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Abstract. This paper proposes a tracking control
method for a differential drive wheeled mobile
robot with nonholonomic constraints with an
inverse optimal neural controller. It is based on two
techniques: first, an identifier using a discrete-time
recurrent high-order neural network (RHONN)
trained with an extended Kalman filter (EKF)
algorithm is employed; second, an inverse optimal
control is used to avoid solving the Hamilton Jacobi
Bellman (HJB) equation. The desired trajectory of
the robot is computed during the navigation
process using a stereo camera Sensor.
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1 Introduction

One of the greatest achievements in robotics use
is in the manufacturing industry. Despite of
successes, commercial robots suffer from a
fundamental disadvantage, the lack of mobility. A
fixed manipulator has a limited range of motion that
depends on where it is bolted down. In contrast, a
mobile robot would be able to travel throughout the
manufacturing plants, flexibly applying its talents
wherever it is most effective [1].

Fixed manipulators are typically programmed to
perform repetitive tasks with perhaps limited use of
sensors, whereas mobile robots are typically less
structured in their operation and likely to use more
sensors [2].

A mobile robot needs a locomotion mechanism
that enables it to move throughout its environment.
But there are a large variety of possible ways to

move, and so the selection of a robot’'s approach
to locomotion is an important aspect of mobile
robot design. In the laboratory, there are research
robots that can walk, jump, run, slide, skate, swim,
fly, and, of course, roll. Most of these locomotion
mechanisms have been inspired from their
biological counterparts. There is, however, one
exception: the actively powered wheel is a human
invention that achieves extremely high efficiency
on flat ground [1].

Based on the success of image
extraction/interpretation technology and advances
in control theory, research has focused on the use
of monocular camera-based vision systems for
navigating a mobile robot [3-6]. A significant issue
with monocular camera-based vision systems is
the lack of depth information.

A common type of steering used for mobile
robots is differential drive steering illustrated in
Fig. 1. Here the wheels on one side of the robot are
controlled independently of the wheels on the other
side. By coordinating the two different speeds, one
can cause the robot to spin in place, move in a
straight line, move in a circular path, or follow any
prescribed trajectory [7].

The main difficulty of solving the tracking
control problem for mobile robots is because the
motion of the systems in question has more
degrees of freedom than the number of inputs
under nonholonomic constraints. As nonholonomic
mobile robots have constraints imposed on
motions that are not integrable, i.e., the constraints
cannot be written as time derivatives of some
function of the generalized coordinates, advanced
techniques are needed for the tracking control.
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A common problem with applying the standard
control theory is that the required parameters are
often either unknown at design time or are subject
to change during operation. For example, the
inertia of a robot as seen at the drive motor has
many components. These might include the
rotational inertia of the motor’s rotor, the inertia of
gears and shafts, the rotational inertia of its tires,
the robot’'s empty weight, and its payload. Worse
yet, there are elements between these
components such as bearings, shafts, and belts
that may have spring constants and friction
loads [8].

1.1 Main Contribution

The objectives of this paper are (1) to propose a
controller based on inverse optimal control for
mobile robots identified by a RHONN, which
includes the robot dynamics and does not require
to know the respective parameters; (2) to use
visual data for the controller to determine the
trajectory references in order to drive the mobile
robot from its current pose toward a desired one;
(3) to integrate visual servoing and an inverse
optimal neural controller allowing mobile robots to
perform autonomous navigation.

1.2 Organization of the Paper

The rest of the paper is organized as follows.
Section 2 introduces the state model used to
express the dynamics of a nonholonomic mobile
robot. Section 3 gives an introduction to the inverse
control problem. Then, in Section 4 the neural
identification problem is described. In Section 5 the
neural identification and neural control of mobile
robots are presented. In Section 6 the visual
feedback for the neural controller is given. The
simulation results are presented in Section 7.
Finally, conclusions are given in Section 8.

2 Nonholonomic Mobile Robot

In this work we consider a mobile robot with two
actuated wheels as shown in Fig. 1. The wheel has
been by far the most popular locomotion
mechanism in mobile robotics. Wheel robots can
be very efficient and balance is not a problem since
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these robots are designed so that all wheels are in
ground contact at all times.

The dynamics of an electrically driven
nonholonomic mobile robot can be expressed in
the following state-space model [9-11]:

X1 = TG xas
X2 = MM (=C(Qx)x2—Dxz—1q+NKrys), (1)
X3 = La*(u = Rgxs — NKgxz),

where each subsystem is defined as

X1 = [X11'X12'X13]T:
X2 = [)(21:)(22]T:
X3 = X31, x32]",
with
cos(x13) cos(x13)
J(x1) = 057(sin(y3) sin(xi3) |,
R71 —R71
_ my1 My
M - my, m11]'
0 x
o = 05Rr?m d[ . 13],
@ =13 0
_ dll 0
b= 5 )
my; = 025R2r’(mR?>+1) +1,,
my, = 0.25R™%r%2(mR? - ),
m = me + 2m,,
I = mcd? +2myR? + 1. + 21,
T = [0, 7207,
Ta = [Ta1 Ta2]",

where y;; = x, y;, =y are the coordinates of P,
and y,; = 6 is the heading angle of the mobile
robot, y,; = vy, X2 =V, represent the angular
velocities of right and left wheels, respectively, and
X31 = la1, X32 = lgz represent motor currents of
right and left wheels, respectively. R is half of the
width of the mobile robot and r is the radius of the
wheel, d is the distance from the center of mass P,
of the mobile robot to the middle point P, between
the right and left driving wheels, m, and m,, are the
mass of the body and of the wheel with a motor,
respectively. I., I,, and L, are the moments of
inertia of the body about the vertical axis through
P., of the wheel with a motor about the wheel axis,
and of the wheel with a motor about the wheel
diameter, respectively. The positive terms d;;, i =
1,2, are the damping coefficients, T ¢ R? is the
control torque applied to the wheels of the robot, 7,
e R? is a vector of disturbances including
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Fig. 1. Mobile robot with two actuated wheels

unmodeled dynamics. Ky = diag[k., k.,] is the
motor torque constant, i, =[i,,,is,] iS the motor
current vector, u € R? is the input voltage, R, =
diag[r,,, 7,,] is the resistance, L, = diag[l,,,ls,]is
the inductance, Ky = diaglk,,,k.,] is the back
electromotive  force coefficient, and N =
diag[n,, n,] is the gear ratio. Here, diag|-] denotes
the diagonal matrix. Model (1) is discretized using
the Euler Methodology.

3 Inverse Optimal Control

The main goal of this section is a synthesis of an
inverse optimal control. First, we briefly give details
about optimal control methodology and their
limitations. Let us consider a discrete-time affine-
in-the-input nonlinear system

Xie+1 = FC) + 9Cadug, xo = x(0), (2

where y, € R" is the state of the system at time
keN, ueR™ f:R"->R", ¢g:R"->RY™" are
smooth and bounded mappings. We assume
f(0)=0. N denotes the set of nonnegative
integers.

The following meaningful cost functional is
associated with the trajectory tracking problem for
system (2):

£(z) = ) (1) + WfR(z)un). 3)
n=k

where z, =y, — xsx With x5, as the desired
trajectory for yi; zx €R™; L(z):R" > RY;
I(zx):R™ - R* is a positive semi-definite function
and R(z,):R"->RM™xm is a real symmetric
positive definite weighting matrix. The entries of
R(z,) can be fixed or can be functions of the
system state in order to vary the weighting on
control efforts according to the state value [12].

Considering the state feedback control design
problem, we assume that the full state y;, is
available. Using the optimal value function £*(z)
for (3) as Lyapunov function V(z), equation (3)
can be rewritten as

V(z) = 1(z) + ugR(zi )y

+ (l(zn) + u‘rT;R(Zn)un)
n;H
= 1(z) + ufg Rz )ug + V(2Zk41),

where the boundary condition V(0) = 0 is required
so that V(z;,) becomes a Lyapunov function.

From the Bellman optimality principle [13, 14] it
is known that, for the infinite horizon optimization
case, the value function V(z,) becomes time
invariant and satisfies the discrete-time (DT)
Bellman equation [13, 15, 16]

V(zy) = l’l’&in{l(zk) + uf Rz ug + V(Zis )},

where V(z,,,) depends on both z, and u, by
means of z,,, in (2). Note that the DT Bellman
equation is solved backward in time [15]. In order
to establish the conditions that the optimal control
law must satisfy, we define the discrete-time
Hamiltonian H(z, u,) as

H(zy, uy) = 1(zi) + ufR(zi)ug + V (2gs1)
= V(zg).

(4)

A necessary condition that the optimal control

law should satisfy is % =0, then
k
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OV (zx+1)
duy,

0241 0V (Zg11)

Oup  0zpyq

0V (Zk41)
2R(zi)uy + QT(Xk)aikﬂ-
Zk+1

o
I

ZR(Zk)U.k +

ZR(Zk)uk +

Therefore, the optimal control law to achieve
trajectory tracking is formulated as

OV (Zjc41)

1
x _ __p-1 T
Uk ZR (zi)g" Cew) DZnes

with the boundary condition V(0) = 0. For solving
the trajectory tracking inverse optimal control
problem, it is necessary to solve the following HIB
equation:

10V (2,
120+ V(zesn) — Va4~ G oy (5)

4 0z
Solving the HJB partial differential equation (5)
is not straightforward; this is one of the main
disadvantages of discrete-time optimal control for
nonlinear systems. To overcome this problem, we
propose to solve the inverse optimal
control problem.

Definition 1. Consider the tracking error as z, =
Xk — Xsx» With x5 . being the desired trajectory for
Xx- Let us define the control law as

oV (zg41)
0z4q

uje = —%R‘l(zk)g%(k) (6)

which will be inverse optimal (globally) stabilizing
along the desired trajectory ys  if
(i) it achieves (global) asymptotic stability of
X = 0 for system (2) along reference xs;
(i) V(z,) is a (radially unbounded) positive
definite function such that inequality

V.= V(2Zk+1) = V(zi) + ui R(zi)uy < 0
is satisfied.

Selecting I(z;,): = =V, then V(z,) is a solution
for (5) and cost functional (3) is minimized.

As established in Definition 1, the inverse
optimal control law for trajectory tracking is based
in knowledge of V(z,).Then, a CLF V(z) is
proposed such that (i) and (ii) are guaranteed.
Hence, instead of solving (5) for V(z;), a quadratic
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candidate CLF V(z,) for (6) is proposed with
the form

1
V(zy) = Ez,{sz P=PT >0 @

in order to ensure stability of the tracking error z,

where
X1,k — X168k
Zksz—Xa,kzL : .

nk — Xnék

The control law (6) with (7), which is referred to
as the inverse optimal control law, optimizes the
meaningful cost functional of the form in (3).
Consequently, by considering V(z;) as in (7), the
control law in (6) takes the following form:

* 1. 024 1PZk1s
Uy _ZR 1(Zk)gT(Xk)527

k+1

L R T P
2 (z1)g" Xr)P2z 41 (8)

1
_E(R(Zk)gT(Xk)Pg(Zk))_l
X 9" Oa)P(f () — X5ke41)-

It is worth pointing out that P and R(z,) are
positive definite and symmetric matrices; thus, the
existence of the inverse in (6) is ensured.

4 Neural Identification

To identify the system in (2), we use a discrete-time
recurrent high-order neural network (RHONN)
defined as

Xigsr =W @i W), i=1,-,m, (9)

where x; is the state of the i-th neuron, L; is the
respective number of high-order connections,
{I,,I;,--+,1,,} is a collection of non-ordered subsets
of {1,2,---,n 4+ m}, nis the state dimension, m is the
number of external inputs, w; is the respective on-
line adapted weight vector, and ¢;(x;, u;) is
given by
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di;(1)
@i, [ Mjer, fif ]
; | di(2) |
@i (x, u) = glz = [ Wer, SCii (10)
i, ;o
l J€IL; Si; J

with di].(k) being nonnegative integers and ¢;
defined as follows:

] Sea)

e | Jsea]

$i= g |7 u | (12)
lfin'mj Um

where u = [uy, Uy, ..., U] " is the input vector to the
neural network and S(e) is defined by

S 3 g >0, (12)

1
T 1+ exp(—pY

where Y is any real value variable.

Using the structure of system in (2), we propose
the following discrete-time RHONN series-parallel
representation [17]:

Xijer1 = Wi @i (X, up) + €, i =1,-,m, (13)

where ¢, is a bounded approximation error which

can be reduced by increasing the number of the
adjustable weights [17].

Assume that there exists an ideal weight vector
w; such that ||e,,|| can be minimized on a compact
set 0, c®R* The ideal weight vector w; is an
artificial quantity required for analytical purpose
[17]. In general, it is assumed that this vector exists
and is constant but unknown. Let us define its
estimate as w; and the estimation error as

Wik = Wi — Wy (14)

The RHONN is trained with an Extended
Kalman Filter (EKF) algorithm in (17). Then, the
dynamics of the identification error in (19) can be
expressed as

i+t = Wir®i (Xnr Ux) + €. (15)

On the other hand, the dynamics of (14) is

Wik+1 = Wik — i K; k€. (16)

It is possible to identify (2) by (9) due to the
theorem that follows.

Theorem 1 [18]. The RHONN in (9) trained with
the EKF-based algorithm in (17) to identify the non-
linear plant in (2) ensures that the identification
error in (19) is semiglobally uniformly ultimately
bounded (SGUUB); moreover, the RHONN
weights remain bounded.

4.1 The EKF Training Algorithm

The best well-known training approach for
recurrent neural networks (RNN) is the back
propagation through time learning [19]. However, it
is a first order gradient descent method and hence
its learning speed can be very slow [20]. Recently,
Extended Kalman Filter (EKF) based algorithms
have been introduced to train neural networks [21,
22]. With an EKF based algorithm, the learning
convergence is improved [20]. The EKF training of
neural networks, both feedforward and recurrent
ones, has proven to be reliable and practical for
many applications over the past ten years [22].

It is known that Kalman filtering (KF) estimates
the state of a linear system with additive state and
output white noises [23, 24]. For KF-based neural
network training, the network weights become the
states to be estimated. In this case, the error
between the neural network output and the
measured plant output can be considered as
additive white noise. Due to the fact that the neural
network mapping is nonlinear, an EKF-type is
required (see [22] and references therein).

The training goal is to find the optimal weight
values which minimize the prediction error. The
EKF-based training algorithm is described in [23]
as

Kip = Py Hy o M g,
Wiks1 = Wik + 10K ke (17)
Pir1 = Pye—KiH P + Qi
with
-1
Mix = [Rip+HPicHi] (18)
ek = Xik ~ Xik (29)
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. . ‘g . L;XL;j .
where e, is the identification error, P;,, € R ™ " is

the state estimation prediction error covariance
matrix, w; € R “is the weight (state) vector, L; is
the total number of neural network weights, y; € R
is the i-th plant state component, x; € R is the i-th
neural state component, n; is a design parameter,
K, € R ““™is the Kalman gain matrix, ; € R """
is the state noise associated covariance matrix, R;
€ R™ ™M is the measurement noise associated

covariance matrix, H; € R "™ is a matrix for
which each entry (H i].) is the derivative of one of

the neural network output (x;) with respect to one
neural network weight (w l_j) as follows:

0x;
H  x = bk ,
J ow . (20)
T W k=W
i = 1,...,nand j=1,...,L;.

Usually, P;, Q;, and R; are initialized as diagonal
matrices, with entries P;(0), Q;(0), and R;(0),
respectively. It is important to note that H;,, K,
and P; ;, for the EKF are bounded [24].

Proposition 1. The tracking of a desired trajectory
xs defined in terms of the plant state y formulated
as in (2) can be established as the following
inequality [26]:

lxs —x I<llx—x Il +ll xs —x I, (21)

where ||| stands for the Euclidean norm, xs — y is
the system output tracking error; x — y is the output
identification error; and xs —x is the RHONN
output tracking error.

We establish the requirements for the tracking
solution as follows.

Requirement 1.

Jim hx -y ll<¢ (22)
with ¢ being a small positive constant.
Requirement 2.

lim Il x5 —x 1= 0. (23)

An on-line neural identifier based on (13)
ensures (22), while (23) is guaranteed by a
discrete-time inverse optimal control. It is possible
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to establish Proposition 1 due to the separation
principle for discrete-time nonlinear systems [27].

5 Neural Identification and Control of
Nonholonomic Mobile Robots

In this section we describe the neural identification
and the neural control of a nonholonomic mobile
robot.

5.1 Neural Identification Design

The physical parameters for the mobile robot
simulations are selected as

R =0.75m I, = 0.0025kgm?
d=03m R, = diag[2.5,2.5]
r=0.15m L, = diag[0.048,0.048]H
— rad
me = 30kg Ky = diag[0.02,0.02]V/—
m,, = lkg N = diag[62.55,62.55]

= 2 Nm
le = 15.625kgm Kr = diag[0.2613,0.2613] ——

I,, = 0.005kgm? Ay = dyma = 0.5N.

To this end, we apply the neural identifier,
developed in Section 4, to obtain a discrete-time
neural model for the electrically driven
nonholonomic mobile robot in (1), with n=7
trained with the EKF in (17) as follows:

X1k+1 = w11 kSU11k) + Wiz kS (K12,k) +
W' X3 W, Xa
Xpk+1 = Wa1kS(X11,6) + Waz kS (X12,6) +
W', X3 W, Xa
X3k+1 = w31 kS (X11k) + WazieS(X12k) +
Wi Xz + Wi, Xa
Xgk+1 = Wa1 kS (X11k) + Waz kS W124) +
Wiz kS(Xa1k) + WaakS(Xari) + W'axe
Xsk+1 = Ws1 .S (K11,k6) + Ws2.S (12,) +
Wsz 1S (X22.) + WsaieS(Xz2k) + W2 X7,
Xek+1 = We11S(K11,k) + Wez kS (X12,) +
W63,k5()(21,k) + W64,k5()(31,k) +w'suyq,
X7k+1 = W71 .S(H11k) + Wrz kS (K12k) +

w3 S(X22.) + WraieS(X32k) + W'3tss.

(24)

where x; and x, identify the x and y coordinates,
respectively; x; identifies the robot angle; x, and
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x5 identify the angular velocities of the right and left
wheels, respectively; finally, x, and x, identify the
motor currents, respectively. The NN training is
performed on-line, and all of its states are
initialized in a random way. The RHONN
parameters are heuristically selected as

Py@y=1-108 Ry =1-10*  Qu =5-10°
Py =1-102 Ry =5-10* Q) =5-10°
P3)=1-10% Ry =1-10* Q¢ =5-10°
Pyy=1-102 Ry =1-10' Q4 =1-10!
Ps)=1-102 Ry =1-101  Qs¢) =1-10!
Peoy=1-102  Rgy=1-10% Qg =1-10°
Py =1-102 Ry =1-10% Q) =1-10%

It is important to consider that for the EKF-
learning algorithm the covariances are used as
design parameters [22, 28]. The neural network
structure in (24) is determined heuristically in order
to minimize the state estimation error. The results
are presented in what follows.

5.2 Control Synthesis

In order to facilitate the controller synthesis, we
rewrite the neural network in (24) in a block
structure form as

X1,k+1
p— — !
X1 = |X2k+1]| = W1,k<P1(X1,k) + Wi kX2
X3,k+1
Xa,k+1
X = [ ’ ] w.
2,k+1 X5 k41 2,k(p2()fl,k')(2,k) (25)
!
TW2 kX3,
X6,k+1
X3 h+1 = [x7 k+1] = w3r@3(W1k X2 g X3.k)

’
+w 3'kuk.

With X1 0, X200 X300 P15 P2, P30 Wik Wako Wik
Wik W, and w'z, of appropriated dimension
according to (25).

For trajectory tracking of the first block in (25),
let us define the tracking error as

Z1k = X1,k — X168,k
where ;5 is the desired trajectory. Then using
(25) and introducing the desired dynamics for zj
result in

— i
Ziger = Wie®1 (k) + WiikXok — X16k+1
= W1k P1 (Zl,k) + K1Zy ks

(26)

where Ky = diag{k,,, k;,, k3, } with
|ky, |, |k2, ], Iks,| < 1. The desired value x5  for the
pseudo-control input y, , is calculated from (26) as
Xosie = W) T wie@r (e + Xis ke @7
Wy 91 (Z1 k) + K121 1)-

Note that the calculated value of the state y,s
in (27) is not the true value of such state; instead,
it represents the desired behavior for x,, ,. To avoid
misunderstandings, the desired value for x,, is
referred to as x,5 in (27):

z2=x_(2,k)— x_(26,k).

Then using (25) and introducing the desired
dynamics for z, ;, result in

— I
Zogser = WorP2(Wipo Xak) + W akXsk — Xa2sk1
= Wa kP2 (Zl,krzz,k) + Kpz3,

(28)

where K, = diag{k,,, k,,} with |kq,]|, |k,,| < 1. The
desired value y3; , for the pseudo-control input x3
is calculated from (28) as

Xask = W2 ) Wai@: (Mip Xok) + Xasker (29)
Wo k@2 (21 Z2k) + KaZ21)-

At the third step, we introduce a new variable
as zz = X3k — X35k:

Taking one step ahead, we have

Z3+1 = W3 k@3 (Xl,k:XZ,k!X&k) + W' (30)
— X36k+1

= W02 (210 Zo g Z3 1) + Kathy. (31)
Then, the system in (25) can be presented with
the new variables z = [z}, zIzI]T as
Zige1 = Wik ®2(211) + K121k
Wo k@221 Zog) + KaZo g (32)

W3 kP2(Z1k0 Zojo Za 1) + K3y,

Z2,k+1

Z3k+1
where u, is defined as
_ 1 R T P -1
u = _E( (zi) + g" (e )Pg(zi)) (33)
X gT(xk)P(f(Zk))-

where the controllers parameters are selected
heuristically as
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-0 4

0 1
and

cos(x3) cos(x3)
sin(x3) sin(x3)
R™! Rt

)

! —
Wik =

Wi = [é (1) and w'sy = [é (1) .

6 Visual Feedback

The use of visual feedback to control a robot is
commonly termed as visual servoing or visual
control [29, 30]. In this work the visual data is
acquired from a stereo vision system that is
mounted directly on the mobile robot, see Fig. 2.

Z?/v Y
Robot Frame &===J» X

o
©)

Fig. 2. Coordinate systems of the mobile robot
and the stereo vision system

Desired Pose
- -7 ’
itial Pose -7 I
Initial
P - Planar
— 7 Target

Fig. 3. Robot moving from the initial pose
to the desired pose
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When the camera is mounted on the robot, its
motion induces camera motion, see Fig. 3.

The visual control objective is to minimize an
error e(t) defined as [31]

e(t) = s(t) — s*, (34)

where s(t) denotes the features extracted from the
current pose and s* denotes the features extracted
from the desired pose.

In this paper we consider a nonholonomic
mobile robot moving on a plane as shown in Fig. 1.
Its pose is defined as [x y 8]7. Its kinematics model
is that of a wheeled unicycle mobile robot:

X = w.cosb,
Yy = v,sinf, (35)
9 = Wy,

where v, and w, represent the translational and
angular velocities, respectively.

In order to estimate v, and w, by using visual
data, several steps must be made, Fig. 4. First, the
image is converted to HSV (Hue Saturation Value)
color space [32]. Using this image we apply a
mask, previously computed from a reference
image, and then we obtain a segmented image.
From the segmented image, we compute the
boundaries using the Moore-neighbor tracing
algorithm [33]; then to each boundary we compute
the metric m = 4 area/perimeter?, if this is close
to 1 then the boundary is more likely to be a circle.

From the detected circles, we compute their
centroid. Later, using the centroids of the circles
from the desired image, the current image, and the
corresponding depths, we estimate the robot’s
pose. Finally, with the current and desired poses,
we compute the velocities v,, w, to drive the robot
from the current pose to the desired pose.

6.1 Stereo Vision

The principle of stereo vision with parallel optical
axes is displayed in Fig. 5. The 3D point P is
projected onto the image plane of the left camera
as p, =[x, y;], similarly pg = [xz,yr] represents
the projection of P onto the image plane of the right
camera.

Since the image planes of the left and right
cameras are located on the same plane, the y-
coordinates in these two images are the same
(v, =yg), and the disparity is equal to the



ISSN 2007-9737

Neural Control for a Differential Drive Wheeled Mobile Robot Integrating Stereo Vision Feedback 437

Segment Image

v

Detect Circles

v

Compute Centroid

v

Estimate Pose

v

Compute vV, and W,

Fig. 4. Process for the computation of the translational
v, w, and angular velocities from visual data
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Fig. 5. Image formation of stereo vision with parallel
optical axes

difference between the horizontal coordinates
(xgr — x1).
Let P = (X,Y,Z) € R? denote a 3D point in the
world. The coordinates of P on the left camera are
P, =[X+b/2,Y,2Z]". (36)

Similarly, the point P on the right camera is

Pr=[X—-b/2,Y,Z]". (37)
Using the standard projective camera
projection, we obtain
b
5, = (38)
A
b
xp = O (39)
A
Similarly,
_Yf
VL= 7! (40)
_Yr
Yr =7 (41)

The depth of the point P can be recovered from
the x-coordinate of the image points x; and xg,
subtracting (39) from (38) we obtain

bf

X, — XR

7 =

(42)

Similarly, we can also solve for X using (38),
(39), and (81) and obtain

_ b(xy +xz)
2(x, — xR)’
The Y value can be recovered with (40) or (41),

since they have the same value, and from (42) to
get

(43)

y=—2_ (44)

xL—xR'
6.2 Pose Estimation

The mobile robot moves on a 2D plane, thus we
need only two coordinates to fully determine its
pose (x,y,6). Since the robot cannot move in the Y
direction (orthogonal to the plane), we can
estimate its pose with respect to the planar target
using only the Z and X values of the point P.
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Let Q; = (Z;,X/) and Q; = (Z;,X;) represent a
2D Euclidean point of a feature point P; expressed
in the frames F* and F, respectively. From
Euclidean geometry, the relationship between the
features is defined as

Ql* = RQL +t, (45)

where R € R?*? is the 2D rotation matrix and t =
(tw ty) € R? is the translation vector, Fig. 6.

To estimate the pose of the robot given the
points Q; and Q; from the current and desired pose,
we need to solve the following least-square
problem:

E(0,1) = Xisy | RoX; +t — X[ |2 (46)

This problem can be solved in a closed
form [34].

6.3 Kinematic Planer

Once the pose of the robot has been estimated, the
next step is the estimation of the robot velocities
which minimize the error between the current pose
of the robot and its desired pose.

The path to track is defined as the line L,
passing through the center of the stereo rig parallel
to the optical axes of the left and right cameras,
Fig. 6. A line on the plane can be defined using the
general equation of the line (ax + by + c = 0),
therefore, the desired line is defined at the desired
pose as

Ly =1[010]. (47)

The signed distance from the current pose of
the robot and the principal axis L, at the desired
pose is defined as

d=[tyt, 1]" - Ly. (48)

The angular velocity of the robot must turn the
robot toward the line L, with

ﬂd = _Kdd, Kd > 0, (49)

and adjust the orientation of the robot (heading
angle) with

B, =K,(0"—6), K, > 0. (50)

Computacidn y Sistemas, Vol. 19, No. 3, 2015, pp. 429-443
doi: 10.13053/CyS-19-3-2016

@
Desired

[ ]
Current

o
° R,t
Fig. 6. Pose estimation problem

Then, the combined kinematic control law [8]
used to generate the robot’s angular velocity for
path following is defined as

Wy = ﬁd + ﬁo- (51)

The value of v, is set to a constant value (e.g.,
0.2 m/s), but when the robot is close to the desired
pose, the velocity is computed with

v = Ky /t,% + t3. (52)

7 Simulation Results

In this section we present the simulation results of
our proposed discrete-time inverse optimal neural
controller with stereo vision feedback. Simulations
have been performed using Matlab-Simulink.

In the simulation, the robot moves under the
action of the proposed controller, the controller
uses as references the linear and angular
velocities computed from the stereo vision
algorithm. In the simulation, the initial pose of the
robot is [0 0 0]7, and the desired pose is [3.8 —
0.8 0].



ISSN 2007-9737

Neural Control for a Differential Drive Wheeled Mobile Robot Integrating Stereo Vision Feedback 439

E 0.

E

= Q15 — Liriear velnoly relenence |

]

2 o

(]

:

@ 005

o

c

B L

[ 1o 20 0 40 5 &

Time(s)

g 01

& = Angular valocity referance

= ol

-y

B oo

2

El o

=

2 005

< [ 10 0 k0] 40 50 60
Time(s)

Fig. 7. Linear (top) and angular (bottom) velocities
generated by the stereo vision algorithm

0B

[ o

0E

05k

el g

y—axis (m)

m—— Pgsition referenca
= = = Planf posilion

0.3r

02

0 0E 1 15 2 25 3 a5 4
A=ais (m)

Fig. 9. Trajectory tracking result for simulation
(reference signal in solid line and plant signal in dashed
line)

The sampling time of the simulation was T=
0.01s. The simulation results are presented as
follows. In Fig. 7 we show the linear and angular
velocities used as references by the proposed
controller, these velocities are computed by the
stereo vision algorithm using the current and
desired images of the target object.

Fig. 8 shows the tracking performance for x-
axis, y-axis, and 6 angle.

Fig. 9 shows the trajectory tracking results.

Fig. 10 presents the tracking errors.

Fig. 11 shows the applied control signal for the
left and right wheels.
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Fig. 8. x-axis tracking (top), y-axis tracking (middle), and
6 tracking (bottom), reference signal in solid line and
plant signal in dashed line
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Fig. 10. Tracking errors, x-axis (top), y-axis (middle), and
6 angle (bottom)

Fig. 12 presents the current tracking for the left
and right wheels.

Fig. 13 shows the angular velocity tracking for
the left and right wheels, respectively.

Finally, Fig. 14 portraits the robot moving from
the initial pose to the desired pose.

In order to compare the proposed control
scheme with the works already published [36],
Table 1 is included, which is described as follows:
the controllers used in this comparison are (1)
Neural Backstepping Controller (NBC) [36], (2)
High-Order Sliding Mode Controller (HOSM) [36],
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and (3) Inverse Optimal Neural Controller (IONC)
proposed in this paper.

Table 1. Comparison between Inverse Optimal Neural
Controller (IONC) with respect to Neural Backstepping
Controller (NBC) and High-Order Sliding Mode
Controller (HOSM)

Method Mean Value Standard Deviation

NBC -0.0149 0.0894
HOSM -0.0223 0.0967
IONC 0.0034 0.0398
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Fig. 14. Robot moving from the initial pose to the desired
pose

8 Conclusions

In this work we presented a neural identification
and a neural controller for a nonholonomic mobile
robot. The proposed controller allows the robot to
accomplish a trajectory tracking problem of a
nonlinear system.

The controller is inverse optimal in the sense
that it minimizes a meaningful cost functional. The
mobile robot dynamics at the actuator level as well
as its kinematics and dynamics uncertainties are
considered in the construction of the controller by
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means of neural identification. The references for
the controller are provided by a visual sensor.

The obtained results show the effectiveness of
the proposed controller.
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