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Abstract. The standard Brightness Constancy Equation
states spatiotemporal shift invariance of the input data
along a local velocity of optical flow. In its turn, the shift
invariance leads to a periodic function of a real
argument. This allows application of a known test for
periodicity to computation of optical flow at random
locations. The approach is valid also for higher
dimensions: for example, it applies to a sequence of 3D
tomography images. The proposed method has a
reasonably high accuracy for continuous flow and is
noise tolerant. Special attention is paid to weak signal
input. It is shown that a drastic reduction in the signal
strength worsens the accuracy of estimates
insignificantly. For a possible application to tomography,
this would lead to an unprecedented diminution of
harmful radiation exposure.

Keywords. Optical flow, periodicity-based processing,
preventive tomography, night vision.

1 Introduction

It turns out to be that for an image sequence, the
pair {Velocity of Optical Flow (VOF); a patch of the
input dataset} naturally defines a periodic function
of a real argument. Using this observation, a novel
local detector of optical flow is proposed in this
paper. The detector treats a family of functions
indexed by velocities of a range; any function of the
family is subjected to a test for periodicity, and the
estimate of VOF is set to the index of the 'most
periodic' function in the family.

We show that a particular test for periodicity
chosen in our implementation of this scheme
provides the detector with noise tolerance and a
reasonably high accuracy while treating datasets
of a continuous flow.

Then we show why the noise tolerance is
relevant for applications. In particular, it turns out
to be that determining optical flow for a class of

'non-hard' datasets can be done practically without
a loss of performance by images of a much lower
quality than usual. As a practical consequence of
this property, the exposure while shooting images
for the purpose of automatic determining optical
flow can be reduced by several hundred times
compared to the images needed for a visual
analysis by an expert. This opportunity opens in
particular the way for a new technology in medical
image processing: a preventive tomography.

Noise tolerance is studied here only with
respect to Poisson noise because it overrides all
other kinds of noise for weak signal images which
are of a particular importance for applications.

1.1 Prior Approaches

The problem of determining optical flow has been
attracting numerous researchers since the early
1980s. Interest to this field is stimulated by an
increasing demand from applications that deal with
temporal sequences of images: video
compressing, security systems, medicine, traffic
control, and robotics, among others.

Optical flow is a vector field in the image frame.
Any vector of this field signifies velocity. In turn, the
term velocity allows two interpretations: (i) the
velocity of a projection of a real point; (ii) the
velocity of image motion regardless of how the
image content represents the real objects.

These two meanings do not always coincide
(Marr and Ullman [21], Horn [12]). To realize that,
imagine a thin black ring on a white background
and assume that the ring diameter grows from shot
to shot in an input sequence of shots; meanwhile
the ring center does not move. Under these
assumptions it is impossible to answer such
questions as "Has the ring a non-zero angular
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velocity?" or "Is the ring a part of the background?",
or "Is it getting closer to the observer?" On the
other hand, the growth of the ring diameter can be
determined. So, only meaning (ii) is valid for this
example.

However, the velocity in meaning (i) can be
determined provided that the ring and background
are painted with substantially non-uniform
textures.

Following the taxonomy of Fleet and Jepson [9],
full velocity or just velocity is a vector in the above
meaning (i); component velocity or normal velocity,
in meaning (ii). The corresponding fields in Horn's
taxonomy [12] are motion field and apparent
motion.

Considering a method, it is important which of
the two interpretations is assumed because if
determining optical flow is not feasible by local
processing, it might become feasible in a wider
area and under additional assumptions. This
ambiguity is known as the aperture problem [21].
For instance, substitute the ring mentioned above
with a rectangle; then velocities can be computed
locally only for the corners of the rectangle;
assuming the rectangle to be stiff, the corner
estimates can be extrapolated to the whole
perimeter of the rectangle.

In this respect, the output of our detector
represents an estimate of velocity, but in a
degenerated case it automatically becomes an
estimate of component velocity.

Beginning with the classic works dedicated to
optical flow algorithms (Horn and Schunck [13],
Lucas and Kanade [20]), the starting point for most
approaches is the standard Brightness Constancy
Equation (BCE)

1, v,t)=1(x+u,y+v,t+1) (1)

where /(x,y,t) is the intensity of a pixel (x, y) at
time t and the flow is {u(x, y,t) , v(x,y,t)}. Below,
the notation a={u(x, y,t) , v(x,y,t)} is applied for
brevity.

BCE is violated when discontinuities,
occlusions, shadows, etc. hold. The modern
methods compete mainly in trying to improve
performance for such special cases. As Baker et
al. indicate in their survey ([2], Eq. (1)), most
existing algorithms pose the problem of
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determining optical flow as the optimization of a
global energy function Egiobai= Epata+AEprior, Where
the Data Term measures how consistent the
optical flow is with inputimages, and the Prior Term
favors certain field over others. In practical terms,
the data term is responsible for situations when
BCE holds, whereas the prior term, for special
cases.

The novelty of our approach concerns the data
term only. It should be emphasized from the
beginning, because the datasets of the commonly
accepted modern  benchmarking platform
(Middlebury open evaluation database, Baker et al.
[2]) have a strong bias to special cases.

Following [13] and [20], the differential methods
rely upon Optical Flow Constraint Equation
(OFCE) derived from BCE:

ua+vs+% =0 (2)

Since Eq. (1) leads to an ill-posed problem, it
must be regularized by the prior term. From Eq. (2),
Horn and Schunck [13] derive a system of
differential equations in partial derivatives that can
be solved by processing images of a sequence
inside the full frame; so their method is global and
its solution is constructed by an iterative relaxation
algorithm. In contrast, the method of Lucas and
Kanade [20] is local, it can be applied inside a
patch of the frame; numerically, it can be regarded
as an instance of the least squares method. Bruhn
et al. [7] present a combined local-global method.
Nagel [22] and Uras et al. [33] deal in their
approaches with partial derivatives not only of the
first order, but of the second as well. Variational
methods (for example, those of Zimmer et al. [36]
and Werlberger et al. [34]) are derived from the
Horn and Schunck [13] approach by modifications
of the original data and prior terms. Direct matching
of patches for different images of a sequence is an
instance of non-differential approaches. It does not
develop the data term far beyond BCE. The
technique by Anandan [1] is of this kind; it makes
use of a Laplacian pyramid and a coarse-to-fine
matching strategy. This technique weakly employs
priors in the form of a smoothness constraint on the
velocity estimates; the solution is based on Gauss-
Seidel iterations. A two-stage matching technique
is presented by Singh [30].



One more class of the methods is based on
spectral techniques that make use of Fourier
domain to solve the original spatiotemporal
problem. This class includes also the energy-
based methods like that of Heeger [11] and the
cross correlation and the phase correlation
methods (Reddy and Chatterji [26]). The phase-
based technique of Fleet and Jepson [9] makes
use of the phase information for measurements of
component velocity; it deals with a family of
spatiotemporal velocity-tuned filters that permits
multiple estimates within a single neighborhood;
the resolution of individual estimates is reasonably
high and so, if the neighborhood represents a
patch of a real textured surface, these multiple
component velocity estimates lead to a single
estimate of the patch velocity.

Brox and Malik [6] introduce rich descriptors
into variational technique to cope with a large
displacement flow; Xu et al. [35] introduce
segmentation for a better accuracy. Goldluecke
and Cremers [10] show how multi-labeling problem
can be applied for determining optical flow.
Methods like those of Jepson and Black [16], Jojic
and Frey [17], Sudderth et al. [31], etc. deal with
layered optical flow formed as a sum of several
flows. Usually, they work as extraction of a
parametric motion for each layer. Genetic
algorithms also can be used for computation of
flow (Tagliasacchi [32]).

The first comparative study of various methods
was performed by Barron et al. [4]. It was a long-
time reference point for subsequent approaches.
Nowadays the Middlebury open evaluation
database [2] plays the role of the main
benchmarking tool. It provides a considerable
progress of objectiveness for methods’ evaluation
since the authors do not have access to the ground
truth of the evaluation datasets. It is also important
that the evaluation system automatically generates
a series of publicly available reports which contain
a comparison of performance of all methods
evaluated so far. Any new method submitted for
evaluation automatically changes the content of
the reports.

The standard Middlebury datasets processed
by our method were submitted to the evaluation
system. Using the reports of the system, we
present in Section 4 a comparison of our method
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with those that were submitted to the system at the
moment of writing.

Unfortunately, at the time of writing there was
no system available for the optical flow community
that would give an independent evaluation of noise
tolerance. This is why the evaluation of noise
tolerance of our periodicity-based approach is
provided by a different technique which makes use
of the datasets provided with ground truth.

Further references to existing methods can be
found in the survey in [2].

1.2 Noise Tolerance

Not all methods for determining optical flow are
noise tolerant. Indeed, the derivatives in Eq. (2)
cannot be computed accurately under noise and
therefore the differential methods are incapable of
coping with a strong noise.

Potentially, those methods that do not employ
derivatives of the input data may be tolerant to
noise. The method of Fleet and Jepson [9] is noise
tolerant. Nevertheless, we are unaware of any
comparative evaluation of noise tolerance of
different methods. Those works, including [9], that
present experiments with noisy input, do not
convey sufficient information for benchmarking
noise tolerance.

Note, however, that noise tolerance is important
for some applications. Night vision systems, for
instance, deal with weak signal that leads
inevitably to a high level of Poisson noise. For a
sufficiently weak signal, all noise-forming factors
become negligible compared to the probabilistic
nature of pixel values. It is well known that Poisson
distribution represents an adequate statistical
model for pixel values regarded as random
variables, whereas for the Poisson distribution, a
linear reduction in the noise level leads to a
quadratic growth of the signal magnitude.

Using this standard fact, we study accuracy of
our method for different levels of noise and prove
that a dramatic reduction in the signal magnitude
can be provided almost without a loss of accuracy.
This fact creates new opportunities for application
of optical flow, for instance, in the X-ray medical
radiography.
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1.3. Main Idea

The periodicity-based approach is implemented as
a local early vision detector for determining velocity
at random locations of the frame. A master-level
algorithm calls the detector and passes a location
as an argument. The detector response can be
negative or positive; a positive response includes
a velocity estimate and its covariance matrix. A
degenerated covariance matrix means that the
estimate is a component velocity.

The following three paragraphs clarify the key
details of this scheme.

Velocity is related to shift invariance. The idea
of the detector is based on the fact that BCE,
Eq. (1), states local shift invariance of the input
dataset along the vector {u(x,y,?), v(x,y,t), 1}

denoted below as a*. In particular, shift invariance
holds in any 2D spatiotemporal profile Xq parallel
to a*, Fig. 1. The portion of data that Xq cuts from
an input set formed by four shots is depicted in Fig.
1 as bold parallel horizontal lines.

Fig. 1. How search for velocity can be reduced to
3FM

Shift invariance leads to periodicity. Consider a
reduction of any input image to the corresponding
line of the just mentioned horizontal lines. Due to
shift invariance, the functions defined this way
represent several identical copies of the same
function. Being concatenated, these copies yield a
periodic function defined on a long line and the
period is equal to the common length of short lines.

A known test for periodicity can be adapted to
estimate velocity. If a is an arbitrary vector, the
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concatenated function can be constructed formally
in the same way as above. However, this function
is not periodic in general.

Our detector compares the outputs of a test for
periodicity for different values of a and determines
the estimate & as such a that corresponds to the
'most periodic' function. We make use of an
existing test for periodicity —the Three
Frequencies Method (3FM) of Khachaturov [18,
19]—that yields quite accurate estimates of period
and is noise tolerant. An obstacle arises for direct
application of 3FM to each profile X,: the amount
of information provided by a few horizontal layers
(which represent shots) is insufficient for accurate
estimation. Nevertheless, this drawback is
compensated by the fact that many such profiles
can be constructed in a small neighborhood.
Information from all profiles is accumulated and
then used in the 3FM.

The remainder of the paper proceeds as
follows: Section 2 describes the 3FM and presents
its adaptation to velocity computation as well as a
RANSAC-based improvement of the approach to
cope with the case when the final estimate must be
chosen from several candidates; it presents also
an estimate of the dynamic error of the method.
Section 3 describes the noise generation. Section
4 presents experiments.

2 Determining Velocity by the 3FM

2.1 Periodicity Test of the 3FM and Its
Adaptation

The test for periodicity of the 3FM is based on the
following

Theorem (Khachaturov [18]). Let f(x) be a real
function of period P such that for any xeR' it has
expansion in Fourier series, T be a natural number,
8 be a small real number, and ® be a functional
defined as

i —i(1+8)x2Z
o(f,5,T,P) =1 L F(x)e " ax, @)

then:
(a) the value of |w(f,0,7,P)| does not
dependon T;
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1. Input: I(x,y,1); a
location in the

image frame; a Vr.

2. Construct three functions, {w_, (), w,(a), @, ()} , defined on
v,

priori domain of

1

allowed velocities
Vi

3. Search for extrema: find inside V; all minima for
o_ (a)and o, (a), and all maxima for @, («r) -

5. Fuse three extrema

v

of the best

single estimate

o ] 4. Select the best combination of extrema of the three
combination into  a Y| respective functions: this operation is required if any of
the above functions has several extrema.

Fig. 2. Block diagram for periodicity-based velocity estimation

(b) for any =0, itis true that w(f, 5, T, P)—>0 as
T—x;
(c) w(f,1/T,T,P) = w(f,—1/T,T,P) = 0.

The proof can be found in [19]. The notation
used in this theorem corresponds to the content of
Fig. 1 as follows: T stands for the number of
available frames (horizontal layers in Fig. 1); P is
the length of time-constant segments of X, f
represents concatenation of all functions defined
on the time-constant segments, so x belongs to [0,
TP]. The equation x=(t—1)P+l, where /£[0,P] is real
and te[1,T] is natural, establishes a one-to-one
correspondence x<{t, [} between the points of the
long line and the time-constant segments.

Given X, this description determines
completely the computation of f(x) at any x.

The theorem leads to the following rule: given a
family {a} of velocity candidates, the velocity
estimate is constructed as such & e{a} that the
following (i) and (ii) hold simultaneously:

(i) | wy(@) |is a local maximum with respect to
small variation of a;

(ii) both »_(@)and o, (&) are zeros.

In practice, instead of (ii), we use the following
modification:

(i*) both |w (&)] and |ew,(&)| are minima
close to zero.

The main steps of this estimation scheme are
summarized in the block diagram of Fig. 2.

Some instances of real application of our local
detector of velocity are presented in Fig. 3. Each
instance is visualized as three plots related to

processing respective components of {@ (),
w,(a), w(a)}. The velocity candidates o are

represented by nodes shown on the 'floor' of each
plot. At any node a, a white post with a black head
is depicted; its height represents a normalized
value of a corresponding w,(«), Where any

i=-1,0,1 represents the plot number. The three
functions interpolated from these data are shown
both by the surface and by intensity variation of the
floor color. Note that for the central plot, a higher
intensity stands for a larger value, whereas for the
other two, for a smaller one. The three small bright
squares depict in triplicate the velocity estimate.

These typical examples include an instance of a

'good' case (the top), an instance of a badly

conditioned Hessian (the middle), and an instance

of several local extrema (the bottom).

Some specific details of this technique are
briefly commented upon in the remainder of
this section.

— Accumulation of information from a set of
profiles (this issue was mentioned in the end of
Section 1.3). Technically, it is implemented as
a simple sum of square norms of the
corresponding individual functionals computed
for each profile, like Xy in Fig. 1, of a set. In
turn, the set of profiles can be constructed in
different ways. In our implementation, given a
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Fig. 3. Visualization of three instances of real application of the detector

location in the frame, a small square domain B
is constructed around it. Then, a set of lines
parallel to a side of B is constructed with a fixed
step between two adjacent lines. Each line
determines a 2D-profile parallel to vector a*.
Two sides of B with orthogonal directions are
treated in the same way, which duplicates the
final number of involved profiles. The size of B
must be properly balanced: a large size
increases both the dynamic error and
computational costs and should be avoided at
discontinuities, whereas a small size makes
the content of patches too uniform.

Treating color images. The above scheme is
applied to every color component and the
output functionals are constructed as their
sum.

The case of higher dimensions. Extending our
scheme to higher dimensions (e.g., to the
temporal sequences of tomography images) is
straightforward: the square B above is simply
substituted with a cube, whereas all the rest
remains virtually unchanged.

Weakening the 3FM. Employing the three
independent conditions represented by (i)-(ii*)
is important for accuracy of estimation and
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suppressing false detection. However, the
number of conditions can be reduced in
practice: for a vector to be a velocity estimate,
it suffices to specify that any two of the three
conditions would hold. This variant of the 3FM
is important for low textured fragments: it leads
to diminution of negative responses (misses)
of the detector.

— Fusing extrema of the best combination. The
arguments of two or three extrema determined
by (i)—(ii*) are fused by the method of least
squares (LSM) [25] to obtain the final estimate
of velocity. LSM deals with the weights formed
by matrices inverse to covariance matrices of
the arguments of respective extrema. Any
such matrix coincides up to a coefficient with
the Hessian that can be easily computed at the
corresponding extremum.

— Multi-scaling and cross-scale estimates. Let
square B above be supplied with index s,
B=Bs, that represents the size of the square.
Below, the term scale stands for s. A cross-
scale estimate can be constructed as such one
for which any of conditions (i)—(ii*) holds for its
own scale. Since conditions (i)—(ii*) must hold
theoretically for any scale, the cross-scale and
the single-scale estimates have the same
theoretical basis.

2.2 The Case of Several Extrema

Given a location in the image frame and a square
of allowed velocities V; =[-r, r1x[-r, ], where r>0,
an attempt to apply the method of Section 2.1 can
lead to one of the following cases: (a) there is a
unique estimate in V, that satisfies the above
conditions (i)—(ii*); (b) there are several candidates
to represent the estimate.

In experiments on standard datasets, the first
option (‘good case') holds for about 80-90% of
locations. But difficulties arise when several
extrema occur: any local strategy has a non-zero
probability of a wrong choice of extremum.
Moreover, wrong decisions have usually a high
correlation for close nodes of a grid. While
processing the famous Yosemite sequence by a
straightforward version of the above method, these
issues lead to a small number of fluctuations, say,
for 0.25-0.5% of all nodes. But these fluctuations
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are strong and deteriorate the overall end-point
error significantly.

In the remainder of this section, we shall briefly
present some ideas to improve performance of the
method. We combine the local extrema of several
close nodes and several scales (see the end of the
previous section). The goal is to cope better with
case (b).

In the enhanced technique, first of all, the set of
candidates is extended with respect to those
specified by (i)-(ii*) of Section 2.1. The two ways
mentioned in the end of the section are employed
for that: the requirement of the three independent
conditions is weakened to two, and the cross-scale
estimates are also included into the set of
candidates. To clarify this heuristic, note that while
violations of BCE occur, they deteriorate the
extrema exploited in the 3FM, but the deterioration
is not uniform for different scales, so there is a
chance to rescue a relevant extremum by variation
of scale.

The subsequent task is to choose a single
estimate among the extended set of candidates.

Some local measures for sorting candidates
can be used for this task, but none of them
excludes the possibility of a wrong decision. For
instance, the extrema of a functional can be ranked
by their values and then the rank can be used for
choice. Our experiments show that a strategy
based on the main idea of RANSAC [8] overrides
any local measure strategy. In the rest of the
section we comment on this issue.

To determine the flow in the dense domain, we
apply the detector not for all pixels, but for nodes
of a sparse regular grid. Then these results are
interpolated for the whole domain. The step
between the nodes of the grid is set to the smallest
scale. To implement RANSAC-based strategy, we
consider the 3x3-window of the grid around any
current node, then a function S(c) is introduced as
the number of nodes of the window that have a
candidate close to the candidate c. The estimate is
constructed as such c¢* for which S(c*) is maximal.
This modification makes the method less local
since all candidates of 3x3-neighborhood of the
current node take part in the construction of
estimate.

Note that 0<S(c)<8 for the inner nodes of a
regular grid; if the flow is continuous, the maximum
(i.e., 8) must be reached with a high probability.
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Hence, if max S(c)<8, the flow discontinuity is quite
probable. In this case, we choose the estimate at
random between the best candidates. The
situation stays unclear for the rare case of several
candidates with S(c)=8. Such observations lead to
various simple schemes of choice of a single
extremum. A study on the choice strategies based
on S(c) lies beyond the scope of this paper.

2.3 Dynamic Error

Note that our detector constructs the velocity
estimate at the centre of domain B as the mean
velocity inside B. In this section we apply
elementary properties of Taylor series to find the
deviation of the real velocity from the estimate.

Proposition. Let F be a vector function, F(x)eR™,
of vector argument xeR" that has all partial
derivatives of the first and the second order. Let

F(x,)={F,F,,..,F,} be a value constructed

by averaging values of F(x) in the n-dimensional
cube of size 2r centered at x.. Then for any
component =1, .., m, the main term of

decomposition of the error FZ — Fi(x) into Taylor
series can be expressed as follows:

0%Fi
F - F(x)~(((,j )2 AR (4)

The proof is trivial: the decomposition of Fi(x)
into Taylor series is

Fi(x)= E(Xc)+z z(x e
| °F,

i
22k Ox ;0x; O =X ) =X )t

where all derivatives are computed at x.. Let us
apply averaging (integration in the n-dimensional r-
cube) to the right hand side:

I JA X=X c+l" =Xp,ct
n 7l
2"r =X 50 K= X e
OF’
i

| %F,
5 2jk o 0 e

[F(X)+

X N =X )+ Hydx,
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and find the first non-zero term after the integration
of this expression:

X=X 5

F(x,)+ znrn j le_xl

Xn=Xp ctr
- Xn=Xn, eV

32
1 ‘ )2(x —X; )2dxl...dxn+...

2 Lj (ax
SF(x.)+
11 3’F, n-l 1
7WZJ(6 )2(2) 3(x; _x,L) |xJ X o
—F( )+ > F’ ;r +

e 22r T3 T

2o O

= F(x)+1r's——+.. Q.E.D.

(5xj)2

The interesting detail is that the first partial
derivatives and the mixed derivatives of the second
order do not participate in Eq. (4).

This simple property can be used in two ways
as follows.

The first way is that if the second partial
derivatives at the centre of cube in the right-hand
side of (2.2) are known a priori, then an enhanced
estimate can be written as

~ O2F. O’F. 2
* — F _ i i \NIZ
G T )

It compensates the main term of decomposition
of the dynamic error in Taylor series.

The second way consists in a simple numeric
method for computation of the deviation, that is, of
Il Fl — Fi{(x) ||. For this goal, the derivatives in the

right-hand side of (4) can be substituted with
simple approximations:

Ry

0%F, N Fi (g 7 X ) HF (X X =T 5 6) 2 F(X)

(ox;) = 72
after which the right-hind side of (2.2) can be re-
written as

Zj[Fl.(xl,...,xj + 70X, +
+ F (X0 X; — 1, X, ) — 2F ()] 6.

Given a dataset provided with ground truth, the
expression (2.3) can be easily estimated.



3 Noise Generation

It is known that sensor noise in digital images is
formed by components of different kinds (Horowitz
and Hill [14]). Noise tolerance is studied here only
with respect to Poisson noise, also known as
photon or shot noise. Our attention is focused on
weak signal images important, for example, for
night vision systems or computer radiography, and
for such images the Poisson noise overrides all
other kinds.

Our scheme for generation of noise is
described in the remainder of this section.

Given be[0, 255] as an exact pixel value
represented in the one-byte dynamic range, a
variate to represent this pixel with noise is

generated as T(M;}W(P(Mp,w(b)))). These

variates are statistically independent for different
pixels. The explanation follows.

-1 . B
M,,w and MP,W are, respectively, a linear map

Myow: [0, 255]—» R+ and its inverse; u=M,w(b)
represents the expectation of the number of
photons at the pixel photodetector. P represents a
generator of variates [15]: each call of P with
parameter u>0 returns a variate P(u), distributed
by Poisson's law with expectation . T clamps big
values: if x<255 then T(x)=x, else T(x)=255.
Parameter p stands for the level of noise and is
defined as standard_deviation/signal, where the
signal corresponds to a certain value W
('brightness of white') from the dynamic range: W
must be as high as possible, but such that the need

to truncate the value of M;}W (P(M,,w(b))) would

have a specified small probability, otherwise it is
difficult to interpret the experiments with noise. For
instance, if W=210, then for any p<0.3 and b<210,
the probability of truncation is <0.015%. In turn, the
image area with b>210 is small usually: for
example, it is <2% for the Yosemite. Since for the
Poisson distribution the mean value is equal to the
variance, these definitions lead easily to equation

Mow (W)=1/p?, (6)

which together with the condition M,w(0)=0
completely determines the maps M, w and M;}W .
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4 Experimental Results

Note that if a flow discontinuity line divides the
square B of Section 2.1 into two halves, it is quite
probable that the set of candidates generated by
the 3FM includes velocities of either half. In this
case, selection of a correct candidate cannot be
done locally. A similar situation arises while
applying our detector to datasets with layered flow
or other violations of BCE. Processing such hard
datasets requires some non-local techniques
beyond the scope of this paper: our primary goal is
to understand if our detector has merits for further
study and, if yes, to combine it in future with the
non-local techniques.

The majority of datasets in the Middlebury open
evaluation system [3] are hard, except for the
Yosemite one. According to the system
specifications, we treated all evaluation datasets
and submitted them to evaluation. Nevertheless,
only the experiment with Yosemite is relevant to
the stated goal.

The second goal is to study noise tolerance of
the method. For this we make use of training
datasets provided with ground truth, namely, some
Middlebury training datasets and the Yosemite
dataset by Michael Black [5]. Note that the
Yosemite version of the evaluation system is
slightly different and without publicly available
ground truth.

We adopt main measures and statistics
proposed by different authors [4, 23, 28], and
summarized in [2]. Here we employ Endpoint Error
(EE) and the robust accuracy measures EES50,
EE75, and EE95 applied to EE. The EE is defined
as

EE = \/(u—uGT)z +(V—VGT)2 ,

where (u, v) and (uer,ver ) are the flow estimate and
the ground truth, respectively.

Then EE50, EE75, and EE95 represent robust
accuracy measures applied to EE. The robust
accuracy measures are defined as follows: let AX
denote the accuracy of the error measure at the
Xth percentile, after sorting the errors from low to
high. So, for the flow errors EE, we compute A50,
A75, and A95. They are denoted in our tables,
respectively, as EE50, EE75, and EE95.
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The number of scales (Section 2) is set to three Table 1. Performance of our method (EE=0.12) vs.
in the experiments. The lowest scale varies from 4 others for the Yosemite dataset
to 5 pixels for different datasets, and the highest End-point Error Number of methods with a
scale, from 17 to 21. The step between two

. ) . . (EE) better performance
adjacent profiles for computation of functionals for
the 3FM (Section 2.1) is set to two pixels. The flow 0.07 1
computation is performed first by our local detector 0.10 4
on the nodes of a regular grid and then interpolated
to the rest of pixels. The step between the nodes 0.11 11
of the grid varies from 5 to 7 pixels depending on 0.12 20
the size of frames of a dataset. 0.13 29

Table 1 shows distribution of the methods with
respect to EE, as submitted to the evaluation 0.14 37
system [3]. It takes into account the results 0.20 68
obtained on the Yosemite datasets. Our method
with EE=0.12 belongs to the best 20 methods of 87 0.59 89

submitted to the Middlebury system for evaluation.

We believe that EE = 015-0.2 for Yosemite Table 2. Dependence of main measures on the level of

. . noise

corresponds to a reasonably high accuracy quite
sufficient for most applications. Dataset Noise EE EE95 EE75 EE50

Table 2 summarizes our experiments for the (p)
noise tolergnce study. Our res_ults of the first line Yosemite 0 012 027 0412 008
coincide with the corresponding data evaluated
in [3]. (by Black, 001 012 027 012 0.08
~ Here we see how robust our method is under B))) 01 016 035 045 0.08
increasing noise. A change from zero noise to 1%-
noise has little statistical effect. A further increase 0.2 03 06 0.2 0.09
from 1% up to 10% deteriorates the parameters Rubber 0 072 054 018 0.08
insignificantly for practical purposes. Note, Whale
however, that according to Eq. (3.1), a 10-fold 0.01 072 054 018 008
increase of noise leads to a 100-fold diminution of 0.1 082 0.78 021 0.11

signal (Table 3). 0.2 114 134 027 0.14

At p=0.2, noise influences the parameters

notably stronger, although they remain at a Hydrangea 0 14 155 055 0.06
reasonable level for Yosemite and Rubber_Whale, 001 14 155 055 006
but not for Hydrangea (which is much harder). For

this last dataset, one more experiment is presented 0.1 172 162 06 0.09
for p=0.15 to localize better the limit of applicability 015 424 175 077 0.15

of the method. For experiments with noise, the

computed flow is shown in Fig.4. For 0-2 6.r 26 108 04

representation of the computed flow there, we Table 3. How signal depends on the noise level
adopt the color-coding format. The coded images
are constructed using the Middlebury open Noise (p) Signal: the number of photons
software [27]. at a bright_pixel

We applied expression (2.3) to compute the 3105 (no noise) 1.17%10%0

mean dynamic error (DE) of the detector. Our

results show that DE is negligible compared to EE, 0.01 1.05"10°

for example, for Yosemite DE=0.014 vs. EE=0.12. 0.1 1050
The processing time for the described algorithm

is about 1-2 sec/node on a conventional computer. 02 267
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Fig. 4. Influence of noise on the computed flow. Top, middle, and bottom row represents, respectively, Yosemite,
RubberWhale, and Hydrangea; the images in the left column are frames of the corresponding dataset; then from the
left to right: the flow computed without noise, for p=0.1, and p=0.2

This assumes independent treating of each node.
For this case the full treatment of Yosemite takes
about 2000 sec. It is slow because of the brute
force search for any scale and node. Nevertheless,
the computation becomes 20-40 times faster, that
is, about 70 sec for Yosemite, for a modified
algorithm that takes advantage of initial guess for
velocity estimates. This modification is simple for
the areas with continuous flow, but it makes slightly
more complex the detector logic at the flow
discontinuities. Anyway, we believe that the
processing time is not a critical factor because the
kernel computations of our method fit ideally the
parallel computing, which leads to the opportunity
of a very fast and reasonably cheep
implementation by the GPGPU [24].

5 Conclusion

A novel periodicity-based approach to computation
of optical flow is presented.

The core algorithm is implemented as a local
detector designed for independent applications at
random locations of the image frame. The detector
employs specific properties of the test for
periodicity of Khachaturov [18, 19].

Here we study the detector in its genuine form,
that is, without using the prior term. Even so, the
evaluation by the Middlebury system [3]
demonstrates a reasonably high accuracy of the
detector for continuous flow; on the other hand, the
detector is not competitive on hard datasets, which
agrees with the arguments at the beginning of
Section 4.

We believe that in future the performance can
be improved furthermore by the prior term and
combining our detector with some of the
approaches mentioned in Section 1. However, the
results presented in Section 4 allow us to claim that
the chase for improving accuracy is not as
important for applications as noise tolerance of the
method. For example, the approach can be applied
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to medical applications and more specifically to
preventive tomography.

To clarify this assertion, note that a high quality
of images produced by modern tomography
equipment is aimed to allow a diagnostician to
interpret a single tomographic image by a direct
visual inspection. In contrast to that, preventive
tomography  suggests  processing  several
tomographic images of a patient. All images should
be taken under the same conditions with a certain
period, say, one per year. A proper analysis of the
images is completely automatic and it does not
require any medical interpretation of individual
images because the goal is to estimate their
dynamics and, more specifically, to detect an
illness at its early stage by suspicious changes in
human body.

In this respect, the results presented in Section
4 show that automatic study of dynamics can be
provided practically without any loss of
performance by images of a much lower quality
than that required for a static visual inspection. A
direct consequence of our results for preventive
tomography consists in the fact that, while taking
images of a patient, the exposure can be several
hundred times less than for conventional
tomography. That is, harmful radiation exposure
for preventive tomography becomes practically
negligible and, in addition, generation of images is
several hundred times faster than for conventional
tomography — some seconds instead of dozens of
minutes.

The presented results clearly determine the
main priorities for future work: we believe that it
must be focused on real applications that use weak
signal images as the input, in particular, on night
vision systems and preventive tomography. For the
latter case, our processing scheme should be
extended from 2D- to 3D-images and verified on
temporal sequences of real tomographic images;
an important part of research consists in medical
interpretation of the computed flow. It must be
provided in collaboration with experts in medicine.
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