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Abstract. The standard Brightness Constancy Equation 

states spatiotemporal shift invariance of the input data 
along a local velocity of optical flow. In its turn, the shift 
invariance leads to a periodic function of a real 
argument. This allows application of a known test for 
periodicity to computation of optical flow at random 
locations. The approach is valid also for higher 
dimensions: for example, it applies to a sequence of 3D 
tomography images. The proposed method has a 
reasonably high accuracy for continuous flow and is 
noise tolerant. Special attention is paid to weak signal 
input. It is shown that a drastic reduction in the signal 
strength worsens the accuracy of estimates 
insignificantly. For a possible application to tomography, 
this would lead to an unprecedented diminution of 
harmful radiation exposure. 

Keywords. Optical flow, periodicity-based processing, 

preventive tomography, night vision. 

1 Introduction 

It turns out to be that for an image sequence, the 
pair {Velocity of Optical Flow (VOF); a patch of the 
input dataset} naturally defines a periodic function 
of a real argument. Using this observation, a novel 
local detector of optical flow is proposed in this 
paper. The detector treats a family of functions 
indexed by velocities of a range; any function of the 
family is subjected to a test for periodicity, and the 
estimate of VOF is set to the index of the 'most 
periodic' function in the family.  

We show that a particular test for periodicity 
chosen in our implementation of this scheme 
provides the detector with noise tolerance and a 
reasonably high accuracy while treating datasets 
of a continuous flow.  

Then we show why the noise tolerance is 
relevant for applications. In particular, it turns out 
to be that determining optical flow for a class of 

'non-hard' datasets can be done practically without 
a loss of performance by images of a much lower 
quality than usual. As a practical consequence of 
this property, the exposure while shooting images 
for the purpose of automatic determining optical 
flow can be reduced by several hundred times 
compared to the images needed for a visual 
analysis by an expert. This opportunity opens in 
particular the way for a new technology in medical 
image processing: a preventive tomography. 

Noise tolerance is studied here only with 
respect to Poisson noise because it overrides all 
other kinds of noise for weak signal images which 
are of a particular importance for applications. 

1.1 Prior Approaches 

The problem of determining optical flow has been 
attracting numerous researchers since the early 
1980s. Interest to this field is stimulated by an 
increasing demand from applications that deal with 
temporal sequences of images: video 
compressing, security systems, medicine, traffic 
control, and robotics, among others. 

Optical flow is a vector field in the image frame. 
Any vector of this field signifies velocity. In turn, the 
term velocity allows two interpretations: (i) the 
velocity of a projection of a real point; (ii) the 
velocity of image motion regardless of how the 
image content represents the real objects.  

These two meanings do not always coincide 
(Marr and Ullman [21], Horn [12]). To realize that, 
imagine a thin black ring on a white background 
and assume that the ring diameter grows from shot 
to shot in an input sequence of shots; meanwhile 
the ring center does not move. Under these 
assumptions it is impossible to answer such 
questions as "Has the ring a non-zero angular 
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velocity?" or "Is the ring a part of the background?", 
or "Is it getting closer to the observer?" On the 
other hand, the growth of the ring diameter can be 
determined. So, only meaning (ii) is valid for this 
example. 

However, the velocity in meaning (i) can be 
determined provided that the ring and background 
are painted with substantially non-uniform 
textures. 

Following the taxonomy of Fleet and Jepson [9], 
full velocity or just velocity is a vector in the above 
meaning (i); component velocity or normal velocity, 
in meaning (ii). The corresponding fields in Horn's 
taxonomy [12] are motion field and apparent 
motion. 

Considering a method, it is important which of 
the two interpretations is assumed because if 
determining optical flow is not feasible by local 
processing, it might become feasible in a wider 
area and under additional assumptions. This 
ambiguity is known as the aperture problem [21]. 
For instance, substitute the ring mentioned above 
with a rectangle; then velocities can be computed 
locally only for the corners of the rectangle; 
assuming the rectangle to be stiff, the corner 
estimates can be extrapolated to the whole 
perimeter of the rectangle. 

In this respect, the output of our detector 
represents an estimate of velocity, but in a 
degenerated case it automatically becomes an 
estimate of component velocity. 

Beginning with the classic works dedicated to 
optical flow algorithms (Horn and Schunck [13], 
Lucas and Kanade [20]), the starting point for most 
approaches is the standard Brightness Constancy 
Equation (BCE) 

)1,,(),,(  tvyuxItyxI  (1) 

where ),,( tyxI  is the intensity of a pixel (x, y) at 

time t and the flow is { ),,( tyxu  , ),,( tyxv }. Below, 

the notation α={ ),,( tyxu  , ),,( tyxv } is applied for 

brevity. 

BCE is violated when discontinuities, 
occlusions, shadows, etc. hold. The modern 
methods compete mainly in trying to improve 
performance for such special cases. As Baker et 
al. indicate in their survey ([2], Eq. (1)), most 
existing algorithms pose the problem of 

determining optical flow as the optimization of a 

global energy function EGlobal= EData+EPrior, where 
the Data Term measures how consistent the 
optical flow is with input images, and the Prior Term 
favors certain field over others. In practical terms, 
the data term is responsible for situations when 
BCE holds, whereas the prior term, for special 
cases.  

The novelty of our approach concerns the data 
term only. It should be emphasized from the 
beginning, because the datasets of the commonly 
accepted modern benchmarking platform 
(Middlebury open evaluation database, Baker et al. 
[2]) have a strong bias to special cases. 

Following [13] and [20], the differential methods 
rely upon Optical Flow Constraint Equation 
(OFCE) derived from BCE: 

0 








t
I

y
I

x
I vu  (2) 

Since Eq. (1) leads to an ill-posed problem, it 
must be regularized by the prior term. From Eq. (2), 
Horn and Schunck [13] derive a system of 
differential equations in partial derivatives that can 
be solved by processing images of a sequence 
inside the full frame; so their method is global and 
its solution is constructed by an iterative relaxation 
algorithm. In contrast, the method of Lucas and 
Kanade [20] is local, it can be applied inside a 
patch of the frame; numerically, it can be regarded 
as an instance of the least squares method. Bruhn 
et al. [7] present a combined local-global method. 
Nagel [22] and Uras et al. [33] deal in their 
approaches with partial derivatives not only of the 
first order, but of the second as well. Variational 
methods (for example, those of Zimmer et al. [36] 
and Werlberger et al. [34]) are derived from the 
Horn and Schunck [13] approach by modifications 
of the original data and prior terms. Direct matching 
of patches for different images of a sequence is an 
instance of non-differential approaches. It does not 
develop the data term far beyond BCE. The 
technique by Anandan [1] is of this kind; it makes 
use of a Laplacian pyramid and a coarse-to-fine 
matching strategy. This technique weakly employs 
priors in the form of a smoothness constraint on the 
velocity estimates; the solution is based on Gauss-
Seidel iterations. A two-stage matching technique 
is presented by Singh [30]. 
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One more class of the methods is based on 
spectral techniques that make use of Fourier 
domain to solve the original spatiotemporal 
problem. This class includes also the energy-
based methods like that of Heeger [11] and the 
cross correlation and the phase correlation 
methods (Reddy and Chatterji [26]). The phase-
based technique of Fleet and Jepson [9] makes 
use of the phase information for measurements of 
component velocity; it deals with a family of 
spatiotemporal velocity-tuned filters that permits 
multiple estimates within a single neighborhood; 
the resolution of individual estimates is reasonably 
high and so, if the neighborhood represents a 
patch of a real textured surface, these multiple 
component velocity estimates lead to a single 
estimate of the patch velocity.  

Brox and Malik [6] introduce rich descriptors 
into variational technique to cope with a large 
displacement flow; Xu et al. [35] introduce 
segmentation for a better accuracy. Goldluecke 
and Cremers [10] show how multi-labeling problem 
can be applied for determining optical flow. 
Methods like those of Jepson and Black [16], Jojic 
and Frey [17], Sudderth et al. [31], etc. deal with 
layered optical flow formed as a sum of several 
flows. Usually, they work as extraction of a 
parametric motion for each layer. Genetic 
algorithms also can be used for computation of 
flow (Tagliasacchi [32]). 

The first comparative study of various methods 
was performed by Barron et al. [4]. It was a long-
time reference point for subsequent approaches. 
Nowadays the Middlebury open evaluation 
database [2] plays the role of the main 
benchmarking tool. It provides a considerable 
progress of objectiveness for methods’ evaluation 
since the authors do not have access to the ground 
truth of the evaluation datasets. It is also important 
that the evaluation system automatically generates 
a series of publicly available reports which contain 
a comparison of performance of all methods 
evaluated so far. Any new method submitted for 
evaluation automatically changes the content of 
the reports.  

The standard Middlebury datasets processed 
by our method were submitted to the evaluation 
system. Using the reports of the system, we 
present in Section 4 a comparison of our method 

with those that were submitted to the system at the 
moment of writing.  

Unfortunately, at the time of writing there was 
no system available for the optical flow community 
that would give an independent evaluation of noise 
tolerance. This is why the evaluation of noise 
tolerance of our periodicity-based approach is 
provided by a different technique which makes use 
of the datasets provided with ground truth. 

Further references to existing methods can be 
found in the survey in [2]. 

1.2 Noise Tolerance 

Not all methods for determining optical flow are 
noise tolerant. Indeed, the derivatives in Eq. (2) 
cannot be computed accurately under noise and 
therefore the differential methods are incapable of 
coping with a strong noise.  

Potentially, those methods that do not employ 
derivatives of the input data may be tolerant to 
noise. The method of Fleet and Jepson [9] is noise 
tolerant. Nevertheless, we are unaware of any 
comparative evaluation of noise tolerance of 
different methods. Those works, including [9], that 
present experiments with noisy input, do not 
convey sufficient information for benchmarking 
noise tolerance. 

Note, however, that noise tolerance is important 
for some applications. Night vision systems, for 
instance, deal with weak signal that leads 
inevitably to a high level of Poisson noise. For a 
sufficiently weak signal, all noise-forming factors 
become negligible compared to the probabilistic 
nature of pixel values. It is well known that Poisson 
distribution represents an adequate statistical 
model for pixel values regarded as random 
variables, whereas for the Poisson distribution, a 
linear reduction in the noise level leads to a 
quadratic growth of the signal magnitude. 

Using this standard fact, we study accuracy of 
our method for different levels of noise and prove 
that a dramatic reduction in the signal magnitude 
can be provided almost without a loss of accuracy. 
This fact creates new opportunities for application 
of optical flow, for instance, in the X-ray medical 
radiography. 
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1.3. Main Idea 

The periodicity-based approach is implemented as 
a local early vision detector for determining velocity 
at random locations of the frame. A master-level 
algorithm calls the detector and passes a location 
as an argument. The detector response can be 
negative or positive; a positive response includes 
a velocity estimate and its covariance matrix. A 
degenerated covariance matrix means that the 
estimate is a component velocity.  

The following three paragraphs clarify the key 
details of this scheme. 

Velocity is related to shift invariance. The idea 
of the detector is based on the fact that BCE, 
Eq. (1), states local shift invariance of the input 

dataset along the vector { ),,( tyxu , ),,( tyxv , 1} 

denoted below as α*. In particular, shift invariance 
holds in any 2D spatiotemporal profile Xα parallel 
to α*, Fig. 1. The portion of data that Xα cuts from 
an input set formed by four shots is depicted in Fig. 
1 as bold parallel horizontal lines.  

Shift invariance leads to periodicity. Consider a 
reduction of any input image to the corresponding 
line of the just mentioned horizontal lines. Due to 
shift invariance, the functions defined this way 
represent several identical copies of the same 
function. Being concatenated, these copies yield a 
periodic function defined on a long line and the 
period is equal to the common length of short lines. 

A known test for periodicity can be adapted to 
estimate velocity. If α is an arbitrary vector, the 

concatenated function can be constructed formally 
in the same way as above. However, this function 
is not periodic in general.  

Our detector compares the outputs of a test for 
periodicity for different values of α and determines 

the estimate ~  as such α that corresponds to the 

'most periodic' function. We make use of an 
existing test for periodicity —the Three 
Frequencies Method (3FM) of Khachaturov [18, 
19]—that yields quite accurate estimates of period 
and is noise tolerant. An obstacle arises for direct 
application of 3FM to each profile Xα: the amount 
of information provided by a few horizontal layers 
(which represent shots) is insufficient for accurate 
estimation. Nevertheless, this drawback is 
compensated by the fact that many such profiles 
can be constructed in a small neighborhood. 
Information from all profiles is accumulated and 
then used in the 3FM. 

The remainder of the paper proceeds as 
follows: Section 2 describes the 3FM and presents 
its adaptation to velocity computation as well as a 
RANSAC-based improvement of the approach to 
cope with the case when the final estimate must be 
chosen from several candidates; it presents also 
an estimate of the dynamic error of the method. 
Section 3 describes the noise generation. Section 
4 presents experiments. 

2 Determining Velocity by the 3FM 

2.1 Periodicity Test of the 3FM and Its 
Adaptation 

The test for periodicity of the 3FM is based on the 
following  

Theorem (Khachaturov [18]). Let f(x) be a real 

function of period P such that for any xR1 it has 
expansion in Fourier series, T be a natural number,  

 be a small real number, and   be a functional 
defined as  





TP xi

TP
dxexfPTf P

0

)1(1 ,)(),,,(
2

  (3) 

then:  

(a) the value of |),,0,(| PTf  does not 

depend on T;  

 

Fig. 1. How search for velocity can be reduced to 

3FM 
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(b) for any , it is true that 𝜔(𝑓, 𝛿, 𝑇, 𝑃)  as 

T;  

(c)  𝜔(𝑓, 1/𝑇, 𝑇, 𝑃) = 𝜔(𝑓,−1/𝑇, 𝑇, 𝑃) = 0. 

The proof can be found in [19]. The notation 
used in this theorem corresponds to the content of 
Fig. 1 as follows: T stands for the number of 
available frames (horizontal layers in Fig. 1); P is 
the length of time-constant segments of Xα; f 
represents concatenation of all functions defined 
on the time-constant segments, so x belongs to [0, 

TP]. The equation x=(t1)P+l, where l[0,P] is real 

and t[1,T] is natural, establishes a one-to-one 

correspondence x{t, l} between the points of the 
long line and the time-constant segments.  

Given Xα, this description determines 
completely the computation of f(x) at any x. 

The theorem leads to the following rule: given a 
family {α} of velocity candidates, the velocity 

estimate is constructed as such ~ {α} that the 

following (i) and (ii) hold simultaneously: 

(i) |)~(| 0  is a local maximum with respect to 

small variation of α;  

(ii) both )~(1 
and  )~(1   are zeros. 

In practice, instead of (ii), we use the following 
modification: 

(ii*) both | )~(1 
| and  | )~(1  | are minima 

close to zero. 

The main steps of this estimation scheme are 
summarized in the block diagram of Fig. 2.  

Some instances of real application of our local 
detector of velocity are presented in Fig. 3. Each 
instance is visualized as three plots related to 

processing respective components of ),({ 1 

),(0  )}(1  . The velocity candidates  are 

represented by nodes shown on the 'floor' of each 
plot. At any node α, a white post with a black head 
is depicted; its height represents a normalized 

value of a corresponding )(i
, where any 

1,0,1i  represents the plot number. The three 

functions interpolated from these data are shown 
both by the surface and by intensity variation of the 
floor color. Note that for the central plot, a higher 
intensity stands for a larger value, whereas for the 
other two, for a smaller one. The three small bright 
squares depict in triplicate the velocity estimate. 
These typical examples include an instance of a 
'good' case (the top), an instance of a badly 
conditioned Hessian (the middle), and an instance 
of several local extrema (the bottom). 

Some specific details of this technique are 
briefly commented upon in the remainder of 
this section. 

– Accumulation of information from a set of 
profiles (this issue was mentioned in the end of 
Section 1.3). Technically, it is implemented as 
a simple sum of square norms of the 
corresponding individual functionals computed 
for each profile, like Xα in Fig. 1, of a set. In 
turn, the set of profiles can be constructed in 
different ways. In our implementation, given a 

 

Fig. 2. Block diagram for periodicity-based velocity estimation 

1. Input: I(x,y,t); a 

location in the 
image frame; a 
priori domain of 
allowed velocities 

Vr 

2. Construct three functions, ),({ 1  ),(0 
r

V
)}(1  , defined on 

Vr. 

3. Search for extrema: find inside Vr all minima for 

)(1 
and )(1  , and all maxima for )(0  . 

 

 
 

4. Select the best combination of extrema of the three 

respective functions: this operation is required if any of 
the above functions has several extrema. 

 

 
 

5. Fuse three extrema 

of the best 
combination into a 
single estimate 

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 741–754
ISSN 1405-5546

doi: 10.13053/CyS-18-4-1557

Periodicity-Based Computation of Optical Flow   745



location in the frame, a small square domain B 
is constructed around it. Then, a set of lines 
parallel to a side of B is constructed with a fixed 
step between two adjacent lines. Each line 
determines a 2D-profile parallel to vector α*. 
Two sides of B with orthogonal directions are 
treated in the same way, which duplicates the 
final number of involved profiles. The size of B 
must be properly balanced: a large size 
increases both the dynamic error and 
computational costs and should be avoided at 
discontinuities, whereas a small size makes 
the content of patches too uniform.  

– Treating color images. The above scheme is 
applied to every color component and the 
output functionals are constructed as their 
sum. 

– The case of higher dimensions. Extending our 
scheme to higher dimensions (e.g., to the 
temporal sequences of tomography images) is 
straightforward: the square B above is simply 
substituted with a cube, whereas all the rest 
remains virtually unchanged. 

– Weakening the 3FM. Employing the three 
independent conditions represented by (i)-(ii*) 
is important for accuracy of estimation and 

 

 

Fig. 3. Visualization of three instances of real application of the detector 
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suppressing false detection. However, the 
number of conditions can be reduced in 
practice: for a vector to be a velocity estimate, 
it suffices to specify that any two of the three 
conditions would hold. This variant of the 3FM 
is important for low textured fragments: it leads 
to diminution of negative responses (misses) 
of the detector. 

– Fusing extrema of the best combination. The 
arguments of two or three extrema determined 

by (i)(ii*) are fused by the method of least 
squares (LSM) [25] to obtain the final estimate 
of velocity. LSM deals with the weights formed 
by matrices inverse to covariance matrices of 
the arguments of respective extrema. Any 
such matrix coincides up to a coefficient with 
the Hessian that can be easily computed at the 
corresponding extremum. 

– Multi-scaling and cross-scale estimates. Let 
square B above be supplied with index s, 
B=Bs, that represents the size of the square. 
Below, the term scale stands for s. A cross-
scale estimate can be constructed as such one 

for which any of conditions (i)(ii*) holds for its 

own scale. Since conditions (i)(ii*) must hold 
theoretically for any scale, the cross-scale and 
the single-scale estimates have the same 
theoretical basis. 

2.2 The Case of Several Extrema 

Given a location in the image frame and a square 
of allowed velocities Vr =[–r, r]×[–r, r], where r>0, 
an attempt to apply the method of Section 2.1 can 
lead to one of the following cases: (a) there is a 
unique estimate in Vr that satisfies the above 

conditions (i)(ii*); (b) there are several candidates 
to represent the estimate.  

In experiments on standard datasets, the first 
option ('good case') holds for about 80-90% of 
locations. But difficulties arise when several 
extrema occur: any local strategy has a non-zero 
probability of a wrong choice of extremum. 
Moreover, wrong decisions have usually a high 
correlation for close nodes of a grid. While 
processing the famous Yosemite sequence by a 
straightforward version of the above method, these 
issues lead to a small number of fluctuations, say, 
for 0.25-0.5% of all nodes. But these fluctuations 

are strong and deteriorate the overall end-point 
error significantly.  

In the remainder of this section, we shall briefly 
present some ideas to improve performance of the 
method. We combine the local extrema of several 
close nodes and several scales (see the end of the 
previous section). The goal is to cope better with 
case (b).  

In the enhanced technique, first of all, the set of 
candidates is extended with respect to those 

specified by (i)(ii*) of Section 2.1. The two ways 
mentioned in the end of the section are employed 
for that: the requirement of the three independent 
conditions is weakened to two, and the cross-scale 
estimates are also included into the set of 
candidates. To clarify this heuristic, note that while 
violations of BCE occur, they deteriorate the 
extrema exploited in the 3FM, but the deterioration 
is not uniform for different scales, so there is a 
chance to rescue a relevant extremum by variation 
of scale.   

The subsequent task is to choose a single 
estimate among the extended set of candidates.  

Some local measures for sorting candidates 
can be used for this task, but none of them 
excludes the possibility of a wrong decision. For 
instance, the extrema of a functional can be ranked 
by their values and then the rank can be used for 
choice. Our experiments show that a strategy 
based on the main idea of RANSAC [8] overrides 
any local measure strategy. In the rest of the 
section we comment on this issue. 

To determine the flow in the dense domain, we 
apply the detector not for all pixels, but for nodes 
of a sparse regular grid. Then these results are 
interpolated for the whole domain. The step 
between the nodes of the grid is set to the smallest 
scale. To implement RANSAC-based strategy, we 

consider the 33-window of the grid around any 
current node, then a function S(c) is introduced as 
the number of nodes of the window that have a 
candidate close to the candidate c. The estimate is 
constructed as such c* for which S(c*) is maximal. 
This modification makes the method less local 

since all candidates of 33-neighborhood of the 
current node take part in the construction of 
estimate. 

Note that 0S(c)8 for the inner nodes of a 
regular grid; if the flow is continuous, the maximum 
(i.e., 8) must be reached with a high probability. 
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Hence, if max S(c)<8, the flow discontinuity is quite 

probable. In this case, we choose the estimate at 
random between the best candidates. The 
situation stays unclear for the rare case of several 
candidates with S(c)=8. Such observations lead to 
various simple schemes of choice of a single 
extremum. A study on the choice strategies based 
on S(c) lies beyond the scope of this paper. 

2.3 Dynamic Error 

Note that our detector constructs the velocity 
estimate at the centre of domain B as the mean 
velocity inside B. In this section we apply 
elementary properties of Taylor series to find the 
deviation of the real velocity from the estimate. 

Proposition. Let F be a vector function, F(x)Rm, 

of vector argument xRn that has all partial 
derivatives of the first and the second order. Let 

}
~

,...,
~

,
~

{)(
~

21 mc FFFxF   be a value constructed 

by averaging values of F(x) in the n-dimensional 
cube of size 2r centered at xc. Then for any 
component i=1, ..., m, the main term of 

decomposition of the error iF
~

 Fi(x) into Taylor 

series can be expressed as follows: 
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The proof is trivial: the decomposition of Fi(x) 
into Taylor series is 

Fi(x)=Fi(xc)+ 

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where all derivatives are computed at xc. Let us 
apply averaging (integration in the n-dimensional r-
cube) to the right hand side:  

 
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and find the first non-zero term after the integration 
of this expression: 
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The interesting detail is that the first partial 
derivatives and the mixed derivatives of the second 
order do not participate in Eq. (4). 

This simple property can be used in two ways 
as follows.  

The first way is that if the second partial 
derivatives at the centre of cube in the right-hand 
side of (2.2) are known a priori, then an enhanced 
estimate can be written as  

*
~

iF iF
~

6
)

)(
...

)(
(

2

2

2

2
1

2
r

x

F

x

F

n

ii









. 

It compensates the main term of decomposition 
of the dynamic error in Taylor series.  

The second way consists in a simple numeric 
method for computation of the deviation, that is, of 

|| iF
~

 Fi(x) ||. For this goal, the derivatives in the 

right-hand side of (4) can be substituted with 
simple approximations: 
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after which the right-hind side of (2.2) can be re-
written as  
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 (5) 

Given a dataset provided with ground truth, the 
expression (2.3) can be easily estimated. 
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3 Noise Generation 

It is known that sensor noise in digital images is 
formed by components of different kinds (Horowitz 
and Hill [14]). Noise tolerance is studied here only 
with respect to Poisson noise, also known as 
photon or shot noise. Our attention is focused on 
weak signal images important, for example, for 
night vision systems or computer radiography, and 
for such images the Poisson noise overrides all 
other kinds. 

Our scheme for generation of noise is 
described in the remainder of this section. 

Given b[0, 255] as an exact pixel value 
represented in the one-byte dynamic range, a 
variate to represent this pixel with noise is 

generated as T(
1

,



WM  (P(M,W(b)))). These 

variates are statistically independent for different 
pixels. The explanation follows.  

M,W and 
1

,



WM   are, respectively, a linear map  

M,W: [0, 255] R+ and its inverse; =M,W(b) 
represents the expectation of the number of 
photons at the pixel photodetector. P represents a 
generator of variates [15]: each call of P with 

parameter 0 returns a variate P(), distributed 

by Poisson's law with expectation  . T clamps big 

values: if x255 then T(x)=x, else T(x)=255. 

Parameter  stands for the level of noise and is 
defined as standard_deviation/signal, where the 
signal corresponds to a certain value W 
('brightness of white') from the dynamic range: W 
must be as high as possible, but such that the need 

to truncate the value of 
1

,



WM  (P(M,W(b))) would 

have a specified small probability, otherwise it is 
difficult to interpret the experiments with noise. For 

instance, if W=210, then for any <0.3 and b<210, 
the probability of truncation is <0.015%. In turn, the 

image area with b210 is small usually: for 
example, it is <2% for the Yosemite. Since for the 
Poisson distribution the mean value is equal to the 
variance, these definitions lead easily to equation 

M,W (W)=1/2 , (6) 

which together with the condition M,W(0)=0 

completely determines the maps M,W and 
1

,



WM  .  

4 Experimental Results 

Note that if a flow discontinuity line divides the 
square B of Section 2.1 into two halves, it is quite 
probable that the set of candidates generated by 
the 3FM includes velocities of either half. In this 
case, selection of a correct candidate cannot be 
done locally. A similar situation arises while 
applying our detector to datasets with layered flow 
or other violations of BCE. Processing such hard 
datasets requires some non-local techniques 
beyond the scope of this paper: our primary goal is 
to understand if our detector has merits for further 
study and, if yes, to combine it in future with the 
non-local techniques.  

The majority of datasets in the Middlebury open 
evaluation system [3] are hard, except for the 
Yosemite one. According to the system 
specifications, we treated all evaluation datasets 
and submitted them to evaluation. Nevertheless, 
only the experiment with Yosemite is relevant to 
the stated goal. 

The second goal is to study noise tolerance of 
the method. For this we make use of training 
datasets provided with ground truth, namely, some 
Middlebury training datasets and the Yosemite 
dataset by Michael Black [5]. Note that the 
Yosemite version of the evaluation system is 
slightly different and without publicly available 
ground truth. 

We adopt main measures and statistics 
proposed by different authors [4, 23, 28], and 
summarized in [2]. Here we employ Endpoint Error 
(EE) and the robust accuracy measures EE50, 
EE75, and EE95 applied to EE. The EE is defined 
as 

EE = 
22 )()( GTGT vvuu  , 

where (u, v) and (uGT,vGT ) are the flow estimate and 
the ground truth, respectively. 

Then EE50, EE75, and EE95 represent robust 
accuracy measures applied to EE. The robust 
accuracy measures are defined as follows: let AX 
denote the accuracy of the error measure at the 
Xth percentile, after sorting the errors from low to 
high. So, for the flow errors EE, we compute A50, 
A75, and A95. They are denoted in our tables, 
respectively, as EE50, EE75, and EE95. 
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The number of scales (Section 2) is set to three 
in the experiments. The lowest scale varies from 4 
to 5 pixels for different datasets, and the highest 
scale, from 17 to 21. The step between two 
adjacent profiles for computation of functionals for 
the 3FM (Section 2.1) is set to two pixels. The flow 
computation is performed first by our local detector 
on the nodes of a regular grid and then interpolated 
to the rest of pixels. The step between the nodes 
of the grid varies from 5 to 7 pixels depending on 
the size of frames of a dataset. 

Table 1 shows distribution of the methods with 
respect to EE, as submitted to the evaluation 
system [3]. It takes into account the results 
obtained on the Yosemite datasets. Our method 
with EE=0.12 belongs to the best 20 methods of 87 
submitted to the Middlebury system for evaluation. 

We believe that EE = 0.150.2 for Yosemite 
corresponds to a reasonably high accuracy quite 
sufficient for most applications. 

Table 2 summarizes our experiments for the 
noise tolerance study. Our results of the first line 
coincide with the corresponding data evaluated 
in [3].  

Here we see how robust our method is under 
increasing noise. A change from zero noise to 1%-
noise has little statistical effect. A further increase 
from 1% up to 10% deteriorates the parameters 
insignificantly for practical purposes. Note, 
however, that according to Eq. (3.1), a 10-fold 
increase of noise leads to a 100-fold diminution of 
signal (Table 3). 

At =0.2, noise influences the parameters 
notably stronger, although they remain at a 
reasonable level for Yosemite and Rubber_Whale, 
but not for Hydrangea (which is much harder). For 
this last dataset, one more experiment is presented 

for =0.15 to localize better the limit of applicability 
of the method. For experiments with noise, the 
computed flow is shown in Fig.4. For 
representation of the computed flow there, we 
adopt the color-coding format. The coded images 
are constructed using the Middlebury open 
software [27].  

We applied expression (2.3) to compute the 
mean dynamic error (DE) of the detector. Our 
results show that DE is negligible compared to EE, 
for example, for Yosemite DE=0.014 vs. EE=0.12.   

The processing time for the described algorithm 
is about 1-2 sec/node on a conventional computer. 

Table 1. Performance of our method (EE=0.12) vs. 

others for the Yosemite dataset 

End-point Error 
(EE) 

Number of methods with a 
better performance 

0.07 1 

0.10 4 

0.11 11 

0.12 20 

0.13 29 

0.14 37 

0.20 68 

0.59 89 

Table 2. Dependence of main measures on the level of 

noise 

Dataset Noise  

() 

EE EE95 EE75 EE50 

Yosemite  

(by Black, 

[5]) 

0 0.12 0.27 0.12 0.08 

0.01 0.12 0.27 0.12 0.08 

0.1 0.16 0.35 0.15 0.08 

0.2 0.3 0.6 0.2 0.09 

Rubber 

Whale 

0 0.72 0.54 0.18 0.08 

0.01 0.72 0.54 0.18 0.08 

0.1 0.82 0.78 0.21 0.11 

0.2 1.14 1.34 0.27 0.14 

Hydrangea  0 1.4 1.55 0.55 0.06 

0.01 1.4 1.55 0.55 0.06 

0.1 1.72 1.62 0.6 0.09 

0.15 4.24 1.75 0.77 0.15 

0.2 6.7 2.6 1.08 0.4 

Table 3. How signal depends on the noise level 

Noise  () Signal: the number of photons 
at a bright_pixel   

3*10-5 (no noise) 1.17*1010 

0.01 1.05*105 

0.1 1050 

0.2 267 
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This assumes independent treating of each node. 
For this case the full treatment of Yosemite takes 
about 2000 sec. It is slow because of the brute 
force search for any scale and node. Nevertheless, 
the computation becomes 20-40 times faster, that 
is, about 70 sec for Yosemite, for a modified 
algorithm that takes advantage of initial guess for 
velocity estimates. This modification is simple for 
the areas with continuous flow, but it makes slightly 
more complex the detector logic at the flow 
discontinuities. Anyway, we believe that the 
processing time is not a critical factor because the 
kernel computations of our method fit ideally the 
parallel computing, which leads to the opportunity 
of a very fast and reasonably cheep 
implementation by the GPGPU [24]. 

5 Conclusion 

A novel periodicity-based approach to computation 
of optical flow is presented.  

The core algorithm is implemented as a local 
detector designed for independent applications at 
random locations of the image frame. The detector 
employs specific properties of the test for 
periodicity of Khachaturov [18, 19].  

Here we study the detector in its genuine form, 
that is, without using the prior term. Even so, the 
evaluation by the Middlebury system [3] 
demonstrates a reasonably high accuracy of the 
detector for continuous flow; on the other hand, the 
detector is not competitive on hard datasets, which 
agrees with the arguments at the beginning of 
Section 4.  

We believe that in future the performance can 
be improved furthermore by the prior term and 
combining our detector with some of the 
approaches mentioned in Section 1. However, the 
results presented in Section 4 allow us to claim that 
the chase for improving accuracy is not as 
important for applications as noise tolerance of the 
method. For example, the approach can be applied 

    

    

    

 
Fig. 4. Influence of noise on the computed flow. Top, middle, and bottom row represents, respectively, Yosemite, 

RubberWhale, and Hydrangea; the images in the left column are frames of the corresponding dataset; then from the 

left to right: the flow computed without noise, for =0.1, and =0.2 
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to medical applications and more specifically to 
preventive tomography.  

To clarify this assertion, note that a high quality 
of images produced by modern tomography 
equipment is aimed to allow a diagnostician to 
interpret a single tomographic image by a direct 
visual inspection. In contrast to that, preventive 
tomography suggests processing several 
tomographic images of a patient. All images should 
be taken under the same conditions with a certain 
period, say, one per year. A proper analysis of the 
images is completely automatic and it does not 
require any medical interpretation of individual 
images because the goal is to estimate their 
dynamics and, more specifically, to detect an 
illness at its early stage by suspicious changes in 
human body. 

In this respect, the results presented in Section 
4 show that automatic study of dynamics can be 
provided practically without any loss of 
performance by images of a much lower quality 
than that required for a static visual inspection. A 
direct consequence of our results for preventive 
tomography consists in the fact that, while taking 
images of a patient, the exposure can be several 
hundred times less than for conventional 
tomography. That is, harmful radiation exposure 
for preventive tomography becomes practically 
negligible and, in addition, generation of images is 
several hundred times faster than for conventional 
tomography – some seconds instead of dozens of 
minutes. 

The presented results clearly determine the 
main priorities for future work: we believe that it 
must be focused on real applications that use weak 
signal images as the input, in particular, on night 
vision systems and preventive tomography. For the 
latter case, our processing scheme should be 
extended from 2D- to 3D-images and verified on 
temporal sequences of real tomographic images; 
an important part of research consists in medical 
interpretation of the computed flow. It must be 
provided in collaboration with experts in medicine. 
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