths should allow 
the extension to a k-factor of the graph, for a fixed 
k > 2, etc. Let us say that a skein is a set of 
connecting paths for a collection of connectable 
vertex pairs.

Let us consider the following problems:

Skein extension Given a collection of equally 
length paths in a graph which are pairwise 
non-crossing (no pair has a common vertex which 
is internal in at least one of the paths) and disjoint 
(no edge is shared), it is required to add one path 
with prescribed endpoints in the graph such that 
the resulting set of paths remains pairwise disjoint 
and non-crossing.

Skein search Given a collection of vertex pairs, it 
is required to decide whether there are connecting 
paths, all of the same length such that they are 
pairwise non-crossing and disjoint.

2 Preliminaries

For ease of exposition, let us recall some basic 
notions. A graph is a pair G =  (V , E) where 
V(G) is a finite and non-empty set of vertices,

Abstract. We formally state Skein Problems ؛n 
Hamiltonian graphs and prove that they are reduced 
to the Independence Problem in Graph Theory. 
Skein problems can be widely used in cryptography, 
particularly, in protocols for message authentication or 
entities identification. Let G be a Hamiltonian graph. 
Given a Hamiltonian cycle H , let Π be a set of pairwise 
disjoint sub-paths within H ,

[vi k , . . .  , Vm[v i l , . . . . vml]j و  . .

where m  and k are two positive integers, then the pairs 
of extreme vertices V  =  { (v i l ,  Vmi) , . . . ,  (vik, Vmk) }  
are connected by the paths at Π without any crossing. 
Conversely, let us assume that the following problem is 
posed: given a collection of pairs V  it is required to find a 
collection of pairwise disjoint paths, without any crossing, 
connecting each pair at V . We reduce this last problem 
to the Independence Problem in Graph Theory. In 
particular, for the case of the « -dimensional hypercube, 
we show that the resulting translated instances are not 
Berge graphs, thus the most common polynomial-time 
algorithms to solve the translated problem do not 
apply. We have built a computing system to explicitly 
generate the resulting graphs of the reduction to the 
Independence problem. Nevertheless, due to the doubly 
exponential growth in terms of n of these graphs, the 
physical computational resources are quickly exhausted.

Keywords. Independence problem in graph theory, 
Berge graphs, doubly-exponential growth

1 Introduction

Within a graph, a vertex pair is connectable if 
there is a path going from a point at the pair
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A graph G is a Berge graph, if neither G nor ؛ts 
complement has an odd-length induced cycle of 
length 5 or more. It is well-known that if G is a 
Berge graph, then the independence problem on 
G can be solved in polynomial time [5].

Any Hamiltonian cycle H  in a graph G =  
(V , E) determines, for each pair of distinct vertices 
(u,v) e V 2, two paths, one going, let us say, from 
u to v and the supplementary path from v to u. Let 
πΗ (u, v) be the path going from u to v following the 
order in which the vertices of H  are listed. Since 
H  is Hamiltonian, for any two pairs (uo, vo), (u i, v i) 
such that u0, v0, u 1, v1 appear in the cyclic order 
of the Hamiltonian cycle, the paths πΗ (u0, v0) and 
πΗ (u1, v1) are non-crossing.

Given a positive integer n, the n-dimensional 
hypercube, denoted Qn , is the graph containing 
the n-dimensional vectors with entries in {0 ,1 } as 
the set of vertices, and two vertices form an edge 
if and only if they differ in just one entry. The 
Hamming distance between two vertices u, v in Qn, 
denoted Hamming(u, v) is the number of entries in 
which they differ. It is easy to see that the graph 
distance and the Hamming distance coincide, that 
is, dqn  (u, v) =  Hamming(u, v) holds for every pair 
of vertices u, v in V (Q n).

3 Particular Problems

Let us consider the following problem:

NonCrossingPaths
Instance: A graph G =  (V , E ). A positive number
k, a set of pairs K  =  { ( i ؛ , j ؛ ) , . . . , ( ik , j k )} of k 
pairwise different vertex pairs in G, and a positive 
integer m satisfying m k < |V(G)| and dG(i, j ) <  m 
for all (i, j )  e K .
S o lu tion : A pairwise non-crossing and disjoint 
collection of m-length paths Π =  {π1, . . . ,  such {ءرة
that π; has endpoints i ; and j; ,  for l =  1 , . . . ,  k.

Given a Hamiltonian cycle H  of G it is very 
simple to complete instances of the problem 
NonCrossingPaths having as solutions non­
crossing and disjoint paths taken from H . For
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and the set E(G) of edges is an unordered subset 
of V  X V . The cardinalities of V (G ) and E(G) 
are, respectively, the order and the size of G. A 
subgraph H  of G is a graph such that V (H ) c  
V(G) and E (H ) c  E(G). If V ' c  V(G) then the 
induced subgraph of G by V ' is the graph having
V ' as set of vertices, and two vertices u, v in V ' are 
joined by an edge in V ' if and only if uv e E(G). If 
e =  v1v2 e E(G) then v1 is adjacent to v2 and the 
vertices v1 and v2 are incident to the edge e. The 
complete graph K n of order n is a graph having n 
vertices, where each one is adjacent to any other.
A clique in G is a complete induced subgraph of G.
A path in G with initial vertex v0 and ending vertex 
vm is a sequence of vertices π =  [v0, v 1, . . . ,  v ^ ] . A 
path can also be written π =  v0v1 . . . v m, such that 
for i =  0 , . . . ,  m — 1, v؛؛v؛؛+  e E(G), vo,. . . ,  v ^ - 1 

are pairwise different, and m is a positive integer.
The vertices v0 and vm are the end-vertices or 
endpoints of π. The length |π| of the path π is 
m, hence π is said to be an m-path. The internal 
vertices of π are v1, . . . ,  v ^ - ؛ . If v0 =  vm, then π is 
a cycle.

The distance dG(u, v) between two vertices u, v 
in G is the length of a shortest path connecting u 
and v. Two paths which are not cycles π؛ , π2 are 
non-crossing if there is no common vertex in π؛ and 
π2 which is internal in at least one of the paths. We 
say that the paths π؛ and π2 are disjoint if no edge 
appears in both paths.

A two-factor in a graph G is a family C ؛ , . . . ,  Ck 
of cycles of G such that any vertex in G belongs 
to one and only one cycle Cj. A two-factor of G 
consisting of only one cycle is a Hamiltonian cycle 
of G. Let H g be the collection of Hamiltonian 
cycles in G. If H g =  0 then G is called Hamiltonian.

An independent set of G is a subset /  of 
V(G) such that no edge in E(G) contains both 
end-points in / .  A maximal independent set 
of G is an independent set of G that is not a 
proper subset of another independent set of G.
A maximum independent set of G is a maximal 
independent set with the largest cardinality, the 
so-called independence number «(G) of G.

The Independent Set Problem consists in finding 
a maximum independent set in a given instance 
graph G. This is an NP-hard problem, difficult even 
to be approximated [6].
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Defin ition 3.1 (Path Graphs) Given ؛/?e instance
(G, k, K  =  {(u i i , uj i  ) , . . . ,  (uik , ujk ) }  m) 

of the problem  NonCrossingPaths, let the path 
graph Pm,k,K,a be the graph whose vertices are 
the m-paths in G connecting pairs at K :

π =  [ujo . . . ujm ] ء V  (Pm,k,K,a ) ٠  (ujo , ujm ) ع K ,

and the edges are o f two types: for any π , م ع
V  ( Pm ,k,K,a),

—  if π E(Pm,k,K ع are crossing, then πρ م, ,a ), 
and

—  if π ع have the same extreme points, then πρ م,
E(Pm,k,K ,a ) .

An independent set /  of Pm,k,K ,a yields a set 
of non-crossing and disjoint paths with ends in K , 
with no pair of extreme points connected by two 
paths.

For any pair (u, v) ع K  let R(u, v) be the 
subgraph of Pm,k , K ,a induced by the set of vertices 
at V(Pm,k , K ,a ) having as extreme points u and v. 
Then R(u, v) is a clique.

Those cliques produce a partition of the vertices 
in Pm, k , K , a in k subsets, and any solution of the 
problem NonCrossingPaths should contain exactly 
one member at each clique, hence it has at most k 
paths. Thus, whenever there exists an independent 
set / *  reaching the upper bound k, such / *  is 
maximum. Hence:

P roposition 3.1 With the above notation, the 
parameter k equals the independence number of
Pm,k,K,a, k =  a (Pm,k,K,a), and an independent 
set o f Pm,k,K ,a is maximum if and only if it is a 
solution o f an instance o f NonCrossingPaths of the 
form: (G, k, K  =  {(u i,  v i ) , . . . ,  (uk, vk)}, m)

4 Hamiltonian Cyc)es in the Hypercube

Let us examine some criteria to select instances of 
NonCrossingPaths making it difficult to solve the 
problem.

The main interest in the stated problem is to find 
maximum independent sets in the graph Pm,k,K ,a 
for a given instance

(G  k  K  =  {(u i l , uj l ( uik , ujk) , . . . ور  (m ث{

instance, if H  =  v^v1. . .v | ^ (G) | - 1 , and m · k < 
|V(G)|, then for

K  =  {( لا0ث  vm) ,
(v™.+ ] , v2(m+1) —1) ,

(v(k—1)(m+1), vk(m+1) —1)}

the collection of paths

Π =  {vo . . . vm ;
vm+1 . . . v2(m+1) —1 ; 

v(k—1)(m+1) . . . vk(m+1) —1}

is a solution.

Conversely, given the collection Π one may 
wonder whether it is built from a Hamiltonian cycle.

le t  us consider the following problem:

Ham ilton ianExtension
Instance: a Hamiltonian graph G =  (V , E). A 
collection Π of pairwise disjoint and non-crossing 
m-paths.
So lu tion : a Hamiltonian cycle H  G such that% ع 
for any π ع Π, if u and v are the initial and the 
ending points of π, respectively, then π^ (u, v) =  π.

For instance, for the n-dimensional 
hypercube Qn and Π a perfect matching 
at Qn (the paths at Π are just edges), 
then H a^ ilton ianE xtens ion (Q n,n )  always 
has a solution, although it is not uniquely 
determined [2, 3].

Thus, Ham ilton ianExtension would allow to 
recover a Hamiltonian cycle from a solution of the 
problem NonCrossingPaths. However, a solution 
of NonCrossingPaths may be obtained without 
building a whole Hamiltonian cycle containing that 
solution.

But solving NonCrossingPaths can be reduced 
to finding a maximum independent set in a huge 
graph as we see now.
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m-path v0 v 1 . . .  vm where Vj =  v0 +  Σ j = i en(íi) for 
j  =  1 , . . . ,  m. Hence, the m-paths connecting u0 
with um can be put in a bijective correspondence 
with the m-paths connecting v0 with v^.

Therefore, without losing any generality, we may 
assume u0 =  0(h)0(n-h) and um =  1(h)0(n-h). 
Let N (n, h, m) denote the number of m-paths 
connecting u0 and um. The following remarks are 
evident:

—  If either m < h =  Hamming(u0 , um) or m mod
2 =  h mod 2, then N (n, h, m) =  0.

—  If m =  h, then N (n , h, m) =  m!.

—  If m > Hamming(u0 , um) and m > n, then
N (n, h, m) > m!.

The experimental calculations allow to expect that 
the growth of N (n , h, m) exceeds the growth of m!:

m mod 2 =  h mod 2 ص  m! =  o(N(n, h, m))

From the simulations explained in the following 
section, we have checked that no Berge graph 
appeared in the trajectory graphs. However, this 
result is sufficient to claim that a general result 
holds:

P roposition 4.1 Let m ع Z+ be a fixed length for 
the connecting paths. If there exists an n0 ع N 
such that for any set K 0  of k pairwise disjoint 
vertex pairs in the n 0 -dimensional hypercube Qno 
the graph Pm, k,Ko,Qn 0 is not a Berge graph, then 
for any n > n 0 and any set K  of k pairwise disjoint 
vertexpairs in the n-dimensional hypercube Qn the 
graph P m kK Q n  is not a Berge graph.

Proof. Let n0 and k be as in the proposition 
statement. Let n be an integer such that n > n0 
and let K  be a collection of k pairwise disjoint 
vertex pairs in the n-dimensional hypercube Qn. 
Let N 0 c  { l , . . . ,  n } be an n0-index subset and let

K i  =  { ( fN 0(X 0«), πΝο(X 1«)) | (X 0«,X K ع (»1 }

and let K 0 be a maximal subset of K 1 consisting 
of pairwise disjoint vertex pairs, then card(K0) =  
k0 < k.

Let 0إ  : Qn0 >  {0 ,1}No be the natural 
identification consisting of just a renumbering of the

of NonCrossingPaths.
As we have agreed before, let us consider, in 

particular, the hypercube G =  Qn for some positive 
integer n. The edges in the hypercube Qn are 
pairs of the form vu where V +  u =  ej is a vector 
in the canonical basis of Qn : all its entries are 
zero, except for the i-th entry. A Hamiltonian 
cycle in Qn is a sequence H  =  h0 · · · h2n_* such 
that its terms form a permutation of V(Qn) and 
each pair of contiguous terms h«h« + 1 is an edge 
(the successor map is taken modulus 2n). A 
square, or 4-cycle, in Qn is a sequence v ^  v2v3 

of pairwise different vertices forming a cycle in the 
hypercube. Necessarily, any square has the form 
v, v +  ej, v +  ej +  e j, v +  ej for two distinct indexes
i, j  0} ,ع  . . . ,  n -  1}.

The typical Hamiltonian cycle at the hypercube is 
the binary Gray code. As a sequence, this code is 
determined recursively by the following recurrence:

0,1] = = gn , [و1   jo in (0 g ي  n - 1 , 1  * rev (0 n - 1 ))

( jo in  and rev  are, respectively, list concatenation 
and list reversing, * is a prepend map: b * list 
prepends the bit b to each entry at the list). For 
instance: 3 و1 = [0,1,] و2 = [00,01,11,10,] و  =  
[000,001,011,010,110,111,101,100], and so on.

In order to have an idea about the cardinality of
V (P m,k,K ,Qn) we start by estimating the number of 
m-length paths connecting two different vertices at 
the n-dimensional hypercube.

Remark 4.1 Let u0, um ع V (Q n), u0 =  um. 
The number o f paths with end vertices u0 

and um depends exclusively upon the distance 
Hamming(u0, um).

In fact, if v0, vm are other vertices in Qn with

Hamming(u0, u™) =  Hamming( v0, v ^ ) =  h

then u^  =  u0 +  ٤ j=1 eki  and vm =  v0 +  ٤ j=1 ٩
where the index sets { k 1, . . . ,  kh}, { k i , . . . ,  k^} are 
h-subsets in { 1 , . . . , n},  i.e. sets with exactly h 
elements. For any permutation π of {1 , . . . ,  n } such 
that

{ ^ (k1)  . . .  , ^ (kh)} =  {k 'i, . . . ه ,  }

we have that any m-path u0u 1. ..u™ with u j =  
u0 ىj= 1 e ^ , for j  =  1 , . . . , m, determines the
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Input : n e Z+ | n > 5,
k, m e Z+ | m · k < |V(Qn)|.

Output: A path graph Pm,k,K,Q„.

1 begin
2 h e H.Q n  / /  Generate randomly h
3 Π ه  paihs(h, k, m) / /Compute  m -paths
4 K ه   end^oin^(n) / /  Compute endpoints
5 V  (Pm,k,K,Qn) 0ه  / /  I n i t i a l i z e  set
6 foreach (u, v) e K  do
7 Compute ه،م  , all m-paths in Qn where 

its endpoint are u and v
8 [ ٧ (Pm,k,K,Q,،) ٧ n „,v  / /  Jo in  sets

9 E (Pm,k,K,Q^ ) c  V (Pm,k,K,Q^ )
/ /  Compute edges

A lgo rithm  5.1: Path graphs random generation

Input : A  path graph P™,k,K,Q^ , 
k < 5 an odd integer.

Output: An odd-hole π؛؛ if exists.

1 begin
vo e V (P ) 
π =  [vo]
repeat

w h ile  le n ^ )  < k do / /  F i l l  π
π ه  vj e N مح«ء) / ((ى /  Append vj

if π[0] =  π[—1] then / /  π is  cycle

سي/ى ) / /  Remove f i r s t
un til always

A lgorithm  5.2: Odd-hole search

/ /  Randomly i n i t i a l  ve rte x  
/ /  Append vo to  π

2
3
4
5
6

7
8 
9

10

12

5.1 Program s

We propose algorithm 5.1 to compute path graphs 
and algorithm 5.2 to search odd-holes within a 
given path graph.

Our programs implement a series of basic 
modules (BM):

1. BM 0: Given a positive integer n this
module generates a Hamiltonian cycle h in the 
hypercube Qn .

coordinates and let ،No,n : {0 ,1}No »  Qn be the 
embedding map consisting of padding with zero 
values the entries with index out of No.

Then Ano o ،No ,n is an embedding of the n0- 
dimensional hypercube Qno into the n-dimensional

Via AnVia Ano ◦  ،No,™, the graph
identified with a subgraph ofis

hypercube
Pm,ko,Ko,Q^ 
Pm ,K,

is not a Berge graph, neither
□

Since P^,ko ,Ko,
can be ٨

On the other hand, it can be observed that 
neither sparse graphs nor their complements do 
appear. Evidently, neither claw-free graphs are 
produced.

Thus the currently known polynomial-time 
methods [4, 7] to find maximal independent sets 
do not apply to the introduced graphs P™,k,K ,Q^ .

5 Computational Results

In Table 1 we give an exact calculation obtained 
experimentally for some particular values of n, m
and h.

r؛ng a pa؛Table 1. Count of the 8-paths (m  =  8) connect 
of points at distance h in the hypercube Qn

2 4 6 8

6 10 056 12 552 14 400 -
7 22 960 26 880 29 520 -
8 43 740 46 728 44 640 40 320

In our experiments, we have been restricted to 
n =  6,7,8. And thus, we implemented the vertex 
counting at P™,k,K ,Q^ for k =  8,16,32 and m 
with fixed value 8, where k is the number of the 
given connectable pairs, and m is the length of the 
required paths. We have performed one hundred 
simulations for each value of n in {6, 7, 8} and in 
all cases, the graph Pgk,K ,Q  ̂ or its complement 
contained induced cycles with five or more vertices.
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This work opens the possibility to carry out 
many applications, particularly, in cryptography. 
The stated Skein Problem can be used to design 
authentication challenge-response protocols or to 
implement key exchange protocols.

In the same way, based on the Skein Problem, 
appropriate protocols arise for such different 
environments as conventional computing, mobile 
computing, and several communication platforms

7 Conclusions

Finding maximum independent sets in graphs is 
a classical NP-hard problem. So, it is possible 
to profit of it for authentication purposes. In a 
naive approach, one may use a huge graph as 
a private key and a maximum independent set 
as the public one, but several difficulties arise: 
the first is the manipulation of the graph which 
may require hundreds of megabytes to offer an 
acceptable security level, and the second difficulty 
is to find maximum independent sets to act as the 
public key.

Skein problems override these difficulties. The 
path graphs in the hypercube play the role of 
hard instances, and the corresponding maximum 
independent sets to be used as public keys can 
be easily found from Hamiltonian cycles in the 
hypercube. On the other hand, finding maximum 
independent sets in path graphs is a very difficult 
problem due to their size, even for hypercubes of 
relatively small dimensions.

This is a first intended paper in a series planned 
to publish the cryptographic protocols and their 
robustness. Now, we have introduced the skein 
problems and we discussed their most basic 
mathematical properties in a purely Graph Theory
approach
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