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expressive logics such as propositional dynamic 
logic and A LC g  were later reported in [6]. 
These observations have been very useful 
in the translation of results, mostly regarding 
computational complexity, from the modal family to 
the description one [12]. However, mainly due to 
the semantic tradition of modal logic, there is still 
an overall perception of unsatisfactory proof theory 
on description logics [14].

The formal deductive systems of sequents for 
first order classical and intuitionistic logics were 
first developed by Gentzen in his search for 
arithmetic consistency [7]. Since then, sequent 
calculi have been an important tool in the syntactic 
analysis of proofs and in the automation of 
reasoning tasks

More recent generalization of sequents systems 
such as (tree) hypersequents have lead to 
important proof theoretic results on large classes 
of logics, not including description ones [9, 14, 15]. 
 n this paper, we describe a sequent system for؛
ALC with refiexive and transitive roles, that is, 
the notational variant of the modal logic S4. A 
complexity analysis of this system is also provided 
together with an implementation.

Also, a tree hypersequent system for ALC with 
general roles, i.e., the notational variant of the 
modal logic K, is also described together with its 
complexity analysis and implementation.

A bstract. Description logics (DL) form a well-known 
family of knowledge representation languages. One 
of its main applications is on the Semantic Web as 
a reasoning framework in the form of the Ontology 
Web Language (OWL). In this paper, we propose a 
cut-free tree hypersequent calculus for terminological 
reasoning in the Description Logic ALC. We show the 
calculus is sound and complete. Also, an implementation 
is provided together with a complexity analysis. In 
addition, we also describe a cut-free sequent calculus 
for the description logic ALC with refiexive and transitive 
roles. Soundness and completeness are proven, and 
a complexity analysis and an implementation are also 
provided.

Keywords. Description logics, (Hyper)sequents, proof 
theory, automated reasoning

1 Introduction

Description logic languages (DL) are nowadays 
a well-established formalism for knowledge repre­
sentation [1]. Closing the gap between theory and 
practice is one of the most appreciated features 
in DL. This is well exemplified by the success of 
the Web Ontology Language (OWL) and related 
reasoning technologies in the Semantic Web [11].

On the theoretical side, from the seminal work 
of Schild [17], a close relationship between 
modal and description logics is know, namely, 
that basic propositionally closed concept language 
ALC is a notational variant of the multi-modal 
logic Km. Other relationships between more
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Finally, ؛n Section 5, we give an outline of the 
current work together with a discussion of further
research perspectives

2 Description Logics

In this Section, we describe two concept lan­
guages, the basic propositionally closed concept 
language ALC introduced by Schmidt-SchauBand 
Smolka [18], and a restriction of ALC with reflexive 
and transitive roles, which we name ALCS4 due to 
its correspondence to multi-modal logic S4. We de­
tine the syntax and semantics of the logics, and we 
also describe the corresponding axiomatizations, 
which are used in the completeness proofs of the 
derivation system proposed in the current paper.

2.1 Syntax and Semantics

We assume a fixed alphabet language composed 
by sets of concept and role names.

Definition 1 (Syntax). Concept descriptions in 
the basic propositionally closed concept language 
(ALC) are given by the following grammar:

C := A | -C ,C Π C | Vr.C ا 

where A is a concept name and r  is a role name.

Concepts names are interpreted on relational 
structures as node subsets: names A  are used 
as node labels; negation -C  is interpreted as 
set complement; semantics for conjunction C Π D 
corresponds to set intersection; and concepts Vr.C 
denote nodes where all their accessible nodes 
through the role r  satisfy C.

We also consider the following notation: C ٧ 
D := ٦ (—C Π -D ٢ =: ٦ ,A Π A— =: ل ,( - ,  
C ç  D := -C  ٧ D, C =  D := (C ç  D) Π (D ç  C ), 
and 3r.C := -iVr.-iC . Note then that disjunctions 
C ٧ D are interpreted as set unions, ل and ٢ 
denote contradictions and tautologies, respectively, 
concepts C ç  D are interpreted as implications, 
C =  D as double implication, and the semantics 
of concepts 3r.C corresponds to nodes where 
there is at least one accessible node through r 
satisfying C.

1.1 Motivations and Related Work

The proof theory of modal logic is not as well 
understood as its classical counterpart [15, 14]. 
Negri outlines very well in [14] the development 
and difficulties in the syntactic analysis of proofs 
for modal logics. In Poggiolesi's thesis [15], there 
is a detailed description from the sequent systems 
perspective. In particular, a tree hypersequent 
system for the modal logic K is proposed, which 
is a notational variant from the system proposed 
in the current work for ALC. We, in addition, 
provide a complexity analysis of the system and an 
implementation.

Regarding the proof theory of description logic, 
we find the works of Rademaker [16], and more 
recently, Su and S u i[19]. In this last work, a 
sequent system for ALC is prpoposed. However, 
cut elimination does not hold, and the system is 
undecidable. In [16], a cut-free sequent system is 
also proposed for ALC, and counter-models may 
be extracted from unsuccessful proofs. In the 
current work, we propose a cut-free deduction 
system based on tree of hypersequents, which 
in addition is contraction-free. This allows an 
implementation of the system, which is also 
provided.

We also propose a cut and contraction free 
sequent system for ALC with refiexive and 
transitive roles, which we name ALCS4 due to its 
obvious correspondence with the multi-modal logic 
S4. We also provide an implementation and a 
complexity analysis of this system.

1.2 Contributions and Outline

In Section 2, we describe the basic propositionally 
closed concept language ALC. Axiomatizations 
for ALC with general, and refiexive and transitive 
roles are also provided. A cut and contraction 
free sequent system for ALC with refiexive and 
transitive roles is described in Section 3. Also, the 
system is proven correct and to be in EXPTIME. 
An implementation of the system is also described. 
In Section 4, we describe a tree hypersequent 
system for ALC. The system is also cut and 
contraction free, which allows to implement it. 
The implementation is also given in this Section. 
Correctness and complexity proofs are described.
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An interpretation /  s a model of a concept؛ 
description C when C1 =  0, and it is written 
/  =  C ,w e  also say C is satistiable by / .  If any 
interpretation is a model C , then we say C is valid, 
and we write =  C .

2.2 ALC Axiomatization

It is well-known that ALC is a notational variant of 
multi-modal logic K [17], hence, an axiomatization 
for K is also an axiomatization for ALC, which is 
composed by the axioms of classical logic together 
with the normality scheme and the rules of Modus 
Ponens and Necessitation.

We now give an axiomatization of ALC as given 
in [16].

Definition 3 (ALC axiomatization). Axioms are 
given as follows:

A1 —(C Π (D Π —C)),

A2 —((—(C Π (D Π ( - E )))) Π ((—(C Π (—D))) Π (C Π

A3 —((—((—C) ٨ D)) ٨((—((—C) ٨(—C ))) ٨(—C)))أ

A4 — ((Vr.(—(C Π (—D)))) Π ((Vr.C) Π (—(Vr.D)))).

Inference rules are Modus Ponens (M P ) and 
Necessitation (Nec).

(C D) C C
D M P  v r C  Nec

The axioms A1-A3 can be understood as a 
notational variant of the corresponding axioms 
in classical propositional calculus, while Axioma 
A4 corresponds to normality in the multi-modal 
logic K .

If a concept description C is derivable with the 
ALC axiomatization, then we write h C.

The correctness of the ALC axiomatization 
trivially follows.

Theorem 1 ([5, 16]). ALC axiomatization is sound 
and complete, that is, for any ALC concept 
description C, we have that

h C if and only if =  C .

Consider for instance the following concept 
description [5]:

Man Π ^married Doctor Π Vchild.Happy.

This concept description can be interpreted as 
men married with a doctor and with happy children 
only. In Figure 1, a model (as a relational structure) 
of this concept is depicted.

Doctor

Fig. 1. A relational model for Man Π ^married.Doctor Π 
Vchild.Happy holding at n1

Before giving a formal description of ALC 
semantics we tirst introduce the notion of 
interpretation, which is a pair /  =  (Δ 1, · ) ,  where 
Δ^ is a non-empty set called the domain of /,  and 
·  is the interpretation function, which assings to 
each concept name A a domain subset A1 c  Δ^ 
and to each role name r  a binary relation on the 
domain r■1 c  Δ^ X Δ ^.

Definition 2 (Semantics). Given an interpretation 
/  =  (Δ 1, · ) ,  a semantics of concept descriptions is
defined as follows
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Proof. ؛f x e (Vr.C٢, then for all y that (x, y) e r 1, 
we know that y e C1.

Now, since /  is refiexive, then (x, x) e r 1, 
therefore, x e C1.

Let x e A 1 and (x, x) e r f C is such that؛ .1
C1 =  A 1 \  {x }, then x e (Vr.C)1, hence x e C 
which is a contradiction. Therefore (x, x) e r 1. □

Proposition 2. An interpretation /  is transitive, if 
and only if, /  is a model for the concept description 
Vr.C ç  Vr.Vr.C for any concept description C .

Proof, ؛f x e (Vr.C٢ , then for all y that (x, y) e r 1, 
we have that y e C.

Now, since /  is transitive, then for all z that
(y, z) e r 1, we know that (x, z) e r 1, hence z e C1 
(recall x e (V r.C /).

Therefore x e (Vr.Vr.C).

Now, let x, y, z e A 1, such that (x,y) e r 1 and 
(y, z) e r 1, and let us assume that (x, z) e r 1.

= f C is such that C1؛  A 1 \ { z } ,  then x e (Vr.C)1, 
hence x e (Vr.(Vr.C))1 and as (x, y) e r 1 y (y, z) e 
r 1, then z e C1, which is a contradiction

We then conclude that (x, z) e r 1. □

Theorem 2. ALCS4 axiomatization is sound and 
complete, that is, for any concept description C 
and any reflexive and transitive interpretation / ,  we 
have that

/ C if and only if ر  =  C .

Proof. We proceed as in the proof of Theorem 1 
([5, 16]), with the additional condition that the rules 
are refiexive and transitive, which are supported by 
Propositions 1 and 2. □

3 Sequents for ALCS4

We first introduce in this Section a cut and 
contraction free sequent system for ALCS4. 
Then we prove its correctness. A complexity 
analysis of the sequent system together with an 
implementation are also provided.

2.3 ALCS4

Given a binary relation R over a set S, we say R 
is refiexive if and only if for all s e S, we have that 
( ق,ق ) e R. ؛n the same context, we say that R is 
transitive, if and only if, for all 2 ق1,ق , s3 e S, we have 
that if (s1,  e R, then (s1, s3) e (s3 ,ق2) e R and (ق2
R.

 n the setting of ALC concept descriptions, we؛
say an interpretation /  =  (Δ 1, 1) is refiexive 
(transitive), if and only if, for any role r, we have 
that r 1 is refiexive (transitive) over Δ 1.

Definition 4 (ALCS4). ALCS4 is the logic of 
concept descriptions described by the ALC syntax 
(Definition 1), but whose semantics (Definition 2) 
considers refiexive and transitive interpretations 
only.

As expected, the axiom system for ALCS4 cor­
responds to the axiom system of the multi-modal 
logic S4.

A usual way to study a formal logic consists in 
defining a set of axioms and inference rules and 
then, if possible, obtaining an adequate semantic 
system for it. However, to study DL, it is more 
natural to proceed in the opposite direction, i.e., 
starting from a semantic interpretation we analyze 
the valid consequences of the corresponding logic 
and then, if possible, define a set of axioms and 
rules for it

Definition 5 (ALCS4 axiomatization). ALCS4 ax- 
iomatization is formed by the axioms and inference 
rules of the ALC axiomatization (Definition 3) 
together with the following axioms:

A5 - ( -C □ V r .C ),

A6 -(-(V r.(V r.C )) □Vr.C).

Abusing notation, when clear from context, 
we also write ر C when an ALCS4 concept 
description C is derivable from its corresponding 
axiomatization.

The following results present necessary and 
sufficient conditions to verify axioms A5 and A6.

Proposition 1. An interpretation /  is reflexive, if 
and only if, it is a model for the concept description 
Vr.C ç  C for any concept description C .
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Intuitively, a proof is defined as a tree of 
sequents where each step is obtained by a rule of a 
given sequent system, and where all the branches 
are finite and begin with initial sequents.

Consider for instance the following proof of 
axiom A1 in the sequent system ALCS4.

=>

nA
A

=>
(D Π ( -C )) , =>
'Π (D Π (—C))) ص

Π (D Π (-C ))))( (

A substitution is a function from the set of names 
concepts to the set of arbitary concepts which has 
finite support.

Definition 7 (Proof tree). Given a sequent system, 
a derivation tree is inductively defined as follows:

— any rule of the sequent system, up to 
substitution, is a derivation tree;

— the following expression is a derivation tree

Tl . . . T„

, n) are derivationprovided that Ti 
trees, and

is a rule, up to substitution, such that Si is the 
corresponding root (lowest sequent) of Ti .

A derivation tree is a proof tree, or simply a proof, 
if all its branches are finite and begin with initial 
sequents. If there is a proof for a sequent ص Γ, 
then we write \~G Γ (G due to Gentzen).

3.1 The Calculus

The notion of sequent is first described. A sequent 
is a pair (Γ,Λ), written Γ ص Λ, where Γ and Λ 
are sets of concept descriptions, such that both 
of them cannot be empty. Intuitively, the symbol 
 denotes that the union of concepts in Γ implies ص
the disjunction of concepts in Λ. We often write 
Γ, C1, . . . ,  Ck instead of Γ u {C 1, . . . ,  Ck}.

We denote ٨ Γ and ٧ Δ  instead of أ  C and 

C respectively.

A sequent rule is a non-empty tuple of sequents 
(So, S1, S^, . . . ,  Sn), and it is written as follows:

If a sequent rule contains only one sequent, then 
it is called an initial sequent. The intuitive meaning 
of a sequent rule is that the first sequent So is 
derived from assumption of the other sequents Si
( i>  0).

If the rule is an initial sequent, then that sequent 
can be interpreted as an axiom, because there is 
no need of assumptions to derive it. A non-empty 
set of sequent rules is called a sequent system.

Before defining a sequent system for ALCS4, 
we define the following notation: V r.r instead of
{Vr.C^ . . . ,  Vr.C;؛}, where Γ =  {C 1, . . . ,  Ck}.

Definition 6 (ALCS4 sequent system). We define 
a sequent system for ALCS4 by the following rules.

3.2 Correctness

In order to show ALCS4 is correct, we then show 
soundness and completeness.

We now state the following lemma required to 
prove soundness.

Vr.Vr.C ç ؛س ,is validLemma 1. If Vr .C ç
Vr.D also does.

n K
,Λ

C,Γ Λ ص 
Γ ص—C ,Λ —K
Γ C, Λ Γ

D, Λ

,Λ
Λ

C Γ ص 
Γ =>■ C

Γ ص

C ص V r.r 
.)V r =؛< V r.r

A

A

C Γ ص Λ ' 
D ,ت , r  Λ ص 
Π D, Γ ص Λ 

C, Γ Λ
Λ ئ, Vr.C
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Consider now the last proof step is the following:

C ,Γ ج   Λ 
Vr.C ,Γ ج   Λ '

By induction we thus know that for any refiexive 
and transitive interpretation /,  the following holds:

( c  π □ و 1   Ç ٧  Λ1.

t is also known that (Vr.C)1 c؛  (C)1 (by 
Proposition 1), due to refiexivity.

t is then clear that (Vr.C π["| Γ؛ )1 c  (٧ Λ)1.

We consider now the final case:

Vr Γ ي C 
Vr Γ ج  Vr.C '

By induction V r.r ç  C is valid.

Now, we know that Vr.Vr.r ç  Vr.C is valid, due 
to Lemma 1 and that Vr.C π D — Vr.C π Vr.D is 
also valid for any C , D and r.

Since all interpretations are transitive, then we 
also know that V r.r ç  Vr.Vr.r (Proposition 2) is 
valid.

Therefore, V r.r ع Vr.C is valid. □

We are going to show completeness by means 
of ALCS4 axiomatization completeness.

Theorem 4. If a concept description C is derivable 
in ALCS4 axiomatization, then there is a proof in 
ALCS4 sequent system, that is,

if ر C , then hG C .

Proof. We proceed by induction on derivations in 
ALCS4 axiomatization. The base cases are the 
axioms and Modus Ponens. A1 has already been 
shown in an example above. We now show only 
A4, A5 and A6, which are the representatives 
axioms of S4.

72

Proof, ؛f x e (Vr.C ç  D )1 for some interpretation 
/ ,  then x e D 1 when x e (Vr.C)1.

Now, assume the last. There are two cases, 
when there is a y, such that (y, x) e r 1, and when 
there is not.

The second case is straightforward since x e
(Vr.Vr.C )1.

 ,n the first case, it is clear that y e (Vr.Vr.C)1؛
now, by assumption we know x e D 1, and thus
y e (Vr.D)1. □

We are now ready to prove soundness.

Theorem 3 (Soudness). If there is a proof of 
sequent r ج   Λ in ALCS4 sequent system, then 
formula Γ ç  Λ is valid on ALCS4, that is, every 
reflexive and transitive interpretation is a model of 
the formula.

Proof. We proceed by induction on the height of 
the proof tree of r ج   Λ.

The base case for C , r ج   C , Λ is trivial.
f it is now assumed that we have a proof؛

ك  ,
we then have to show that if there is also proofغ

γ ي Λ ,

then r  ç  Λ is valid.
Consider the case when the last step in the proof 

is the following

Γ ي C,Λ
-C  Γ ي Λ '

Then by induction we have that ٨ r  ç  C ٧٧ Λ 
is valid, that is, for any refiexive and transitive 
interpretation / ,  there is a x e Δ 1, such that if 
x e (٨٢/ ,  then x e (C)1 o rx  e (.(٣  

t is then not difficult to conclude that if x e (Π Γ؛ )1 
and x e (C)1, then x e (LI Λ)1, that is, ٨ r  π -C  ç  
٧٨ is also valid.

We proceed analogously for the cases when 
the last step of the proof are rules for boolean 
operators.
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We are now ready to show completeness, which 
is immediate from Theorem 4 and Theorem 2.

Corollary 1 (Completeness). For any reflexive and 
transitive interpretation / ,  if /  is a model for a 
concept description C , then there is a proof of C 
in ALCS4 sequent system, that is, he C .

It is important to state the existence of a 
hierarchy for the application of the rules. We 
first apply logical rules, followed by the right 
quantification rule (if possible) and concluding with 
the left quantification rule.

A4:

C ج  D , C Ax C ن  (—D ), D —K  
C ن  (C Π (—D )), D nK

(—(C ٨ (—D ) ) )  C ن D A , .
(Vr .(—(C ٨ (—D ) ) ) )  C ن D r ,

(Vr .C ),(V r .(—(C η (—D ن ((((  D 
(Vr .C ), (Vr .(—(C ٨ (—D ن ((((  (Vr .D ) VrK 

(—(Vr .D )), (Vr .C ), (Vr .(—(C ٨ (—D ن خ ((((  
((Vr .C ) ٨ (—(Vr .D ))),(V r .(—(C ٨ (—D ))))

((Vr .(—(C ٨ (—D )))) ٨ ((Vr .C ) ٨ (—(Vr .D ن ٨٨ ((((  
ن  (—((Vr .(—(C ٨ (—D )))) ٨ ((Vr .C ) ٨ (—(Vr .D ))))) —K ,

3.3 Complexity and Implementation

We now show the sequent system for ALCS4 is in 
EXPTIME. This is mainly due to the fact that proofs 
are binary tree shaped and there is an exponential 
bound on the number of binary trees.

Theorem 5 (Complexity). ALCS4 sequent system 
is in EXPTIME.

Proof. First notice that the system satisfies the 
subformula property, that is, for each rule (،0 ؟ , Si) 
or (S0, S1, ،2 ؟ ), formulas in S1 or S2 are all 
subformulas of the ones occurring in S0.

It is then clear that the height of the proofs 
(number of proof steps) is linear with respect to the 
size of the input sequents.

Now notice that due to the conjunction on the 
right rule, proofs are binary tree shaped.

The exponential bound comes from the fact 
that the number of nodes in binary trees are 
exponentially bounded with respect to height of the 
tree. □

Regarding implementation, we followed a func­
tional approach as in [13], more precisely, the 
ALCS4 system was implemented in ML [8].

We consider three fundamental data types: 
concept descriptions, whose alphabet is formed by 
concept names and roles; sequents, defined as 
a pair of concept lists; and rules, which can be 
axioms, and rules with one or two hypothesis. They 
are depicted in Figure 2.

The code for the implementation of rules 
described in Definition 6 is depicted in Figure 3.

A5:

A^
rK

(Vr.C) ن  (Vr.C

A

(Vr.C) ن  (Vr.(Vr.C))
(—(Vr.(Vr.C ))),(V r.C ن ( " 

((Vr.C) ٨ (—(Vr.(Vr.C)))) ن  
ن  (—((Vr.C) ٨ (—(Vr.(Vr.C)))))

A6:

rA=>

A

(Vr.C) ن 
(—C),(Vr.C) ن  — 

((Vr.C) ٨ (—C)) ن  
ن  (—((Vr.C) ٨ (—C )))

Modus Ponens:

A^
—K

K

=>
<=,(D—) ن

C ن  (C ء—) ٨ )), D 
(—(C ٠—) ٨ ))), C ن  D  .

Here (—(C ٨ (—D))) corresponds to C ç  D  by 
translating subsumption and disjuntion.

For the induction step, we assume we have a 
proof for a concept description C, then we show 
the necessitation rule:

rK=>
Vr . C ) ن
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4 Tree Hypersequents for ALC

In this Section, we first introduce the notion of 
tree hypersequents, which is a generalization of 
sequents. Then a tree hypersequent system for 
ALC is introduced, without any restriction to roles. 
Proofs for correctness and complexity (2EXPTIME) 
are also given. The corresponding implementation 
is also described.

4.1 The Calculus

Tree hypersequents as their name suggest is a tree 
structure, where each of its nodes is a sequent. 
The following is a more precise definition.

Definition 8 (Tree hypersequents). Tree hyper- 
sequents (THS) are inductively defined by the 
following grammar:

T  :=S /M T  
M T  :=0 | T ; M T ,

where S is a sequent.

Regarding notation, instead of S/0, we write S. 
As in [10], we now define the zoom for tree 

hypersequents.

Definition 9. The set of zoom tree hypersequents 
(ZTH S) is inductively defined in the following way:

— [- ] .ZTHS ع 

— If T1, ..., Tn ع T H S , r 1, ..., r n are roles names,
then [ - ] / r 1 : T1; ...; rn : Tn ع ^T # S .

— If S is a sequent, T2 ,...,Tn ع T #S , r 1,...,rn 
are roles names and ع ] - آث]  ZTHS, then 
S /r 1 : T 1 [- ]; r 2 : T2 ; ...; r« : T « ^ ع T # S .

T [T '] denote the substitution of T ' in T [- ]  which 
is defined as follows:

— If T [- ] =  [- ],  then T[T'] =  T '.

— If T [- ]  =  [ - ] / r 1 : T1 ;...;r«  : T« and T ' =  
S '/w  : T1;...;wk : Tk, then T[T'] =  S '/ r1 : 
T1 ;...; r« : T«; W1 : T ';...; Wk : T ' .

— If T  [- ]  =  S /r 1 : T1 [- ]; r 2 : T2 ;...; r« : T«, then 
T [T '] =  S /r 1 : T 1 [T']; r 2 : T2 ; ...; r« : T«.

d a ta typ e  Roles= ro le  o f s t r in g ;

d a ta typ e  Conc= conc o f s t r in g  | 
nega o f Conc | 
con j o f Conc ي Conc| 
cuan o f Roles ي Conc;

type  Seq = Conc l i s t ;

d a ta typ e  Sequent = lr  o f Seq ي Seq;

d a ta typ e  SystemG = Ax o f Sequent |
InRuOne o f Sequent |
InRuTwo o f Sequent ٠ Sequent;

Fig. 2. Data Types in ML· for ALCS4 sequent system

The entire code for the implementation is in 
http://aleteya.cs.buap.mx/-iebp/ALCS4.Fin. 
ML , which was tested in PC with Intel Core i5 1.8 
GHz, Windows 8.1, in the Moscow ML version 
2.01.

The proof of axiom A5, which is part of the proof 
of Theorem 4, takes 6.4844ل milliseconds in our 
implementation.

fun reduce2tex1 ( l r  ( n e g a ( a ) : :gamma, de l t a  )) = 
InRuOne ( l r (gamma, a :: de l ta ))
| r e d u c e 2 t e x 1 ( l r ( c o n j ( a , b ) : : g a m m a , d e l t a ) )  = 
I n R u O n e ( l r ( a : : b :  :gamma, de l t a  ))
| r e d u c e 2 t e x 1 ( l r ( g a m m a , n e g a ( a ) : : d e l t a ) )  = 
InRuOne( l r (a : :gamma, de l t a  ))
| r e d u c e 2 t e x 1 ( l r ( g a m m a , c o n j ( a , b ) : : d e l t a ) )  = 
InRuTwo( l r (gamma, a :: de l t a  ) , l r (gamma, b :: de l t a  ))
| r e d u c e 2 t e x 1 ( l r ( g a m m a , c u a n ( c ) : : n i l ) )  = 
i f  For a l l I n ( r , ga m ma )  
then I n R u O n e ( l r ( g a m m a , c : : n i l ) )  
else A x ( l r ( g a m m a , c u a n ( c ) : : n i l ) )
| r e d u c e 2 t e x 1 ( l r ( c u a n ( a ) : : g a m m a , d e l t a ) )  = 
InRuOne( l r (a : :gamma, de l t a  ))
| r e d u c e 2 t e x 1 ( l r ( g a m m a , c u a n ( c ) : : r e s t ) )  = 
i f  HaveNeg( rest )
then InRuOne( l r (gamma, cuan (c ) : :  r e s t ))

( Ax( l r (gamma, cuan ( c ) : : r e s t ) ) )
| reduce2tex1 (any)  = ( d e c id e ( a n y ) ) ;

Fig. 3. ML implementation of ALCS4 sequent system
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Tree hypersequents are interpreted as a 
disjunction composed by its branches. More 
precisely, we inductively define the following 
interpretation function:

n c .  çص

٧ LI Vr.^T,

( (  , · · · , Cn ي D 1 ···' 

٥ Di, and

(S /r1 : T 1 , ···, rk : Tk )H

Theorem 6 (Soundness). If there is a proof of the 
tree hypersequent T  in the ALC tree hypersequent 
system, then T H is valid.

Proof. We proceed by induction on the proof height 
of T.

 n the base case, we distinguish two cases: one؛
when C, r  C, Λ occurs at the root of T, and the ي 
other when it does not.

□ n the first case it is clear that C؛ ٨ r  ç  C ٧٧ Λ 
is valid.

 n the second case, it is also not difficult to see؛
the validity of Vr1. ··· .Vrn.(C  □ ٨ r  ç  C ٧٧ Λ), 
such that a concept D is satisfied, then VrD is 
also satisfied for any role r, given that Δ 1 c  D 1 
is complied.

 n the induction step we assume a proof of a tree؛
T ', and then we show by cases the rule T  can be 
applied.

Consider now the case when the last proof step 
is the following:

T  [Γ ي C , Λ]
T [-C ,Γ .[Λ ي 

 :n this case, we also distinguish two subcases؛
when —C, r Λ occurs as the root of T ي  , and when 
it does not.

n the first case, we know that r؛  C, Λ occurs ي 
also in the root of T  and it is also valid (inductive 
hypothesis). Then for any interpretation /,  we know 
that ٣ ) c  C1 u ( ٧ ٧ . From this, we imply 
(٨٢)) n (C 1)م c  (٧٨)) n (C1 )٠ c  (٧٨)), and 
hence - C , r .Λ is valid ي 

The other cases when the last proof step 
involves boolean operators are proven in an 
analogous manner.

Definition 10 (ALC tree hypersequent system). 
We define a tree hypersequent system for ALC by 
the following rules.

^x

nA

n K

T [C,Γ C ي  , Λ] 
T  [Γ ي C , Λ] 

T [ - C , r  [Λ ي 
T  [C,Γ  [Λ ي 

T  [Γ س  ,Λ] 
T [C , D , r  [Λ ي 

T[C π D , r  [Λ ي 
,Λ] T [r D ي  ,Λ]T  [Γ ي

VrA

T [Γ ي C π D, Λ]
Γ ,ت Λ ي ' '/M T '); M T]T  [(Vr.C,Γ Λ ي  )/τ

V rK

, r Λ ي  ) ^  : (Γ' ي Λ '/M T ' ); M T ], 
T [(Γ ي Λ ) Μ ^  C)] 

T  [Γ ٠  Vr.C ,Λ],

T  [(Vr.(

Notice that the V r^  rule can be applied to an 
hypersequent T[(Vr.C, r A ي  )/M T ] provided that 
there exists an hypersequent in M T  that is labeled 
by the r  role. Hence, if every hypersequent in 
M labeled by r  contains the concept C in the 
antecedent of the root, then the rule V r^  can not 
be applied and we can thus no longer consider the 
concept Vr.C.

As an example of the use of the tree 
hypersequent system, consider the following proof 
of A4:

- K
nA

/r  : (٠ , C ي ٠ ) '  
· : ( C ) ي  -D ) ,  D)

VrA

A
١ ٧

ي  /r  : (C ي  D , C )
ي  /r  : (C ي  (C π ( - D )), D )

ه م  : ( ( - ( C π (- ^ ) ) ) , C ه ه )
(Vr .(—(C π (— ء)))) ي  /r  : (C ( ي ء  

٧٢).C ), (Vr . ( - ( C π ( - D ي ((((  / r ي) :   D )
(٧٢.C ), (Vr .(—(C π ( - D ي ((((  (Vr .D ) 

(-(V r .D )), (Vr .C ), (Vr . ( - ( C π ( - D ي ((((  - 
((Vr .C ) π (-(V r .D ))), (Vr . ( - ( C π ( - D  ي ((((

((Vr . ( - ( C π ( - D )))) π ((Vr .C ) π (-(V r .D  ي ((((
ي  (- ((V r . ( - ( C π ( - D )))) π ((Vr .C ) π (-(V r .D )))))

Vr^
VrK

A

4.2 Correctness

We now show the ALC tree hypersequent system 
is correct.
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Proof. The proof goes by induction on derivations 
in ALC axiomatization. In the base case, the only 
interesting subcase is the proof of axiom A4, which 
has been given in the example above. For the 
induction step, we assume we already have a proof 
of a concept C, then we prove the necessitation
rule

Completeness is now clear from Theorem 7 and 
Theorem 1.

Corollary 2 (Completeness). For any interpreta- 
/ ion؛ ,  if /  is a model for a concept description 
C, then there is a proof of C in the ALC tree 
hypersequent system, that is, C ءر .

4.3 Complexity and Implementation

The complexity of the tree hypersequent system 
for ALC is in 2EXPTIME. Intuitively, proofs in this 
system are binary trees where the number of 
nodes of a tree is exponentially bounded by its 
height, which is itself exponentially bounded by the 
size of the input concept.

Theorem 8 (Complexity). The ALC tree hyperse- 
quent system is in 2EXPTIME.

Proof. The first exponential bound comes from the 
bound on the number of nodes in binary trees 
with respect to the tree height. Recall from the 
complexity proof of the ALCS4 sequent system 
that rules corresponding to boolean connectives 
produce binary shaped proof trees, due to the 
subformula property.

We now show the second exponential bound: 
the height of proof trees is exponentially bounded 
by the size of the input concept.

For this purpose, first recall that each node of 
the proof tree is a tree hypersequent. We then 
proceed to show that the number of nodes for each 
tree hypersequent is exponentially bounded by the 
concept size.

First, due to the subformula property, it is easy 
to see that the rank of each tree hypersequent is 
linearly bounded by the concept size. However,

We focus now on the case of the quantification 
on the left.

T  [(Vr.C, r Λ ص  ) /·  : (C, Γ Λ ص ' '/M T ')]
T  [(Vr.C,Γ Λ ص  )/·  : (Γ' ص Λ '/M T ')] .

We only prove the basic case and when M T ' =  
0, the arguments for the other cases are similar. 
Then, by inductive hypothesis, we obtain that the 
following concept is valid.

— (Vr.C Π PI r ) ٧ لا   Λ 

٧ Vr. ( — ( c  Π I r ' ) ٧ لا   Λ ') .

Then, by De Morgan's laws:

—Vr.C ٧ — 1  r ٧ لا   Λ □Vr. (—C ٧—1 Γ' ٧ لا  Λ ') . 

And by normality:

—Vr.C ٧ —٢٦  r  ٧٧ ٨٧  

Vr.—C ٧ Vr. ( —1  r ' ٧ لا   Λ ')

and since Vr.—C ç  —Vr.C is satisfied, then it 
clearly implies that ((Vr.C, r Λ ص  )/·  : (γ Λ ص ' '))Η 
is valid.

Quantification on the right:

T [(Γ ص Λ ) / · ^  C)]
T [Γ ص Vr.C, Λ] .

We again only prove the base case when T [- ]  =  
[- ]. By induction, we know that the following 
concept is valid (—  Γ) ٧٧  Λ ٧ Vr.(—  ٧ C). 
Then (—  Γ) ٧٧ (Vr.C, Λ) is valid which clearly 
implies that the root hypersequent is valid under 
the function H . □

Completeness is also proven with respect to ALC 
axiomatization completeness. We then first show 
the ALC tree hypersequent system is complete with 
respect to ALC axiomatization.

Theorem 7. If a concept description C is derivable 
in ALC axiomatization, then there is a proof in the 
ALC tree hypersequent system, that is,

if ر C, then ءر C .
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which we name ALCS4 due to the straightfo^ard 
correspondence with the multi-modal logic S4. The 
system for ALCS4 enjoys of cut elimination, which 
allows to prove decidability. In addition, this system 
is also contraction-free. These two features are 
important requirements for the implementation of 
sequent-like systems. An implementation is also 
provided. The system is also proven correct: 
sound and complete. And the complexity of the 
system is shown to be in EXPTIME.

We also introduce a proof system for ALC 
without restrictions on roles. The system is based 
on tree hypersequents, which is generalization of 
sequents. This system is also cut and contraction 
free. Correctness and complexity (2EXPTIME) 
proofs of the system are also given together with 
an implementation.

Since both systems described in this work con­
structively search for candidate proofs, counter­
models maybe extracted from unsuccessful proofs. 
We are currently developing the corresponding 
algorithms.

We believe the reasoning frameworks provided 
in the current work will allow further studies 
in description logics from a proof theoretic 
perspective. In particular, we are interested in 
constructive proofs of Craig interpolation in the DL
context

Another immediate research perspective is the 
study of sequent-like proof system for description 
logics including terminological (TBoxes) and 
assertional (ABoxes) reasoning.

Also in this setting, we plan to study more 
expressive description logics, including arithmeti­
cal (numerical) restrictions, inverse roles and 
nominals [2, 3, 4].
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due to the universal quantification on the left 
rule, there are duplications (nodes in the tree 
hypersequents).

Now, there is a well-known and straightforward 
linear reduction of n-ary trees to binary trees [2, 3, 
4], such that the height of the binary trees is linearly 
bounded by the rank of the n-ary trees.

Then, the height of the binary version of the tree 
hypersequents is also linear.

Recalling again the exponential bound on the 
number of nodes in binary trees with respect 
to the height, we obtain that the size of each 
tree hypersequent (proof node) is exponential with 
respect to the input concept size. □

The implementation of ALC tree hypersequent 
system is similar to the one described for the 
ALCS4 sequent system in Section 3. However, 
in the case of the ALC system, the fundamental 
data structure is composed by tree hypersequents, 
which is described in Figure 4. In this Figure, a 
data type for proof trees with tree hypersequents 
as nodes is also displayed. This data type may 
have no applicable rule, an axiom, or a rule with 
one or two hypothesis. The proof of axiom A4, 
depicted above, takes 19.0497 milliseconds in our 
implementation. The full code is described in http: 
//aleteya.cs.buap.mx/~iebp/ALC_Fin.ML.

d a ta typ e  THS =
hyper o f Sequent ي 
( (Roles  ٠ THS) l i s t ) ;

d a ta typ e  SystemGH = NoRule 
| AXITHS o f THS 
| InRuOneH o f THS 
| InRuTwoH o f THS ٠ THS;

Fig. 4. Data structures for tree hypersequent proofs

5 Conclusions

In this paper, we introduce the proof theoretic 
basics fortwo important description logics (DL): the 
basic propositionally closed concept language ALC 
and its variant with refiexive and transitive roles,
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