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time instant the evolving LS. Hybrid systems cap­
ture the continuous and discrete interaction that 
appears in complex systems ranging from biolog­
ical systems [14] to automotive systems [7]. For 
SLS, many contributions have been reported con­
cerning such basic system properties as stability, 
controllability, and observability.

Since the conditions for the observability with 
unknown inputs of the individual LS have been 
already established [4], the main problem for the 
observability of SLS is then to infer, from the knowl­
edge of the continuous measurements, which LS 
is evolving. This is usually referred to as the 
distinguishability problem. This problem, together 
with the SLS observability, has been extensively 
studied in the literature for the case of known in­
puts [1,9,13,18,20]. However, the observability 
of continuous-time SLS subject to unknown dis­
turbances and unknown switching signals has re­
ceived less attention.

In the context of unknown switching signals, the 
concept of observability of SLS becomes more

Abstract. In th؛s work we address the observability and 
observer design problem for perturbed switched linear 
systems (SLS) subject to an unknown switching sig­
nal, where the continuous state and the evolving linear 
system (LS) are estimated from the continuous output 
in spite of the unknown disturbance. The proposed 
observer is composed of a collection of finite-time ob­
servers, one for each LS composing the SLS. Based on 
the observability results hereinafter derived and in the 
observer’s output estimation error, the evolving LS and 
its continuous state are inferred. Illustrative examples 
are presented in detail

Keywords. Switched systems, observability, finite time
observers

1 In tro d u c t io n

Switched Linear Systems (SLS) are hybrid dynam­
ical systems whose dynamics are represented by 
a collection of Linear Systems (LS), together with 
an exogenous switching signal determining at each
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a collection of high order sliding mode based ob­
servers, one for each LS forming the SLS. In [12], 
the evolving LS was decided based on the output 
estimation error and an additional variable of the 
observer, used to measure the observer's effort to 
maintain a zero output estimation error (since more 
than one observer may give zero output estimation 
error). However, in the perturbed case addressed 
in this paper, the evolving LS must be inferred from 
the output estimation error only.

Based on the observability analysis here de­
rived, we show that if the perturbed SLS is ob­
servable, then for “almost every” input only one 
observer in the collection will converge to a zero 
output estimation error (the one associated to the 
evolving LS), thus inferring the evolving LS and 
obtaining the associated continuous state. Com­
pared to [1-3,6,9,12,12,13,20,22], the proposed 
approach addresses a wider class of SLS as un­
known disturbances are considered. Moreover, un­
like the recent results [19, 22] where the switching 
signal is known, in our approach the continuous 
state together with the switching signal are inferred 
from the continuous output.

2 P re lim in a r ie s

2.1 On the Concept of ”Almost Every” or 
” Almost Everywhere”

In this paper, the concept from measure theory of 
“almost everywhere” or for “almost every” is used to 
express that the observability property is practically 
certain to hold, except on a proper subspace of the 
complete state space (which is known as “shy set” 
or “Haar null set” [15]).

2.2 Preliminaries on □near Systems

The next lines review some of the basic geometric 
concepts on LS which are mainly taken from [2 1 ].

A Linear System (LS) is represented by the dy­
namic equation

x(t) =  Ax(t) +  Bu(t) +  Sd(t), x (t0) =  x0 (1)
y(t) =  Cx(t),

where x e X  =  R" is the state vector, u e U  =  Rg 
is the control input, y e Y  =  Rq is the output signal,

complex than in the LS case. The complexity 
arises from the two following reasons: first, be­
cause the autonomous case [2 0 ] becomes non­
equivalent to the non-autonomous case [1,9,13], 
as the input plays a central role; second, because 
the unknown switching signal may make the sys­
tem's trajectory to be observable even if it is evolv­
ing in a unobservable LS [1].

A geometric characterization of the main results 
presented in [1,9, 13,20] for SLS with unknown 
switching signal and no maximum dwell time was 
reported in a previous work [11 ].

If on the contrary a maximum dwell time is con­
sidered, then the SLS state does not need to be 
recovered before the first switching time, but after 
a finite number of switches, either by taking advan­
tage of the underlying discrete event system [9] 
or by investigating the distinguishability between 
LS [13]. This problem has been considered in [8 ] 
for autonomous systems and in [9] and [13] for the 
known input case.

Concerning the observer design, if the switch­
ing signal is unknown then the observer for SLS 
requires to estimate the switching signal from the 
continuous measurements via a location observer. 
In [2], the location observer uses a residual gener­
ator to infer a change in the continuous dynamics. 
In [10], an algorithm for computing the switching 
signal has been proposed for monovariable SLS 
with structured perturbations (i.e. disturbances 
with known derivatives). In [3], a super twist­
ing based observer for unperturbed switched au­
tonomous nonlinear systems has been presented. 
In [6 ], the location observer is formed by a set of 
Luenberger observers with an associated robust 
differentiator used to obtain the exact error signal 
which updates the estimate.

1.1 Main Contribution

In this paper we derive new observabilty and ob­
server design results for perturbed SLS subject to 
an unknown switching signal. Based on the frame­
work proposed in [11 ], here we consider a new 
observability notion that requires less restrictive 
conditions and is useful in practical applications.

The proposed observer, which extends the re­
sults of [12 ] to the perturbed case, is based on
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A LS ؛s observable under unknown inputs iff a 
non-zero state trajectory producing a zero output 
does not exist. This is formally stated below.

Theorem 3. [5] Let Σ(Α, B , C , S) be A LS. Then 
 e LS Σ is observable under partially unknown?/؛
inputs if and only if the sup و ) ه  S; K) is trivial.

2.3 The Sw!tched Linear System’s Mode)

a SLS is described as a tuple Σσ =  (F , a), 
where F  =  {Σ ^ ,... , Σ „ }  is a collection of LS 
and σ : [ίο, ص) ب  { { , . . . ,  m} is the switching signal 
determining, at each time instant, the evolving LS 
Σ^ ع F . The SLS's state equation is represented 
by

x(t) =  A a(t)x(t) +  B a(t)̂؟ (t) +  Sa(t) d (t)
y(t) =  Ca(t)x(t), (4)
x(to) =  xo, a(to) =  σο.

We use the notation Xj(t, x0, u[t0,T], d[t0,T]), to 
emphasize that the state trajectory x(t) is obtained 
when σ(ί) =  i and the inputs u(t), d(t) are applied 
since the initial condition is x (t0) =  x0. In a similar 
way, yi(t, x0, u(t), d(t)) represents the output tra­
jectory of x i (t, x0, u(t), d(t)), i.e.

x i (t, x0,w(t), d(t)) =

e ^  x 0 +  J  e-A iT [B iu (r) +  Si d(r)]dr^

yi(t, x0, u(t), d(t)) =  C ixi(t, x 0, u(t), d(t)).

When we want to emphasize that the state tra­
jectory is restricted to an interval [τι, r 2], we write
yi (t, x0, U[TijT2], d[Ti,T2]) , where ^[T1,T2 ], d[Ti,T2] are
the restriction of the functions u(t), d(t) to [٩ , τ2]. 
When d(t) =  0, we write yi (t, x0, u(t)), and on 
autonomous systems we write yi (t, x 0).

Let us remark that even though a SLS is formed 
by a collection of LS, the classical results on the 
fundamental properties of LS, such as stability, ob­
servability, and controllability, do not hold straight­
forwardly in the switching case.

d e V  =  Rm is the disturbance and A, B, C , and S 
are constant matrices of appropriate dimensions.

Throughout this work Σ(Α, B , C , S) denotes the 
LS (1). When the matrices are clear from the 
context, a LS is simply denoted by Σ.

For an initial condition x (t0) =  x 0, without distur­
bance (d(t) =  0), the solution of (1) is given by

x 0 +  f e  ٨٦ B u (r )dr ٠ . (2)Aty(t)

The input function space, denoted by Uf , is con­
sidered to be Lp(U) ,1 i.e. it contains piecewise 
continuous functions. Throughout the paper, B 
stands for Im B (image or column space of B), S 
for Im S and K for ker C (kernel or null-space of C).

A subspace T c X  is called A-invariant if A T  c  
T . The supremal A-invariant subspace contained

in K is N  =  ٨  ker(CAi - i). The subspace N  is

known as the unobservable subspace of the LS Σ.
A subspace V c  X  is said to be (A, B)-invariant 

if there exists a state feedback u =  Fx such that 
(A +  B ^ )V  c  V or, equivalently, if AV c  V +  B. 
The set of maps F  for which (A +  B F ) V c  V holds 
is denoted as F(V).

The set of (A, B)-invariant subspaces contained 
in a subspace £ c  X  is denoted by S(A, B; £). 
This set is closed under addition, then it con­
tains a supremal element [5], [21] denoted as 
sup S(A, B; £). Furthermore, sup S(A, B ; £) can 
be computed with the following algorithm.

Algorithm 1. [5], [21] The subspace
sup S(A, B; £) =  V(k), where V(k) is the last 
term of the sequence

(3)1,·· · , k,-i)؛ص
:£ ,

£ ٢ ٦ .

V(0)
(i)

1 is determined by thewhere the value of k < n 
condition V(k+^ =  v (k).

Lemma 2. [5] Any state trajectory x(t), t e [t0, τ] 
of Σ belongs to a subspace £ C X  if and only if 
x (t0) e £ andx(t) e £ almost everywhere in [t0, τ ].

-ece؛s the set of all p؛ 
0 ص satisfying لا).(سلاء =

11 ,( ءص  <  p <
wise continuous functions u : :
(/o°° l|u(،)H|
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of LS is said distinguishable, since ؛t is possible 
to determine if the state is generated by Ei or by 
Ej  from U[to,T] and y[to,T]. The indistinguishability 
subspace W ij of Ej, Ê · is defined as

[t 0 ,T})

^[to,T ], [̂to,T] , 
U[to,T] , d[to,T]) =  

yj  (t, x0 , U[to,T ],
[ x0] :W j

and represents the set of initial conditions that 
under a particular input makes it impossible to 
determine which is the evolving system and the 
current discrete state. Then if the state trajec­
tory Xj(t, xo, U[t0,T], d[t0,T]) evolves inside QiW ij 
then it is impossible to determine, from the 
measurements, if the evolving state trajectory is
x i (t, x0, U[to,T], d[to,t] ) or xj (t, x0, U[to,T], d[to,T] ) , thus
it is not possible to infer either the continuous initial 
state which could be x0 or x 0 or the discrete state 
which could be a(t) =  i or a(t) =  j  Vt ع [t0, τ ].

For a given pair of LS, Ei and Ej , the extended 
LS Ei j  is defined as

(6 )

Í U I ■

[ I
i j

The state space of Ei j  is denoted by X؛’i j . We 
denote by x0 the initial state, by x(t) the state 
trajectory, and by d(t) the disturbance signal of the 
extended LS E,·,·.i j

Let us denote the natural projection of Xij over
.i.e., Q i([xT x 'T ] T ) =  x, ى X ij :as

[em ma 4. Let Ei and E j be two LS. Equa­
tion (5) holds if and only if the extended LS Eij  
produces a zero output for all t ع [t0, τ ], i.e.
yi j  (x0, U[to,T], d[to,T] ) =  0 with x
andE(t) =  [dT(t) d'T(t)]T .

x0T] T, U(t)[xT

Proof The proof can be found in [11]. □

The following result characterizes the indistin- 
guishability subspace.

2.4 Assumptions

Unless otherwise is stated, the following assump­
tions on the SLS are considered

A. 1. Only a finite number of switches can occur in 
a finite interval, i.e. Zeno behavior is not possible.

A. 2. The initial condition of the SLS is bounded, 
i.e. ||x0 || < δ with a known constant δ.

A. 3. A minimum dwell time in each discrete state 
is assumed, i.e. if tfc_i and tk are two consecutive 
switching times, then t k-tfc_ i > Tdk, where Tdk > 0 
is fixed. However, only the dwell time for the first 
switching time Tdl is assumed to be known. No 
maximum dwell time is set.

A. 4. The state x(t) is assumed to be continuous, 
i.e. at each switching time t i , x(t;) =  x(t_).

2.5 Distinguishabi)ity in Perturbed Switched 
□near Systems

In the following we review some of the results in 
observability using a geometric approach. This re­
view is mainly taken from [11 ], where it was shown 
that many observability notions arise in the per­
turbed case of SLS. Next, using the same frame­
work of [11], in Section 3 we will extend the results 
on a new (and less restrictive) observability notion 
that is more meaningful for the estimation using the 
proposed observer.

In the unknown switching signal setting, it is 
fundamental to infer the evolving linear system, 
and thus estimate the switching signal from the 
continuous input-output information. That problem 
is known as the distinguishability problem.

Formally, the LS Ei is said indistinguishable from 
another LS Ej  if there exist x0, d[to,T], x0, and d[to T] 
s.t.

(5), U[to,T ], d[to,T ]) =  yj  (x0, U[to ,T ], d[to ,T ] /yi(

[̂to,T], x and d[to,T],If (5) holds for some ؛0
it is impossible to determine from the measured 
signals, U[to,T] and y[to,T], if the state trajectory 
was generated by Ei or by Ê ·, consequently, it 
is impossible to determine if the continuous initial 
state is x 0 or x0. On the contrary, if (5) does not 
hold for all x 0, d[to,T], x 0 , and d[^ T], then the pair
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input, we can write any disturbance making the LS 
Ej and Ej indistinguishable as d(t) =  Fx  +  v(t), 
where v(t) e s jj . Now, by Lemma 2

x(t) =  (A jj +  S jjF )x(t) +  B jju(t) +  Sjjv(t) e W i j .

This means that given u(t) there exists v(t) such 
that Bj j u(t) +  Sj j v(t) e w jj  in order to maintain the 
trajectory in the indistinguishable subspace Wj j .

Remark 7. Although the conditions of Proposi­
tion 8  guarantee that the control input can make 
the LS Ej and Ê · distinguishable regardless of the 
disturbance applied, in general, if u(t) is discont/n- 
uous then the corresponding disturbance d and d', 
making Ej and Ej indistinguishable, must be dis­
continuous as well with discontinuities at the same 
time. however, since u(t) and d(t) (the control 
input and disturbance driving Ej) are independent 
(in the sense that they are not functions of the 
same set of variables), the probability that their 
discontinuities are synchronized can be neglected.

A more convenient distinguishability notion for 
our setting (with less restrictive conditions), which 
can be derived using the same framework as 
in [11 ], can be stated as the following problem.

Problem 8 . (Distinguishability for almost every 
control input when u(t) and d(t) are independent, 
and the latter is continuous)

Assume that d(t) and d'(t) are continuous on t e 
[to, τ ], under which conditions is

{ u [،0,r] e U/ : ^ d[،0 ,τ ]ق x 0, x 0, d[t0,r ],

yi (xo, u [،0,r ], d[،0,r ]) =  yj (x0, u [،0,r ], d[t0,r ]) }

ashyse tw .r.tUf  ? o

Notice than requiring d(t) and d' (t) to be contin­
uous on t e [t0, τ ] is not a restriction over the class 
of disturbance that we consider in our setting, but 
rather it avoids the unlikely case where d(t) has 
discontinuities at the same time as u(t)

Lemma 9. Let Ej and Ej be two LS, and assume 
that d(t) and d'(t) are continuous on t e [t0, τ]. 
Then

{ u [t0,r ] e U/ : ^ d[t0 ,r ]ق xo, x 0, d[t0,r ],

yj (x0, u [t0,r ], d[t0,r ]) =  yj  (x0, u [t0,r ], d[t0,r ]) }
(10)

Lemma 5. Let Ej and Ej be two LS and let B jj  =  
[Bj j  Sjj  ]. Then the /'nd/'st/'ngu/'shab/'l/'ty subspace 
Wjj  is egual to the supremal ^Aj j , B j j j  -invariant 

subspa^e contained in Kj j  =  Ker Cj j , denoted as
sup ^ (Ai j , B i j ; K i j ) .

Proof. The proof can be found in [11]. □

By means of Algorithm 1 that computes (A, B)- 
invariant subspaces, the indistinguishability sub­
space can be obtained. This subspace is funda­
mental, since the distinguishability and the observ­
ability can be derived from it.

It is worth noting that control inputs play a central 
role in inferring the evolving LS. In order to use 
such input to distinguish Ej from Ê ·, these input 
has to be capable of steering the state trajectory 
outside Qi Wj j , i.e. the projection of the indistin- 
guishability subspace Wjj  over X . The conditions 
for this case are presented below.

Proposition 6 . Let Ej and Ej be two LS. Then for 
almost every input Ej and Ej are distinguishable, 
i.e.

yj (t, x 0, u [t0,r], d[t0,r]) =  yj  ( t, x 0, u [t0,r], d[t0,r]) (7)

if and only if
Bij ء   Wij +  Si j . (8)

Proof. The proof can be found in [11]. □

3 N ew  O b s e rv a b il i ty  C o d i t O n s  
M e a n in g fu l in  P ra c tic a l C a s e s

In this section we derive less restrictive conditions 
for the distinguishability (hence, for the observabil­
ity), that can be used in practical applications.

If condition (8 ) is not satisfied for a pair of LS Ej 
and Ej then, by Lemma 4, for every u(t) there exist 
x 0 and d(t) =  [d(t) d '(t)]^ such that Ej j  produces 
a zero output for all t e [t0, τ]. As recalled in Sub­
section 2 .2 , an input d(t) that makes the extended 
system unobservable (equivalently, Ej and Ej in­
distinguishable) can be written as a state feedback 
d(t) =  Fx, where F  e F(sup ^ (A j؛؛ , Sjj ;K jj )). 
Moreover, condition (8 ) gives the possibility for the 
input to be in s j j . Therefore, regardless of the
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Theorem 1ه . Let G =  (F , σ) be a SLS with 
partially unknown inputs and maximum dwell time 
τ  = Then, the continuous state x .ص  0 and x(t) 
and the discrete state σ0 anda(t) can be uniquely 
computed (said observable) for almost every con­
trol input, with u(t) and d(t) independent and d(t) 
continuous, if and only if every LS Σ؛؛ e F  is 
observable with partially unknown inputs (i.e. ac­
cording to Theorem 3) and νΣ^ Σ ' e F  i =  j ,  
either B ij ج W ij or Si ج W ij +  S j.

Proof. The proof follows from the previous argu­
ment □

4 ^ s e r v e r  D e s ig n  fo r  P e r tu rb e d  S L S

In this section we show that if the continuous and 
the discrete states of the SLS are observable ac­
cording to Theorem 10, then the SLS admits an 
observer based on a multi-observer structure, in 
which a finite-time observer is designed for each 
LS composing the SLS. It will be shown that, based 
on the observability results previously presented, a 
set of finite-time observers allow us to decide the 
evolving LS from the output estimation error. The 
observability of the SLS implies that the observer 
associated with the evolving LS will produce a zero 
output estimation error whereas the rest of the 
observers associated to LS that are distinguishable 
from the evolving one, cannot produce a zero out­
put estimation error. Thus, the evolving LS is the 
one associated to the observer with zero output 
estimation error, whereas an exact estimation of 
the continuous state is provided by such observer. 
This observer extends the design proposed in [12] 
in order to consider unknown inputs.

The construction of the observer for each LS is 
based on the multivariable observability form (see, 
for instance, [16]). Let us firstly introduce some 
results about the transformation of an observable 
LS into such form

Lemma 11. If  the LS is observable under par­
tially unknown inputs, i.e. if sup S(A, S; K) is the 
trivial subspace, then there exists a set of inte­
gers { r i , . . . ,  r m} such that Vi e {1 ,. . . ,  m} Vk e 
{0 ,. . . ,  r i -2 } ,  ciA kS =  0 and rank(O{r i ... rm}) =  n 
where

is a shy set, i.e. Σ، and Σ ' are distinguishable for 
almost every input with u(t) and d(t) independent 
and d( t) continuous, if and only if either

B ij ج  W ij (11)

Si ج W ij +  Sj (12)

holds, where Si =  Im Si and Sj =  Im ،وق· with Si =  
[ST 0T ] T e R2”  and ،0] = [ T STدق·  T e R2” .

Proof. (Necessity) Assume that B'· c  W ' and 
Si c  )W'· +  S ', then, by [1 1 , Lemma 13], W ' =
sup ^ (A j؛؛ , ،Sj; K ij ). Now let d'(t) =  Fx  +  v with 
F  e F(sup ^ ( A ' , K ;-نقم '· )) and v such that S،d(t) +  
،Sjv(t) e W ' . Then notice that, if x 0 e W ' 
and x(t) e W ' , thus by Lemma 2, x(t) e W ' 
regardless of u(t). Hence, (10) is equal to Uf and 
(10) is not a shy set.

(Sufficiency) Assume that (10) is not a shy set. 
In [11] it was shown that if an input exists to distin­
guish two LS then almost every input can be used.
Thus, (10) being a shy set implies that (10) is equal
to Uf i e. Vu[to,T], d[t0,t] ئ x0, x0, d[t0,T]

yi (x0, u[ t0,T ], d[ 10,T ]) =  yj  (x0, u [ 10,T ], d[ t0,T ]) .

Let d'(t) =  F x  +  v (notice that if v is continu­
ous then d'(t) is continuous as well) with F  e
F(sup م ي ة(ت , S j; K j )). Thus, by Lemma 2

x(t) =  (A ij+ S j F  )x(t)+

+  ^ iju ( t)  +  S?id(t) +  Sjv(t) e vv ij.
(13)

In particular consider d(t) =  0 . Since u(t) can 
be discontinuous on [t0, τ ] and d'(t) cannot, then 
B '·u(t) evolves inside w ij  for every u(t), i.e. i?ij  c  
W^j. Now, consider d(t) =  0 . Since (̂ 4ij  +
S 'F )x(t) +  BBi j u(t) evolves inside Wi j , then (13) 
implies that for every d(t) there exists v(t) such that 
،Sid(t) + v(t) e W·رثمت  ij, i.e. Si c  W ij + j؟،  , which
completes the proof □

Based on the distinguishability result we can 
state the observability for SLS.
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where the « j(y) j  =  1, ··· , r j is a linear combi­
nation of the output variables x i, xr i+ ,  ... and 
dj (t) =  S,d(t)

In what follows, let us consider the following 
assumption.

A. 5. The disturbances d'i(t) are differentiable and 
satisfy L j > |d,(t)| with known constants L,, i =

ء1

c1Ar i - i

° { r i.

Thus, we can add to (14) the dynamics of (?, i.e.

dj =  uj (t).

Then, an observer based in the robust differen­
tiator described in [17] can be designed for each 
block in order to estimate the state of the system 
in the presence of disturbances. The observer 
is designed in such a way that its error dynam­
ics coincides with the differentiation error of [17], 
for which convergence has already been demon- 
stratedin[17].

Thus, each block admits the following observer:

x*i =  «*i(y) +  x^ +  B 1u,
+ l1p|x i — x i |ri / (ri +1)sign(xi — x؛ ),

x*2 =  «*2(y) +  x  ̂+  B2^
+ l2p2 |x1 — x i |(ri-1 )/ (ri +1)sign(xi — x؛ ),

x r. =  «r. (y) +  Br, u(t) + ة 
+ lri pr i |x؛ — x11 ؛/ (ri +1) sign(xi — x,(؛

1+ غ = إ.تملبي sign(xi — x؛i).
(15)

Defining the error dynamics as ej =  xj — xj j  =
1, · · · , m and er, +  =  dj — غ, yields to

= اةء  e2 — 1 ء1ع|ما1|آة/(آة+1)ع(لإويقا ),
e*2 =  e| — ,( مجق)م-1)/ةس+1)إع ء2م|ع11ة

؛إ|1/(آة+1)إع(لإويو .)
(16)

r, + 1
er,+1  =  1 م(بم — +ط1م+مجق(مح ب ) .

Since the m subsystems are only coupled 
through the measured variables, which are fed into 
the observer by output injection through the terms 
«j(y), the error dynamics of the subsystems are 
independent from each other and coincide with

Proof. The proof is presented in Appendix A. □

The values { r 1 . . . ,  r m} are known as the observ­
ability indices of E(A, B, C , S) [16]. A LS observ­
able under unknown inputs can be transformed by 
means of the similarity transformation T , defined 
such that T - 1 =  O{r i ...,rm}, into the multivariable 
observability form^ (see [16]).The resulting LS is 
given by the following matrices.

0
0

ذ
مح1

* 1 ο ··· ο
* ο 1 ··· ο

* 0 0
* 0 0

أ1 ص : : : 
0 ···1 0 0

* 1 0  
♦ 0 1

م0  ه
0 0 ♦

Α =

٠::· ا 'إ ٠

هل = Βق1 ··· ]

Notice that the transformed LS is composed of 
blocks, each one in the observer canonical form 
(see [16]), but coupled only through the measured 
variables (x1, xr i+1, ...). Each i-th block is of 
dimension r, and is of the form

(14)

ىبم ) +  x^ +  ,u(t) اثثم 
«*2^  +  x  ̂+  B2u(t),

«r, (y) +  Br, u(t) +  dj (t),x r

2The observer form can be obtained taking T - 1 =
as a baseline. The procedure for computing this ص
transformation can be obtained as the dual of the controller form 
presented in [16, Example 6.4-7, Pag. 436].
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Proof. The proof follows by noticing, from (15), 
that whenever the output error signal ey satisfies 
ey =  0 , then the observer becomes a copy of 
its associated LS, driven by a perturbation signal 
ξ and producing the same output of Ej, because 
due to finite-time convergence of (15) the error 
correction terms in (15) associated to each block 
become equal to zero. However, as the Ej and Ê · 
are distinguishable, then ey =  0 cannot occur on a 
nonzero interval.

Thus, it follows by the assumption that Ej and 
Ej are distinguishable under unknown inputs that 
whenever a(t) =  i, Vt ع [τ,اي) only the observer 
associated to Ej satisfies ey =  0 in the interval 
[τ, اء) . □

Hence, a multi-observer structure depicted in 
Fig. 1 can be used to estimate the continuous 
state x(t) of the SLS and to compute the switching 
signal a(t). Notice that, since by Lemma 12 only 
the observer associated to the evolving LS gives 
ey =  0 , then by analysing this error signal the 
evolving LS can be ascertain. In a similar way, 
once the evolving LS E j has been detected, the 
switching occurrence to another LS, say Ê ·, can 
be detected by the time when the error signal no 
longer satisfies ey =  0 , because by the pairwise 
distinguishability when switching from Ej to E j the 
signal ey can no longer be maintained zero from a 
nonzero interval.

Remark 13. Let Ej and E j be two LS observable 
under unknown inputs. Suppose the distinguisha- 
bility conditions of Proposition 6 do not hold but 
those of Lemma 9 hold. In such case, as pointed 
out in Remark 7, if we make u(t) discontinuous 
then two cases may occur. The first one, no dis­
turbance exists in E j such that (5) holds, in which 
case by Lemma 12 only the output estimation error 
of the observer associated to Ej will be zero. The 
second one, the disturbance in Ê · required to make 
Ej and E j indistinguishable is discontinuous as 
well, in which case the observer associated to Ej 
may estimate x '(t) and d'(t) such that (5) holds, 
but the discontinuities of d'(t) will be synchronized 
with those of u(t) with a transient with ey =  0. How­
ever, since u(t) and d(t) are independent then the 
synchronization of their discontinuities given by the 
observer associated to Ê · are identified as unlikely,

the form of the differentiation error of the high or­
der sliding mode differentiation presented in [17]. 
Thus, with the proper choice of the observer pa­
rameters م and l j a finite-time convergence to the 
continuous variables can be obtained in the pres­
ence of the disturbance d(t) [17] with arbitrary 
small convergence time. Thus, an estimation of 
the variables x1, . . . , x ^  is obtained in finite-time. 
By designing an observer (15) for each block, the 
continuous state x(t) of the LS can be estimated in 
finite-time.

- « ) ، ل،(يء = )،مح )

ة_0تلققظ'الهقءالظاق1ءمحهةظ.ق .قئ

Fig. 1. Observer for perturbed SLS

Finally, assuming that each pair of LS Ej and Ej 
is (u[Tl,T2], y[Tl ,^^-distinguishable under unknown 
inputs, if an observer is designed for each LS with 
time convergence bound τ  < τ ι < ٨ , then the 
observer associated to the evolving LS will be the 
only one maintaining ey(t) =  y(t) -  y(t) = 0  Vt ع 
٩ ], τ2] (unlike the known input case where the ξ 
variable would be also maintained at ξ =  0 , in the 
unknown input case ξ =  0 [12 ]).

Lemma 12. Let E^(،) be a SLS and Eو(،) its ob­
server with time convergence bound τ , and let 
a(t) =  i, Vt ع [to,ti). Then, if Ej and E j are 
distinguishable under unknown inputs according to 
Lemma 9, then for almost every input u(t), ey (t) =  
0 almost everywhere in [τ, t 1) (where ey (t) is the 
output error signal ey (t) =  y -  yj  of the j -th ob­
server).
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Consider the perturbed SLS Σσ^) where a(t) is 
an exogenous switching signal and F  =  {Σ 1, Σ2} 
is the continuous dynamics composed of LS with 
system matrices as in Table 1, input matrices B 1 =
[ 0 2 0 ] T andB2 =  [ 0 1 1 ] T, outputma- 
trices C1 =  [ 0  0 1 ]  and C2 1 0 ب  —  ],

andand disturbance matrices S1 0 0 1 ب
S2 =  [ 1 0  0 ] T .

Table 1. System matrix of (inear systems

Σ 2Σ ι

The indistinguishability subspace of Σ 1 and Σ2
is

Im = ص12

Since 12ص is not trivial for every xo e 2صق  ,X = ا
there exist u(t) and d(t) such that (5) holds for some x0 
and d!(t), making it impossible to infer the evolving LS.

For instance, suppose that the evolving LS is Σ ι, with

· + -u(t) = — exo

and d(t) = 0, then the output is

yi(t, xo, u(t), d(t)) = 3 e ، + 3 , 

since the LS Σ؛ produces this same output with

16.
and

+'(t)
then it is impossible to determine, from the input-output 
behavior, the evolving LS and the continuous initial state 
for the current state trajectory. Hence, the LS Σ1 and Σ2 
cannot be distinguished for every state trajectory.

Moreover, since 2اقآ c م2  , then according to Propo­
sition 6, there is no input u(t) allowing to distinguish Σ1

thus discarding Σ ' as the evolving system. In this 
way, discontinuous inputs in Up, are useful to make 
the LS distinguishable and the evolving LS can 
be inferred from the observers' output estimation 
error.

Proposition 14. Let the continuous and discrete 
state of Σσ(χ) be observable under unknown inputs, 
i.e. each LS Σ، e F  is observable under unknown 
inputs and pairwise the LS in F  are distinguishable 
under unknown inputs, and let Tk be the similarity 
transformation taking the LS Σ;؛ into the multivari­
able observer form. Then the state x(t) of Σσ(χ) 
and the switching signal a(x) can be estimated by 
the following procedure:

1. Design an observer (15) with time conver­
gence bound τ  <  τ^ for each Σ؛؛ e F .

2. The current state of a(x) is k if e^(t) =  0 ,
Vt e [τ, τ  + with τ [ء   +  δ <  τ^. That is, the 
evolving LS is Σ;؛ if its associated observer is 
the only one satisfying e  ̂ =  0 for a small time 
interval. If the LS Σ;؛ is detected x(t) =  Tkx(t) 
with £(t) = م  (t).

3. A switching is detected when the observer
0 .> no longer satisfies ;؛associated to Σ

4. After the switching t '  is detected, the state of 
the observer i , i e { 1 , . . . , m }, is reinitialized
as x i ( t ' ) =  1Tkxk(t- ), where x i (t- ) is the
estimated state of the LS Σ، at the switching 
time t - .

5. The next state of a(x) is l such that the ob­
server associated to I is the only one satisfying
e^(t) =  0, Vt e [ t j, t j  +  δ].

Proof. The proof follows by the previous argument 
and from the observability result which requires 
each pair of LS to be distinguishable for almost
every control input □

5 I l lu s t ra t iv e  E x a m p le s  a n d  
S im u la t io n s

Example 15. (Observability under unknown in­
puts)
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to infer the evolving LS and the discrete state σ. /n this 
examp/e, the detection of the sw/'tch/'ng time is trivial, as 
the continuous output is discontinuous. ^ t the sw/'tch/'ng 
instants, the observers are reinitialized as described in 
Proposition Í4. the reinitialization at 3.5s, only the 
output estimation error of the observer associated to the 
evolving LS can be maintained as zero, in this case the 
signal is the on/y one that remains at zero.

Hence, the proposed observer determines the evolv­
ing LS and the switching signal using only the output 
information y(t) in spite of the unknown disturbance 
affecting the system.

Fig. 3 shows the estimation of the continuous state 
using the procedure described in Proposition Í4. The 
continuous and discrete states of the SLS are estimated 
in f/'n/'te-t/'me by the proposed observer, using only the 
output information y(t) in spite of the unknown d/'stur- 
bance d(t).

/tis worth not/'c/'ng that, in the case where the d/'stur- 
bance is scalar, the proposed observer also estimates 
the unknown disturbance d(t). However, in general, 
the unknown disturbance is not estimated. The design 
of an unknown input observer for SLS can be derived 
straightforwardly if in addition to the observability under 
unknown inputs we require each LS to be invertible 
(i.e. ؛wo different disturbance signals cannotproduce the 
same output).

Fig. 2. Inferring the evolving LS from the output estima­
tion error

6  C o n c lu s io n s

Necessary and sufficient conditions for a new ob­
servability notion for perturbed SLS, meaningful for

from Σ2, i.e. the effect of the input u(t) does not show 
up at the output of the extended system.

Furthermore, since 1ك c  2 ص12 + ك  and 12ج س  = X 
then for every state trajectory of Ei there exists a state 
trajectory of Σ2 producing the same output, therefore it 
is always impossible to d/'st/'ngu/'sh the LS Σ1 from the 
LS Σ2, i.e. Vxo,u(t),d(t)3x0,d'(t) such that (5) holds, in

(t) = FX(t) ' 

(5) 0,)] then ؛

 e صand 12؛

0 44 - 1] =

fact with x0 such that Xo

(e.g Fsuch that F e F(^ 1 2 ) 
holds.

The existence of this state feedback implies that for 
every state trajectory of the LS Σ1, there exist x0 and 
d'(t) (not necessarily constructed as a state feedback) 
in Σ2 such that it is impossible to determine the evolving 
system and the initial continuous state since there exist 
state trajectories in both LS producing the same input- 
output information.

Example 16. (Observability and Observer De­
sign)
^ow, if we consider the SLS composed of LS with 
system matrices as in Table 1, input matrices B1 =
[ 1 2 0 ]٣ andB 2 = [  0 1 0 ] T, output ma­
trices C1 = [ 0  0 1 ] and C2 =  [ 0  1 — 1 ٦,
and disturbance matrices S١ =  [ 1  0 0 and

, then the indistinguishabil-

 .ت7071
.ت7071

).8165
0

).4082
).4082

ity subspace W 12 is

Im = ص12

/t is easy to verify that, both Σ1 and Σ2 are observ­
able under unknown inputs, in addition, Σ1 and Σ2 are 
distinguishable from each other according to Lemma و 
as قآ12 ء  W12. Thus, according to Theorem Í0, the 
continuous and discrete states of the SLS Σ„(،) are 
observable, in infinitesimal time, for almost every control 
input u(t), and the proposed observer design can be 
applied to estimate the continuous and discrete states 
of Σ^(،).

Fig. 2 /'Wustrates the application of Lemma Í2 to infer 
the evolving LS. /t can be seen that the output estimation 
error e؛ , related to the observer of Σ1, converges to 
zero in ftn/'te-t/'me, whereas the output estimation error 
e ,̂ related to the observer of Σ2, cannot be zero (when 
the system evolves in Σ1) fora nonzero interval, aWow/'ng
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A  P ro o f o f L e m m a  11

Proof. The proof follows a similar development as 
the one shown in [5, Section 4.3.1]. Consider the 
following iterative process, for simplicity let B =  0 
as the control input does not affect the observability 
under unknown inputs in LS. Let

(17)qo(t) =  Yox(t)

with q0(t) =  y(t) and Y0 =  C . Differentiating (17) 
yields q0(t) =  Y0Ax(t) +  Y0Sd(t). Let P0 be a 
projection matrix such that ker P0 =  Im(Y0S). Thus

(18)Poqo(t) =  PoYo Ax(t).

and Y1
. Pq0qo .

Let

then (17) and (18) can be combined to get q1 (t) 
^ x ( t ) .  It is easy to see that

ker Y0 ٨ ker( Po٢٨٨)

K n  A - 1(K + ء  ).

ker Yi

The £-th iteration of the procedure yields qk (t)
Ykx(t) such that

ker Yk -1  ٨ A 1(ker Yk -1  +  S) 

£ ٨ A -1  (ker Yk -1  +  S).

ker Yk

Notice that such iteration process coincides 
with Algorithm 1 and therefore converges to 
sup ^(A , S; K). Reordering Yk yields the matrix 
O{r i ...,rm}. Since, after a sufficient number of 
iterations k, ker Yk =  sup S(A, S; K) =  0, then 
r« n k (^ {r i ...,r^ } ) =  n. □
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Fig. 3. Estimation of the continuous state x(t)

practical applications, have been derived, which 
result in less restrictive conditions than those re­
ported previously in the literature. Based on the 
observability analysis we derive the conditions for 
detecting the evolving LS and estimating its contin­
uous state from a collection of finite-time observers 
in spite of the acting disturbance.

As future work, we consider to model the dis­
crete dynamic by Petri nets to reconstruct the con­
tinuous and discrete states after a finite number of 
switching.
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