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Resumen. En este trabajo se presenta una 

metodología para la caracterización de instancias 
difíciles del problema de Bin Packing usando Minería 
de Datos. El objetivo es que las características de las 
instancias proporcionen ideas para desarrollar nuevas 
estrategias para encontrar soluciones óptimas 
mediante la mejora de los algoritmos de solución 
actuales o mediante el desarrollo de nuevos. De 
acuerdo a la literatura especializada, en general, la 
caracterización de instancias ha sido utilizada para 
predecir qué algoritmo resuelve mejor una instancia o 
para mejorar el algoritmo asociando las características 
de la instancia con el desempeño de dicho algoritmo. A 
diferencia de los trabajos anteriores, este trabajo 
propone que el desarrollo de algoritmos de solución 
eficientes puede ser guiado por una previa 
identificación de las características que representan un 
alto impacto en la dificultad para obtener su solución. 
Para validar nuestro enfoque se utilizó un conjunto de 
1,615 instancias, 6 algoritmos bien conocidos del 
problema de Bin Packing y 27 métricas iniciales. 
Después de aplicar técnicas de agrupamiento de 
Minería de Datos para la caracterización de las 
instancias, se encontraron 5 métricas que ayudaron a 
caracterizar 4 grupos con las instancias que no fueron 
resueltas por ninguno de los algoritmos usados en este 
trabajo. En base al conocimiento obtenido de la 
caracterización de las instancias, se propuso un nuevo 
método de reducción de instancias que contribuye a 
reducir el espacio de búsqueda de un algoritmo 
metaheurístico. Los resultados experimentales 
muestran que aplicando el método de reducción es 
posible encontrar más soluciones óptimas que las 
reportadas en el estado del arte por las mejores 
metaheurísticas. 

Palabras clave. Metaheuristicas, bin paking, 
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Characterization of Difficult Bin 
Packing Problem Instances Oriented 
to Improve Metaheuristic Algorithms 

Abstract. This work presents a methodology for 

characterizing difficult instances of the Bin Packing 
Problem using Data Mining. Characteristics of such 
instances help to provide ideas for developing new 
strategies to find optimal solutions by improving the 
current solution algorithms or developing new ones. 
According to related work, in general, instance 
characterization has been used to make prediction of 
the algorithm that best solves an instance, or to 
improve one by associating the instance characteristics 
and performance of the algorithm that solves it. 
However, this work proposes the development of 
efficient solution algorithms guided by previous 
identification of characteristics that represent a greater 
impact on the difficulty of the instances. To validate our 
approach, we used a set of 1,615 instances, 6 well-
known algorithms of the Bin Packing Problem, and 27 
initial metrics. After applying our approach, 5 metrics 
were found relevant; these metrics helped to 
characterize 4 groups containing instances that could 
not be solved by any of the algorithms used in this 
work. Based on the gained knowledge from instance 
characterization, a new reduction method that helps to 
reduce the search space of a metaheuristic algorithm 
was proposed. Experimental results show that 
application of the reduction method allows finding more 
optimal solutions than those of best metaheuristics 
reported in the specialized literature. 

Keywords. Characterization, clustering, 

metaheuristics, bin packing problem, reduction, 
knowledge discovery. 
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1. Introducción 

En el área de la computación, uno de los 
problemas abiertos y vigentes es encontrar 
algoritmos eficientes y eficaces para resolver 
problemas de optimización discreta del tipo NP-
hard [18, 24], como lo son Bin Packing, el Agente 
viajero, y el de la Mochila, entre otros, dichos 
problemas son comúnmente encontrados  en 
situaciones prácticas como la planeación de la 
producción y logística. Este tipo de problemas 
son considerados de alta complejidad 
computacional ya que a la fecha no se conocen 
algoritmos que los puedan resolver en un tiempo 
polinomial. Con la finalidad de extraer 
conocimiento relevante  que posibilite la 
generación de nuevas estrategias que sean 
incorporadas en los algoritmos de solución 
actuales o que permitan la generación de nuevos 
algoritmos, en este trabajo se aborda el problema 
de la caracterización de instancias difíciles de 
resolver del problema de Bin Packing, cuya 
entrada es una secuencia de n  objetos 

1 2{ , ,..., }nI w w w  de diferentes tamaños. El 

objetivo es colocar los objetos en el mínimo 
número de contendores de capacidad uniforme c, 
donde 0 iw c   [23]. El trabajo propone un 

enfoque basado en la hipótesis: “el desarrollo de 
algoritmos de solución eficientes, puede ser 
guiado por una previa identificación de las 
características que representan un alto impacto 
en la dificultad de las instancias”. En este sentido, 
se utilizaron técnicas de Minería de Datos con el 
propósito de caracterizar las instancias 
representativas del problema de Bin Packing que 
contribuyen en la obtención de patrones que 
pueden ser utilizados en el desarrollo de 
estrategias para la mejora del desempeño de los 
algoritmos de solución. 

Para probar la hipótesis propuesta, se 
seleccionaron 1,615 instancias del problema de 
Bin Packing. Cada instancia fue resuelta con 6 
algoritmos bien conocidos y caracterizada con 27 
métricas iniciales. Al aplicar la Minería de Datos 
se obtuvieron los siguientes resultados: 

a) identificación de 5 características relevantes 
que permiten describir las instancias 
difíciles de resolver, 

b) identificación de cuatro patrones que 
contribuyen a la caracterización de 22 
instancias cuya solución óptima no fue 
alcanzada por ninguno de los 6 
algoritmos utilizados, 

c) Tres soluciones óptimas que no han sido 
reportadas por las mejores metaheurísticas 
de la literatura especializada. 

Lo que resta del documento está estructurado 
de la siguiente forma: la Sección 2 muestra los 
trabajos relacionados con esta investigación, la 
Sección 3 presenta la metodología propuesta 
para la caracterización de instancias difíciles de 
resolver del problema de Bin Packing donde a 
manera de ejemplo se presenta la interpretación 
del conocimiento adquirido mediante el desarrollo 
un procedimiento de reducción de instancias el 
cual es generado a partir de la caracterización de 
las mismas y su incorporación sobre un algoritmo 
metaheurístico inspirado en HGGA_BP [33]. En la 
Sección 4 se presentan los resultados 
experimentales de ejecutar nuestro algoritmo 
sobre un conjunto de instancias difíciles de 
resolver, se destaca que fue posible encontrar 
más soluciones óptimas que las obtenidas 
inicialmente. Finalmente, la Sección 5 muestra las 
conclusiones obtenidas y los trabajos futuros. 

2. Trabajos relacionados 

A continuación se describen algunos de los 
trabajos, donde la caracterización de instancias 
es de gran importancia para obtener soluciones 
óptimas de instancias difíciles de resolver, en 
problemas NP. Los trabajos relacionados se 
dividieron en problemas NP y Bin Packing para 
mayor claridad del documento. 

2.1. Problemas NP 

De acuerdo al teorema “No free lunch” [42], no 
existe un algoritmo que domine la solución de 
todas las instancias de un problema NP-duro. 
Trabajos como los desarrollados en [20, 31] 
sugieren que es indispensable el conocimiento de 
las características de las instancias a resolver 
para desarrollar algoritmos que sean eficientes en 
el cálculo de soluciones. Así por ejemplo, en el 

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 295–308
ISSN 1405-5546
doi: 10.13053/CyS-19-2-1546

Adriana Mexicano Santoyo, Joaquín Pérez Ortega, Gerardo Reyes Salgado, Nelva Nely Almanza Ortega296



año 2000 Merz [31] analizó la trayectoria de los 
algoritmos meméticos aplicados a la solución de 
instancias del problema de partición de grafos. 
Concluyó que el agregar las características de las 
instancias, puede ayudar en el desarrollo de 
métodos heurísticos altamente eficientes. En el 
año 2004 Hoos [20], mientras estudiaba el 
desempeño de un algoritmo de búsqueda local 
para el problema de MAX-SAT, incorporó un 
conjunto de métricas que le permitieron valorar la 
dificultad de las instancias y con ello mejorar el 
desempeño del algoritmo. 

2.2. Problema de Bin Packing 

El problema de Bin Packing ha sido 
ampliamente estudiado; en trabajos como [1, 4, 7, 
10, 11, 12,15, 16, 17, 19, 21, 25, 26, 27, 32, 33, 
34, 35, 36, 37, 38, 39, 40, 41] se han desarrollado 
diferentes algoritmos con el objetivo de encontrar 
procedimientos eficientes que contribuyan a 
resolver dicho problema, sin embargo, sólo 
investigaciones como [9, 10, 32, 33, 34, 37] se 
han enfocado en la identificación de las 
características que representan alto impacto en la 
dificultad de resolver instancias. Dicha 
caracterización ha sido utilizada para hacer 
predicciones sobre el algoritmo que puede 
resolver mejor un conjunto particular de 
instancias, o bien para mejorar un algoritmo dado, 
donde la caracterización se realiza a partir del 
desempeño del algoritmo sobre la instancia. El 
trabajo más relevante en cuanto a caracterización 
de instancias del problema de Bin Packing es el 
desarrollado por Schwerin y  Wäscher en 1997 
[37]. En ese trabajo se expresó que el intervalo 
de donde son extraídos los valores de los pesos 
de los objetos puede tener efectos severos en el 
tiempo de cómputo y la calidad de la solución de 
los algoritmos. Se reportan como indicadores de 
dificultad para el algoritmo Fist Fit Decreasing 
(FFD): a) el peso de los objetos; b) la variabilidad 
y c) el efecto de multiplicidad. Cruz en 2004 [9] 
propuso un procedimiento sistemático, basado en 
aprendizaje automático y estadística. En dicho 
trabajo se incorporaron y relacionaron 
características críticas del problema de Bin 
Packing que ayudaron a seleccionar el algoritmo 
que mejor resuelve un caso dado. Otro de los 
trabajos destacables es el desarrollado por 

Quiroz en los años 2009-2013 [33, 34],  en el cual 
se presenta la mejora del algoritmo HGGA-BP 
propuesto por primera vez en [10, 32]. Dicho 
trabajo presenta un análisis exploratorio sobre el 
desempeño del algoritmo y un análisis de las 
características de las instancias difíciles de 
resolver y haciendo uso de relaciones obtiene 
información que permite realizar la mejora de un 
algoritmo de solución. 

Los trabajos anteriores sugieren dos factores 
clave en cuanto a la solución de las instancias 
difíciles de un problema, uno es la caracterización 
del tipo de instancia y el otro es el conocimiento 
que se tenga sobre el algoritmo que mejor 
resuelve ese tipo de instancias. En este trabajo, 
lo que se aborda es la caracterización de las 
instancias con el objetivo de encontrar los 
patrones que las hacen difíciles de resolver. 

3. Caracterización de instancias 
difíciles mediante agrupamiento 

La metodología desarrollada para la 
caracterización de instancias difíciles del 
problema de Bin Packing está basada en el 
modelo de referencia para Minería de Datos 
CRISP-DM [8] cuyas fases son: entendimiento del 
negocio y de los datos, preparación de los datos, 
modelado, evaluación y despliegue de resultados. 
La Figura 1 muestra el enfoque de solución 
propuesto que incluye desde el preprocesado de 
los datos hasta la aplicación del conocimiento 
que se extrae para la mejora o generación de los 
algoritmos de solución.  

Se muestra además que dado un conjunto de 
algoritmos, un conjunto de instancias y un 
conjunto de métricas; la caracterización de las 
instancias se realiza a través de la aplicación de 
técnicas de Minería de Datos donde como parte 
de la preparación de datos: se extraen las 
soluciones de las instancias al aplicar diferentes 
algoritmos, esto con la finalidad de identificar las 
instancias más difíciles de resolver; a partir de un 
conjunto de métricas se extraen los valores 
correspondientes a cada instancia y se 
selecciona un conjunto de métricas que sean 
relevantes para caracterizar las instancias más 
difíciles de resolver. En la fase de modelado 
como su nombre lo indica, se modela la 
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información, en este caso mediante agrupamiento 
y se obtienen los patrones que posibilitan 
describir las instancias difíciles de resolver. 
Durante la fase de evaluación, se analizan los 
patrones para extraer conocimiento.  

Finalmente en la fase de despliegue de 
resultados, el conocimiento proporcionado por los 
patrones se incorpora como estrategia que al 
combinarse con los algoritmos de solución 
actuales, permite obtener soluciones óptimas que 
previamente no han sido encontradas. Otra 
posibilidad de uso del conocimiento obtenido es 
la generación de nuevos algoritmos para la 
solución de problemas reales. Las Secciones 3.1-
3.6 describen cada una de las fases. 

3.1. Entendimiento del negocio  

Durante esta fase se determinó la siguiente 
hipótesis: “el desarrollo de algoritmos de solución 
eficientes puede ser guiado por una previa 
identificación de las características que 
representan un mayor impacto en la dificultad de 
las instancias”. Dada la hipótesis la 
caracterización de las instancias fue planteada en 
términos de determinar cuáles son las instancias 
que son difíciles de resolver por los algoritmos de 
solución actuales, encontrar las características 
que mejor las describen, aplicar el conocimiento 
adquirido para la generación de estrategias que 
redunden en la mejora y/o desarrollo de nuevos 
algoritmos de solución. Para alcanzar el objetivo 
se generaron los siguientes objetivos particulares: 

a) Seleccionar un conjunto de instancias de 
prueba I = {i1, ..., in}, un conjunto de 
algoritmos A = {a1, ..., aj} y un conjunto de 
métricas M = {m1, ...,ml} que permitan la 

caracterización de las instancias. 
b) Calcular las soluciones de las instancias en I 

con los algoritmos en A, para obtener el 
conjunto de soluciones R = {r1,1, ..., rn,j} que 
permitan identificar cuáles son las instancias 
más difíciles de resolver. 

c) Reducir el conjunto inicial de métricas M a 
partir de los valores obtenidos al aplicarlas 
sobre I y encontrar las que describan mejor a 
las instancias difíciles de resolver. 

d) Modelar los datos mediante agrupamiento 
para encontrar un conjunto de patrones P = 

{p1, ..., px}, que aporten información sobre las 
características de los conjuntos de instancias 
difíciles de resolver del problema de Bin 
Packing. 

e) Interpretar el conocimiento extraído a partir 
de los patrones relacionados con las 
instancias difíciles de resolver. 

f) Mediante el conocimiento adquirido, 
implementar al menos una estrategia que 
permita obtener mayor número de soluciones 
óptimas. 

3.2. Entendimiento de los datos 

En esta etapa se recopiló y analizó la 
información que contribuyó para caracterizar las 

 

Fig. 1. Enfoque de solución propuesto 
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instancias difíciles de resolver del problema de 
Bin Packing de una dimensión. Los datos 
recopilados fueron los siguientes: 

a) un conjunto I de 1,615 instancias  del 
problema de Bin Packing, ampliamente 
utilizadas para probar algoritmos de solución 
por la comunidad científica: Triplets (80 
instancias), uniform (80 instancias), gau_1 
(17 instancias), set_1 (720 instancias), set_2 
(480 instancias), set_3 (10 instancias), was_1 

(100 instancias), was_2 (100 instancias) y 
Hard28 (28 instancias), cuyas soluciones 
óptimas fueron reportadas en [5, 6, 13,14], 
utilizando programación lineal en 
algunos casos, 

b) un conjunto A de 6 algoritmos bien conocidos 
que son utilizados para resolver instancias 
del problema de Bin Packing, entre ellos 
cuatro algoritmos aproximados: First Fit [22], 
Best Fit [22], Worst Fit [22] y Best3 Fit 
Decreasing [3] y dos algoritmos 
metaheurísticos: HGGA-BP[11] y HI_BP [4] 
hasta el momento considerados de los más 
robustos, 

c) un conjunto de 27 métricas propuestas en la 
literatura especializada para la 
caracterización de instancias de Bin Packing 
[2, 9, 33], las cuales se listan a continuación: 
tamaño de la instancia (p), capacidad 
ocupada por un objeto promedio (t), 
dispersión del tamaño del objeto (d), factores 
(f), uso de contenedores (b), media aritmética 
(avg), media geométrica (avgg), media 
armónica (avga), mediana (Me), moda (Mo). 
rango (r), desviación media (Dm), varianza 
(σ2), desviación estándar (σ), coeficiente de 
variación de Pearson (Cv), coeficiente de 
asimetría de Pearson (Ap), asimetría de 
Pearson mediana (Am), asimetría de Pearson 
moda (Amo), coeficiente de asimetría de 
Bowley (AB), curtosis (Cu), variación entre 
cuartiles (VQ), variación entre deciles (VD), 
objeto menor (min), objeto mayor (max), 
multiplicidad (λ), frecuencia de repetición 
máxima (ν), uniformidad (U). 

Durante el análisis de los datos, se consideró 
la posibilidad de extraer las características 
propias de las instancias difíciles de resolver con 
la finalidad de obtener información que 

contribuyera a la generación de estrategias de 
solución de dichas instancias. 

3.3. Preparación de datos 

Esta fase básicamente consistió en preparar 
los datos para identificar las instancias difíciles de 
resolver, en particular por los 6 algoritmos de 
prueba. Además se calcularon los valores de las 
27 métricas para las 1,615 instancias y mediante 
selección de características, se identificaron las 
métricas que ayudaron a caracterizar 
dichas instancias. 

Extracción de soluciones 

Para la identificación de las instancias difíciles 
de resolver se ejecutaron los 6 algoritmos 
(FirstFit, BestFit, WorstFit, Best3Fit Decreasing, 
HGGA-BP y HI_BP) con las 1,615 instancias. 
Como resultado se obtuvo un conjunto D con 22 
instancias para las cuales ninguno de los 
algoritmos alcanzó la solución óptima. D = 

{TEST0082, TEST0014, TEST0030, TEST0058, 

TEST0005, BPP60, BPP832, BPP13,  BPP709, 

BPP785, BPP144, BPP561, BPP781, BPP900, 

BPP195, BPP40, BPP645, BPP766, BPP181, BPP485, 

BPP419, BPP178}. 

Extracción de valores de métricas 

En esta fase para cada instancia de prueba se 
calculó cada una de las 27 métricas con la 
finalidad de aplicar reducción de características.  

Selección de métricas relevantes 

Para encontrar las métricas que mejor 
describen a las instancias difíciles de resolver, se 
llevó a cabo la fase de reducción de 
características del proceso de minería de datos, 
donde 27 métricas fueron utilizadas inicialmente  
(ver Sección 3.2 inciso c), para realizar la 
reducción, se calculó el valor de cada métrica 
utilizando las 1,615 instancias, posteriormente se 
extrajo una muestra estratificada representativa 
de la información correspondiente a los valores 
calculados con un nivel de confianza del 95% y 
considerando un error de cálculo del 5% con lo 
cual se obtuvo una muestra de 198 instancias a 
las cuales posteriormente se les aplicó un análisis 
de correlaciones para eliminar la redundancia de 
información. Como resultado se obtuvieron 8 
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métricas relevantes, las cuales se describen 
a continuación.  

Para la descripción de las métricas considere 
que: n es el número de objetos en una instancia, 

wi es el peso del objeto i, c es la capacidad del 

contenedor,  


n

i iwtw
1

es la suma total de los 

pesos de los objetos en una instancia y para toda 

i la función factor(c, wi) identifica si un objeto es 

factor o no del contenedor c 










0)mod(0

0)mod(1
),(

i

i

i
wc

wc
wcfactor .

 

1. Tamaño de la instancia. Expresa la relación 
entre el tamaño de una instancia y el tamaño 
máximo resuelto. El valor de nmax se asignó a 
1,000, ya que corresponde con el número de 
objetos de la instancia mayor en I (ver 
expresión 1): 

maxn

n
p  . (1) 

2. Factores. Expresa la proporción de objetos 
cuyos tamaños son factores de la capacidad 
del contenedor; un objeto i es un factor 
cuando la capacidad del contenedor c es 

múltiplo de su correspondiente tamaño de 
objeto wi. En general, las instancias con 

muchos factores se consideran fáciles de 
resolver (ver expresión 2): 





n

i

iwcfactor
n

f
1

),(
1

. (2) 

3. Uso de contenedores. Cuantifica la 
proporción de la suma de los tamaños de los 
objetos que pueden asignarse en un 
contenedor de capacidad c, y expresa la 
cantidad ideal de contenedores requeridos en 
la solución. Cuando este cociente toma un 
valor mayor o igual a 1 significa que todos los 
objetos caben en un contenedor y se le 
asigna un valor de 1 a la métrica (ver 
expresión 3): 










twcWc

twc
b

/

1
. (3) 

4. Media aritmética. Expresa el promedio de 
los pesos de los objetos (ver expresión 4): 

n

tw
avg  . (4) 

5. Rango. Expresa la diferencia entre el peso 
mayor y el peso menor de los objetos en la 
instancia respecto de c (ver expresión 5): 

c

w

c

w
r

iniini ,...,1,...,1 minmax 
 . (5) 

6. Coeficiente de asimetría de Pearson. 
Expresa la comparación entre la media y los 
pesos de los objetos de la instancia para 
observar que tan simétricos son los datos 
(ver expresión 6): 

3

3

1
)(

n

avgw
A

n

i i

p



  , (6) 

donde σ es la desviación estándar de los 

pesos de los objetos. 

7. Menor. Expresa el peso del objeto más 
pequeño en la instancia, en relación al 
tamaño del contenedor y permite ubicar el 
inicio de la distribución de pesos (ver 
expresión 7): 

c

w
m

ini }{min ,...,1
 . (7) 

8. Frecuencia de repetición máxima. Expresa 
la frecuencia máxima con la que un peso se 
repite en el conjunto de objetos de la 
instancia (ver expresión 8). fi es el número de 
veces en que wi aparece en wi, . . . ,wn, V = 

{v1, . . . , vk} es el conjunto de valores 
diferentes en {fi, . . . , fn}: 

i
ki
v

,...,1
max


 . (8) 

La información relacionada con: instancias, 
resultados obtenidos al ejecutar los algoritmos y 
valores de las métricas por instancia, fue 
almacenada en una base de datos para su 
posterior modelado. 
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3.4. Modelado  

Para el modelado de los datos se utilizó la 
técnica de agrupamiento, en particular el 
algoritmo k-means [29]. Durante la construcción 
del modelo fue necesario experimentar con varios 
valores iniciales de k hasta encontrar 
subconjuntos formados por las instancias difíciles 
de resolver (β) y separados lo más posible de las 
instancias que se pudieron resolver de forma 
óptima (I\β). 

Después de obtener una buena separación de 
las instancias difíciles de resolver, de manera 
empírica se buscó reducir las métricas que 
permitieran mantener los grupos generados. 

El procedimiento de búsqueda del número de 
grupos tiene como objetivo encontrar (β ∩ I\β) = 0 
o lo más cercano a 0, y además permite reducir el 
número de métricas de manera empírica. Dicho 
procedimiento es representado por el Algoritmo 1, 
el cual recibe como parámetros de entrada un 
conjunto inicial de l*n valores, obtenidos al aplicar 
las l = 8 métricas sobre las n = 1, 615 instancias 
en I, k0 es el valor inicial de k y Δ corresponde a 
las unidades que se incrementará k en cada 
iteración. La línea 1 indica la inicialización del 
número de grupos k a utilizar con k-means k0 = 
30, la línea 2 indica el cálculo de los k grupos 
utilizando k-means y los valores de las métricas 

calculadas para cada instancia M̂ . 

El agrupamiento se repite mientras no sean 
separados los conjuntos I y I\β o el siguiente 
incremento de k no mejore la separación de los 
conjuntos (ver línea 3). La línea 4 indica el 
incremento al número de grupos a calcular por k-

means y Δ corresponde a incrementos de 5 
unidades por iteración (línea 5). 

Durante la experimentación se utilizaron 
valores de k =30, 35, 40, 45 y 50; se utilizó como 
criterio de selección del número de grupos, el 
número de grupos que separara de manera 
conveniente las instancias en β del resto, es 
decir, cuando los grupos que reunieran las 
instancias que no se pudieron resolver 
contuvieran el menor número de instancias 
resueltas por los algoritmos probados en este 
trabajo. 

3.5. Evaluación de resultados 

Extracción de patrones 

El mejor resultado se obtuvo al generar 45 
grupos con k-means utilizando 5 métricas (avg, m, 

ν, r, p) debido a que esta configuración permitió 
una buena separación de las instancias de β en 4 
grupos denominados A, B, C y D los cuales se 
muestran a continuación: A={TEST0082}; 

B={TEST0014, TEST0030, TEST0058, TEST0005, 

TEST0022, TEST0065, TEST0084}; C={BPP60, 

BPP832, BPP13, BPP709, BPP785, BPP144, BPP561, 

BPP781, BPP900, BPP195, BPP14, BPP119} y 

D={BPP40, BPP645, BPP766, BPP181, BPP485, 

BPP419, BPP178, BPP360, BPP47, BPP640, BPP814, 

BPP742, BPP531, BPP359, BPP716, BPP175}. Los 
grupos B, C y D contienen algunas instancias en 
letra cursiva que fueron resueltas previamente 
por los algoritmos utilizados. 

En particular, los grupos A y B contienen 5 

instancias del conjunto gau_1 que no fueron 
resueltas de forma óptima por los algoritmos de 
prueba y los grupos C y D contienen las 17 
instancias no resueltas de forma óptima del 
conjuntoHard28. Los patrones correspondientes a 

Algoritmo 1: Formación de grupos y reducción de 

métricas 

Entrada: M̂ = {v1,1,...,vn,l}, l, n,  

k0 = 30, Δ = 5 
1: Inicializar k ← k0, 

2: Calcular k-means(k, M̂ ) 

3: Mientras en k-means(k, M̂ )(β ∩ I\β)≠0 
o el siguiente incremento de k no 

mejore la separación de los 

conjuntos hacer 

4:    k ← k + Δ 

5:    Calcular k-means(k, M̂ ) 

6: finMientras 

Tabla 1. Centroides de grupos A, B, C y D 

Grupo avg m ν r p 

A (0.280 0.01 0.06 0.73 .900) 

B (0.231 0.006 0.05 0.48 .890) 

C (0.370 0.008 0.018 0.691 .183) 

D (0.398 0.008 0.014 0.788 .180) 
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cada uno de los grupos se muestran en la 
Tabla 1. 

Extracción de conocimiento 

Dados los patrones mostrados en la Tabla 1 
se puede observar que la instancia en el grupo A 

contiene objetos en promedio del 28% del 
tamaño del contenedor c, el objeto menor es del 
1% de c, en promedio los objetos se repiten el 
6%, el rango entre los tamaños de los objetos es 
del 73% de c, lo que significa que hay objetos 
muy pequeños y muy grandes y además la 
instancia es pequeña, sólo 90 objetos. En el caso 
del grupo B el promedio del tamaño de las 
instancias es de 23% respecto de c, el objeto 
pequeño es del 0.6% respecto de c, sólo el 5% 
de los objetos se repiten, el rango de los tamaños 
de los objetos es del 48% respecto de c y la 
instancia también es pequeña, 89 objetos. El 
grupo C muestra que el promedio de los tamaños 
de los objetos es del 37% respecto de c, el objeto 
menor representa el 0.8% de c, sólo se repite el 
1.8% de los objetos, el rango entre el tamaño de 
los objetos es del 69% respecto de c y la 

instancia es pequeña, 183 objetos. El grupo D 
muestra que en promedio el tamaño de los 
objetos es del 39.8% respecto de c, el objeto 
menor utiliza el 0.8% de c, sólo el 14% de los 
pesos de los objetos se repiten, el rango de los 
pesos de objetos es del 78.8% lo cual indica que 
hay un rango amplio en el peso de los objetos y 
las instancias también son pequeñas, 180 objetos 
en promedio. 

De acuerdo a las características antes 
mencionadas y dado que el grupo  D contiene el 

mayor número de instancias difíciles de resolver, 
se determinó que a manera de pre procesado de 
la instancia, era posible que algunos 
contenedores se pudieran llenar totalmente o a 
un alto porcentaje de su capacidad utilizando 2 
objetos. Lo anterior con el objetivo de reducir el 
tamaño de la instancia y el espacio de búsqueda 
del algoritmo metaheurístico que se le aplicará.  

3.6. Despliegue de resultados: Incorporación 
del conocimiento adquirido para la mejora 
de algoritmos 

Con la finalidad de aplicar el conocimiento 
adquirido sobre llenar contenedores en un alto 
porcentaje utilizando dos objetos, se implementó 
un procedimiento de reducción denominado Γ 
que fue incorporado a una metaheurística como 
parte del preprocesamiento de la instancia, dicho 
procedimiento es llamado de forma iterativa 
mientras no se alcance el valor óptimo o mientras 
la capacidad residual de la instancia lo permita. El 
objetivo de aplicar el procedimiento fue reducir el 
espacio de búsqueda del algoritmo 
metaheurístico.  

La Figura 2 muestra cómo se aplica el 
enfoque de solución, donde la parte superior de 
la figura corresponde a la instancia 

1 2{ , ,..., }nI w w w que será resuelta, 1) representa 

la ejecución del procedimiento de reducción 
sobre I de lo cual se obtiene la solución parcial s1 

y una nueva instancia reducida 
1\" sII  , 2) 

corresponde a solución parcial s2, producto de 
aplicar el algoritmo metaheurístico; 3) 
corresponde a la solución final 

21 ssS  . Si el 

número de contenedores obtenidos por S no 
corresponde al límite teórico preestablecido (L2 
propuesto por Martello y Toth en [30]), se vuelve 

 

Fig. 2. Enfoque de solución para instancias difíciles 

de Bin Packing de una dimensión 

1. Aplicar Procedimiento de reducción 2. Aplicar Metaheurística
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a repetir el procedimiento desde 1) actualizando 

"II   y aumentando la capacidad residual del 
contenedor en una unidad. 

Procedimiento de reducción Γ 

De acuerdo a las características de las 
instancias en el grupo D, el mecanismo para 
reducir instancias consistió en llenar los 
contenedores con capacidad c usando un par de 
objetos (wa and wb) tales que wa + wb = (c−umbral), 
donde a ≠ b. La variable umbral es un parámetro 

adaptable, en esta experimentación, fue 
inicializado en 0 e incrementado en una unidad 
por iteración, el umbral desempeña la labor de 
administrador de la capacidad residual que le es 
permitida a un contenedor utilizando sólo dos 
objetos en una iteración dada. Básicamente 
encuentra todos los pares de objetos que llenen 
la capacidad c del contenedor tanto como sea 
posible con el objetivo de reducir el espacio de 
búsqueda de los algoritmos de solución del 
problema de Bin Packing. 

El procedimiento de reducción Γ está 
presentado por el Algoritmo 2, el cual recibe 
como parámetros de entrada la instancia I con los 
objetos ordenados de forma decreciente, el valor 
de la variable umbral inicializada en 0 en la 
primera iteración del algoritmo que llamará a Γ, la 
capacidad del contenedor c y el número de 
contenedores a los que se les asignan objetos en 
la iteración actual nBin. Para ubicar los pares de 
objetos, se colocan dos apuntadores, uno apunta 
al objeto con el peso mayor de la instancia (max) 
y el otro apunta al objeto con el peso menor de la 
instancia (min) (líneas 1 y 2). Mientras existan 
objetos que no han sido evaluados en la instancia 
y mientras los índices de los apuntadores sean 
diferentes, el proceso de combinar objetos se 
repite (línea 3). Si la suma de los pesos de los 
objetos del conjunto par actuales igual a 
c−umbral, el par de objetos es extraído de I y los 
objetos son asignados al contenedor nBin en la 

solución y agregados a la instancia I′ (líneas 4, 

5, 6 y 7). En caso contrario, si la suma es menor 
que c−umbral, el apuntador min apunta al 
siguiente objeto menor más cercano (líneas 8 y 
9). Para el caso del apuntador mayor (max), si la 
suma es mayor que c−umbral el apuntador max 
cambia de posición y apunta al siguiente objeto 

menor (líneas 10 y 11). Al terminar el 
procedimiento de reducción, la variable nBin 
contiene el número de contenedores a los cuales 
se les asignaron objetos y regresa el subconjunto 

I′que corresponde a una solución parcial S1 de 

la instancia I (línea 14). 

El procedimiento fue implementado de tal 
forma que evita iterar más de lo necesario ya que 
cada par de objetos es evaluado como máximo 
una vez. 

4. Experimentación computacional 

En esta sección se muestran los resultados 
obtenidos al aplicar el procedimiento de 
reducción propuesto en este trabajo, producto de 
la caracterización de las instancias difíciles de 
resolver. El enfoque utilizado consistió en aplicar 
Γ seguido de una metaheurística para solucionar 

instancias de Bin Packing de una dimensión. El 
enfoque se aplicó sobre el grupo de instancias D, 
el cual contiene 7 instancias difíciles de 
resolverse (BPP40, BPP645, BPP766, BPP181, 

BPP485, BPP419, BPP178). Para la realización de 
los experimentos computacionales el 
procedimiento de reducción y la metaheurística 
de solución para Bin Packing de una dimensión 
fueron implementadas en lenguaje C. Se utilizó 
un equipo con procesador Intel core i7, 2GHz, 

Algoritmo 2: Procedimiento de reducción Γ 

 
Entrada: I = {w1,w2, . . . ,wn}; w1 ≥ w2 ≥ 

... ≥ wn, umbral, I′, c, nBin 

1: max ← 1 

2: min ← n 

3: mientras ((wmax≠NULL) and (max≠min)) 
hacer 

4:  si (wmax + wmin = c − umbral) entonces 

5:       nBin ← nBin + 1 

6:       BnBin ← {wmax,wmin} 

7:       I′ ← I′  BnBin 

8: sino, si (wmax+wmin<c−umbral)  

entonces 

9:       min ← min − 1 

10: sino, si (wmax+wmin>c−umbral) 

entonces 

11:      max ← max + 1 

12:   finsi 

13: finmientras 

14: return I′ 
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4GB en RAM, 32 bits y el sistema operativo 
Windows 7. 

La metaheurística utilizada durante la 
experimentación fue inspirada en el algoritmo de 
solución HGGA-BP [33], en lo sucesivo nos 

referiremos a ella como Η. El enfoque de solución 

de instancias consistió en aplicar de forma 
alternativa el procedimiento Γ y la metaheurística 

Η. Después de aplicar el enfoque de solución 

sobre las instancias del grupo D fue posible 
obtener los valores óptimos alcanzados por los 
algoritmos de prueba y adicionalmente se 
encontraron las soluciones óptimas para las 
instancias BPP181, BPP485 yBPP178, dichas 

soluciones no han sido reportadas en la literatura 
por ninguna de las metaheurísticas conocidas. El 
tiempo en encontrar dichos valores fue de 15.53, 
6.98 y 6.34 segundos respectivamente. 

La Tabla 2 presenta una comparativa entre las 
soluciones obtenidas por los mejores algoritmos 
metaheurísticos reportados en la literatura (HI_BP 
[4], Pert-SAWMBS [16] y HGGA-BP [11]) y los 
resultados obtenidos después de aplicar nuestro 
enfoque. Los resultados corresponden a las 
instancias del grupo D. En la Tabla 2 la columna 
Inst corresponde al nombre de la instancia, la 
columna opt corresponde al valor óptimo conocido 
y las columnas HI_BP, Pert, HGGA−BP y 
EsteTrabajo corresponden a cada uno de los 
algoritmos que se comparan. En la columna 
EsteTrabajo los asteriscos (*) indican las 
instancias para las cuales sólo nuestro algoritmo 
alcanzó los valores óptimos (remarcado en gris) y 
el signo positivo (+) sirve de identificador para 
aquellas instancias que más de un algoritmo 
alcanza los valores óptimos. 

Las soluciones óptimas encontradas son 
presentadas a continuación. Por cada instancia 
se muestra el nombre de la misma, separado por 
un guión, el número de contenedores utilizados 
en la solución, el valor hasta el cual llegó la 
variable (umbral) y el tiempo consumido en 
obtener la solución. Posteriormente se muestran 
los contenedores que fueron llenados al utilizar el 
procedimiento de reducción Γ y los contenedores 

utilizados al aplicar el algoritmo metaheurístico Η. 

Solución de la instancia BPP178 - 80, umbral = 
1, tiempo = 6.34 seg. 

Procedimiento de reducción Γ: 

(790 210) (786 214) (743 257) (724 276) (646 
354) (640360) (637 363) (635 365) (629 371) 
(613 387) (605 395) (541 459) (531 469) (518 
482) (515 485) (506 494) (724275) (678 321) 
(662 337) (644 355) (583 416) (580 419) (568 
431) (523 476) (512 487) 

Algoritmo metaheurístico Η: 

(723 174 103) (704 292 4) (691 168 141) (189 
709 102)(223 673 104) (423 518 59) (164 278 
558) (519 408 72 1)(699 240 61) (436 157 407) 
(667 328) (116 184 700) (147347 506) (793 146 
61) (732 266) (213 179 608) (602 396)(196 608 
196) (504 446 50) (658 93 249) (119 415 
466)(595 400) (212 443 345) (736 220 44) (94 
170 736) (518232 250) (772 226) (756 242) (471 
468 61) (628 370) (45278 677) (713 221 66) (662 
336) (764 233) (535 462) (740209 51) (692 185 
123) (133 250 617) (712 233 55) (517447 36) 
(185 21 794) (517 171 312) (703 181 116) 
(659334 7) (622 369 9) (572 423) (742 254) (509 
487) (633 246120) (612 346 41) (740 252) (691 
208 99) (625 370) (595399) (521 313 166) 

Solución de la instancia BPP485 - 71, umbral = 
1, tiempo = 6.89 seg. 

Procedimiento de reducción Γ: 

(800 200) (782 218) (756 244) (751 249) (747 
253) (742258) (713 287) (693 307) (645 355) 
(621 379) (600 400) (594 406) (586 414) (584 
416) (579 421) (577 423) (548452) (777 222) 
(759 240) (717 282) (694 305) (661 338) (657 
342) (654 345) (607 392) 

Algoritmo metaheurístico Η: 

(540 14 446) (569 28 403) (570 54 376) (784 188 
28) (42256 702) (138 276 586) (627 316 55) (335 
574 91) (780117 103) (765 226 9) (688 263 47) 
(59 654 286 1) (758240) (633 10 357) (126 631 
243) (559 317 124) (581 237182) (127 606 267) 
(351 644 5) (159 782 59) (505 482 13)(790 208) 
(612 380 8) (77 272 651) (116 765 119) (574277 
149) (128 132 740) (788 141 70) (705 58 237) 
(103264 633) (639 359) (77 224 697) (405 405 
190) (17 444539) (161 444 395) (752 245) (675 
322) (541 455) (529467) (600 396) (796 197) 
(523 450 27) (90 404 506) (224706 68) (504 450 
43) (445 289 266) 

Solución de la instancia BPP181 - 72, umbral = 
4, tiempo = 15.53 seg. 

Procedimiento de reducción Γ: 

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 295–308
ISSN 1405-5546
doi: 10.13053/CyS-19-2-1546

Adriana Mexicano Santoyo, Joaquín Pérez Ortega, Gerardo Reyes Salgado, Nelva Nely Almanza Ortega304



(799 201) (745 255) (733 267) (721 279) (713 
287) (703 297) (673 327) (660 340) (648 352) 
(646 354) (603 397) (545 455) (532 468) (523 
477) (797 202) (770 229) (651 348) (641 358) 
(623 376) (548 451) (503 496) (706 292) (702 
296) (680 318) (597 401) (758 239) (684 313) 
(629 368) (610 387) (561 436) (525 472) (679 
317) (603 393) (525 471) 

Algoritmo metaheurístico Η: 

(32 659 309) (158 66 776) (699 278 23) (572 363 
65) (45 372 583) (118 127 755) (51 750 199) (305 
30 665) (39 407 554) (103 183 714) (144 755 
101) (458 200 342) (214 120 666) (307 171 522) 
(276 109 615) (79 711 210) (120 128 752) (172 
399 429) (697 281 22) (201 494 305) (661 276 
63) (183 776 41) (391 197 412) (108 793 99) (328 
215 457) (536 434 30) (457 278 265) (714 219 
66) (531 432 36) (639 326 34) (51 372 577) (736 
169 94) (610 307 82) (666 326 7) (620 257 123) 
(583 411) (572 407 20) (513 481) 

5. Conclusiones y trabajos futuros 

En este trabajo se muestra que la metodología 
propuesta para la caracterización de instancias 

difíciles del problema de Bin Packing de una 
dimensión contribuye a la generación de 
estrategias para la mejora de los algoritmos de 
solución actuales.  

Después de aplicar la metodología propuesta 
sobre un conjunto de 1,615 instancias y un 
conjunto inicial de 27 métricas para el problema 
de Bin Packing, se encontraron 5 métricas 
relevantes (promedio de los pesos de los objetos 
avg, peso del objeto menor m, frecuencia de 
repetición de los objetos ν, rango entre el cual se 
encuentran los pesos de los objetos r y tamaño 
de la instancia p) que permitieron caracterizar las 
instancias difíciles de resolver por 6 algoritmos 
bien conocidos del estado del arte, dos de ellos 
considerados de los más robustos. Con las 5 
métricas relevantes fue posible identificar 4 
patrones correspondientes a las instancias 
difíciles de resolver. Las características de uno de 
los grupos sugirieron la posibilidad de desarrollar 
un nuevo procedimiento de reducción del tamaño 
de las instancias al cual denominamos Γ. Al 
aplicar el procedimiento de reducción Γ con un 

algoritmo metaheuristico Η sobre uno de los 

grupos con instancias difíciles de resolver fue 

Tabla 2. Instancias Hard28 

Inst opt HI_BP Pert HGGA-BP Este Trabajo 

hBPP40 59 60 60 60 60 

hBPP360 62 63 63 62 62+ 

hBPP645 58 59 59 59 59 

hBPP742 64 65 65 64 64+ 

hBPP766 62 63 63 63 63 

hBPP47 71 72 72 71 71+ 

hBPP181 72 73 73 73 72* 

hBPP359 76 76 76 76 76+ 

hBPP485 71 72 72 72 71* 

hBPP640 74 75 75 74 74+ 

hBPP716 76 76 76 76 76+ 

hBPP175 84 84 84 84 84+ 

hBPP178 80 81 81 81 80* 

hBPP419 80 81 81 82 81 

hBPP531 83 84 84 83 83+ 

hBPP814 81 82 82 81 81+ 
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posible encontrar las soluciones óptimas 
previamente reportadas y 3 adicionales que no 
han sido reportadas por ninguno de los 
algoritmos metaheurísticos conocidos. 

Consideramos que el enfoque utilizado para la 
caracterización de instancias, también puede ser 
útil en la caracterización de instancias difíciles de 
otros problemas NP. Como trabajo futuro se 
propone realizar un análisis más profundo sobre 
las características específicas de los patrones 
encontrados para los grupos de instancias C y D, 
con el objetivo de generar estrategias que 
permitan encontrar los valores óptimos para las 
instancias cuyo valor óptimo no se alcanzó. 
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