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Resumen. En este trabajo se propone un esquema 

para la implementación online de la Transformada 
Wavelet Discreta. Se introducen mejoras en cuanto a 
tiempo de ejecución respecto al método de ventanas 
deslizantes tradicional. En la propuesta se realiza una 
modificación a la definición de la ventana de datos 
propuesta en el esquema original. Las pruebas 
realizadas muestran que el algoritmo propuesto es más 
rápido que el de ventanas deslizantes tradicionales. 
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Sliding Windows by Blocks for Online 
Wavelet Discrete Transform 

Implementation 

Abstract. In this paper we propose an online Wavelet 

Discrete Transform implementation scheme. Our 
proposal improves the execution time compared to the 
traditional sliding window method. Also, we modify the 
definition of the data window concept given in the 
original scheme. The experiments we performed show 
that the runtime cost of the proposed algorithm is better 
than that of the traditional sliding window method. 
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1. Introducción 

La Transformada Wavelet Discreta (WDT) es 
una herramienta matemática relativamente 
reciente, entre sus múltiples utilidades sobresale 
en áreas como la reducción de ruido, la 
compresión de datos y el reconocimiento de 

patrones. El concepto clave de la WDT es la 
adaptación del análisis en tiempo y frecuencia de 
forma simultánea, ésta característica la hace más 
factible para el tratamiento de señales no 
estacionarias que otras transformadas, como la 
Transformada de Fourier [1]. De forma natural 
esta transformada se utiliza para el tratamiento 
de señales una vez que han sido almacenadas, 
en ese sentido se han publicado un número 
importante de trabajos que ponen de manifiesto 
la eficacia de la WDT en este tipo de tratamiento 
[2, 3, 4], que en este material denominaremos 
offline. Estos buenos resultados para el 
tratamiento offline de señales han motivado a que 
algunos investigadores utilicen la WDT para el 
tratamiento online. Entiéndase por online el 
tratamiento sobre la señal a medida que se van 
adquiriendo las muestras. La utilización de la 
WDT presupone el aprovechamiento de un 
conjunto de propiedades que caracterizan a las 
señales en el espacio de la transformada, que en 
este caso muchos autores llaman coeficientes 
wavelets, por tanto los esquemas de aplicación 
constan de tres pasos fundamentales: 

1. Descomposición de la señal en coeficientes 
wavelets mediante la WDT. 

2. Tratamiento de los coeficientes según el área 
específica de aplicación. 

3. Reconstrucción de la señal mediante la 
WDT inversa. 

En el caso online las muestras se deben tratar 
por separado a medida que van siendo 
adquiridas, para evitar retardos en la salida los 
pasos mencionados anteriormente se deben 
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realizar sobre un histórico de datos que incluye a 
la muestra más reciente o muestra actual. En [5] 
se propone un esquema de este tipo, el mismo 
está basado en un mecanismo de ventanas 
deslizantes, esta propuesta ha sido aplicada con 
buenos resultados en [5, 6, 7] para la reducción 
de ruido en diferentes tipos de señales. El 
principal inconveniente que tiene este enfoque es 
el tiempo de ejecución de los algoritmos, pues 
para cada muestra se deben recalcular los 
coeficientes wavelets, elevando los tiempos de 
respuesta y comprometiendo la utilización de esta 
técnica en algunas áreas de aplicación con 
restricciones de tiempo importantes. En ese 
sentido en este material se realizan 
modificaciones al esquema de ventanas 
deslizantes (MW), y se propone un esquema que 
mejora el costo computacional, la nueva 
propuesta se denomina ventana deslizante por 
bloques (MWB). 

2. Desarrollo 

2.1. Implementación de la WDT: esquema 
lifting 

Una de las principales dificultades que 
enfrentan los ingenieros a la hora de trabajar con 
transformadas es la complejidad que esto implica, 
algunas implementaciones de la WDT 
presuponen un amplio conocimiento matemático, 
por ejemplo en [8,9] se emplea la teoría de 
Fourier como instrumento para las construcciones 
wavelet. El esquema lifting permite implementar 
la WDT de una forma sencilla y eficiente, es un 
esquema natural, con todas las ventajas de los 
métodos tradicionales y con menor costo 
computacional. En el caso más simple consta de 
tres fases: división, predicción y actualización. El 
esquema parte de un conjunto de datos 
muestreados dado por X0 = {x0 , x1 , ..., xN −1 }, en 
la primera fase este conjunto se divide en dos 
subconjuntos C-1(coeficientes wavelets) y A-

1(aproximaciones), formados por los elementos 
de subíndice impar y par de X0 respectivamente. 
En la fase de predicción se trata de predecir los 
elementos de C-1 a partir de A-1 usando algún tipo 
de correlación presente en los datos originales. 

Si se pudiera encontrar un operador de 
predicción P, que garantice que C-1 = P(A-1), 
entonces se pudiera reemplazar el conjunto X0 
por A-1 pues se podría predecir la parte faltante 
para reconstruir X0. En la práctica es imposible 
encontrar una predicción exacta que sea 
independiente de los datos iniciales, pero si P(A-1) 
es bastante cercano a C-1, entonces se podría 
reemplazar cada elemento de C-1  por la 
diferencia entre su valor y la predicción, es decir 
C-1 = C-1  - P(A-1). Es de suponer que si la 
predicción es razonable entonces esta diferencia 
contiene mucha menos información que el 
conjunto original. En la fase de actualización se 
tratan de conservar en A-1  algunas propiedades 
globales de los datos del conjunto original 
mediante un operador U de la siguiente forma: A-1 
= A-1  + U (C-1) (ver Figura 1). 

El esquema puede ser iterado, se divide A-1  

en dos subconjuntos A-2 y C-2 , y se aplican 
nuevamente los operadores P y U. Luego de n 
pasos el conjunto original puede ser reemplazado 
por su  representación wavelet: 

{𝐴−𝑛,C−𝑛,C−n+1… ,C−1} (1) 

Si el modelo de predicción es exitoso 
entonces la energía del vector obtenido se 
concentra en A-n  y los coeficientes deben ser 
pequeños. La transformada inversa se obtiene 
invirtiendo las operaciones del esquema. 

2.2. Ventanas deslizantes 

Se ha demostrado estadísticamente en 
muchas investigaciones que las técnicas de 

 

Fig. 1. Esquema lifting 
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procesamiento de señales offline basadas en 
WDT pueden ser muy eficientes, sin embargo, 
dichas técnicas no pueden ser aplicadas tal cual 
para realizar procesamiento online, necesario 
para aplicaciones con requerimientos de algún 
tipo de tiempo real. Debido a esa razón se han 
propuesto algunos esquemas para adaptar las 
técnicas offline para el realizar procesamiento 
online, aprovechando el rendimiento de las 
primeras. Para lograr ese objetivo uno de los 
puntos críticos es la utilización de la WDT de 
forma efectiva para minimizar los retardos en las 
salidas. Una de las técnicas utilizadas es MV [5, 
6, 7], que propone la utilización de una ventana 
de datos sobre la que se realiza de manera online 
la WDT y se actualiza (desplazando o deslizando) 
ante el arribo de una nueva muestra (ver 
Figura 2). 

La ventana alrededor de la muestra actual x(i) 
se puede definir como: 

W={
{Vacío}, i<l

{𝑥(𝑖 − 𝑙),x(𝑖 − l+1),...,x(𝑖)}, 𝑖 ≥ 𝑙
} , (2) 

donde l es la longitud de la ventana. De la 
ecuación (2) se deduce que se necesitan l datos 
para formar la ventana, lo que es una 
precondición para comenzar a aplicar la WDT 
sobre los datos. Para atenuar algunos efectos 
indeseados que pueden ocurrir en los extremos 
de la señal, sobre todo alrededor de la muestra 
actual x(i), se utilizan técnicas para prolongar la 
ventana, por ejemplo mediante una simetría (o 
espejo) como se observa en la Figura 3. 

La cantidad de elementos de la prolongación p 
aumenta el tamaño de la ventana a l + p, y ésta 

 

Fig. 2. Ventana de datos en MW 

 

Fig. 3. Simetría o espejo 

 

Fig. 4. Esquema MW 
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se expresa entonces mediante: 

W=

{
 
 

 
 

{Vacío}, i<l

{𝑥(𝑖 − 𝑙),...,x(𝑖), 𝑥(𝑖),...,x(𝑖 − 𝑝)
⏞

Prolongación

} , 𝑖 ≥ 𝑙

}
 
 

 
 

. (3) 

De esta forma, el algoritmo para el 
procesamiento de señales online aplicando la 
técnica MW se muestra en la Figura 4. 

En esta técnica ante el arribo de una nueva 
muestra la ventana se desliza en una unidad de 
datos, y es necesario en cada paso realizar la 
transformadas wavelet directa e inversa, lo que 
implica un procesamiento computacional 
importante, impidiendo el empleo del esquema en 
algunos entornos. 

2.3 Ventanas deslizantes por bloques 

La idea de la propuesta de este material,  
esquema que denominamos MWB, se basa en 
principios de la programación dinámica,  
siguiendo el patrón de MW se tratan de reutilizar 
los coeficientes wavelets tanto como sea posible,  
evitar que todo el tiempo se tenga que  recalcular 
la WDT ante la llegada de cada una de las 
muestras de la señal. 

En MW se utiliza una prolongación de tamaño 
fijo, en el esquema que se propone la 
prolongación p varía desde pmax hasta pmin,  que 
son variables que representan la máxima y 
mínima longitud respectivamente, que puede 
tomar la prolongación. De esa forma la nueva 
ventana W queda definida por: 

{
 
 

 
 {Vacío}, i<l

{𝑥(𝑖 − 𝑙 −𝑚),...,x(𝑖), 𝑥(𝑖),...,x(𝑖 − 𝑝max)
⏞

𝑝

} , 𝑖 ≥ 𝑙

}
 
 

 
 

 (4) 

siendo m = pmax - p. 

Una vez definida la ventana de esta forma, el 
deslizamiento se realiza por bloques, de ahí 
proviene el nombre asignado al esquema. 
Cuando p alcanza el valor de pmin, la ventana se 
desplaza pmax – pmix elementos, que es el tamaño 
del bloque, y se restablecen los valores iniciales. 
De esta manera se pueden reutilizar los 

coeficientes calculados para las l primeras 
muestras de la ventana en la primera iteración 
para el intervalo [pmax > p > pmin], permitiendo 
reutilizar una parte importante de los coeficientes 
en cada bloque. 

El esquema MWB está originalmente diseñado 
para el funcionamiento con la wavelet Haar (ver 
Figura 5), que por definición es la más sencilla y 
de menor complejidad computacional en su 
implementación lifting, cuyos operadores P y U se 
definen a partir de un término adyacente. 
Para el correcto funcionamiento de MWB los 
parámetros deben seleccionarse teniendo en 
cuenta las consideraciones que se listan 
a continuación: 

- l: Este parámetro tiene que ver con la wavelet 
que se va a utilizar, en este caso la Haar, 
puede tomar valores en correspondencia con 
l = j*2k, j es un número entero cualquiera y k 
es la cantidad de niveles de descomposición 
wavelets deseados. 

- pmax: Se define de igual forma que l, pero k 
puede tomar cualquier valor a conveniencia 
del área de aplicación. 

- pmin: Puede tomar cualquier valor menor 
que pmax. 

 

Fig. 5. Wavelet Haar 
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3. Pruebas experimentales 

3.1. Diseño del experimento 

En el experimento se mide el tiempo de 
ejecución de los algoritmos MW y MWB para la 
descomposición wavelet online  de un conjunto 
de señales sintéticas propuestas en [10, 11] (ver 
Figura 6). Cada señal está formada por 2048 
muestras, la descomposición online se realiza 
100 veces sobre cada señal y se mide el tiempo 
total de ejecución para los métodos en cuestión. 

Los parámetros utilizados en el experimento 
fueron los siguientes: 

MW: l=192, p=64 
MVB: l=192, pmax=64, pmin=8 

Las pruebas se realizaron en un computadora 
personal con procesador Intel Core 2 Duo T5500, 
a una velocidad de 1.66 GHz, 1 GB de memoria 
RAM y sobre la distribución de Linux Ubuntu en 
su versión 11.10. Estos datos resultan de interés 
a la hora de comparar los tiempos de corrida de 
los algoritmos en otros ambientes de ejecución. 

3.2. Resultados 

En la Tabla 1 se muestran los resultados del 
experimento, los mejores tiempos se resaltan en 
letra cursiva. Como se puede observar el 
esquema propuesto (MWB) tiene mejor tiempo de 
ejecución en todos los casos, o lo que es lo 
mismo, realiza el proceso de transformación 
wavelet  (directa e inversa) online más rápido. 

En la gráfica de la Figura 7 se puede apreciar 
la importante diferencia de tiempos de ejecución 
entre los algoritmos para cada una de 
las señales. 

4. Conclusiones 

Los resultados obtenidos a partir de las 
pruebas realizadas se muestran en la Tabla 1 y 
en la Figura 6, indican que el esquema propuesto 
(MWB) muestra mejor rendimiento en cuanto a 
tiempo de ejecución que el esquema MV. 

 

Fig. 7. Tiempos de ejecución para 100 corridas 

(1: Blocks, 2: Bumps, 3: Shifted Sine, 4: Angles, 
5: Córner, 6: Parábolas) 

 

Fig. 6. Señales de prueba 

Tabla 1. Tiempo de ejecución de MW y MWB en 

milisegundos para 100 corridas 

 MW MWB 

Blocks 5,373 4,588 

Bumps 5,986 5,366 

Shifted Sine 6,604 6,009 

Angles 6,120 5,454 

Córner 6,069 5,469 

Parábolas 6,019 5,396 

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 767–772
ISSN 1405-5546

doi: 10.13053/CyS-18-4-1426

Ventanas deslizantes por bloques para la implementación online de la Transformada Wavelet Discreta   771



 

 

Agradecimientos 

Este trabajo ha sido patrocinado de una forma 
u otra por la Universidad de las Ciencias 
Informáticas (Habana, Cuba) y el Instituto 
Superior Minero Metalúrgico de Moa 
(Holguín, Cuba).  

Referencias 

1. Dolobdjian, Ch., Fadili, J., & Huertas Leyva, E. 
(2002). Classical low-pass filter and real-time 

wavelet-based denoising technique implemented 
on DSP a comparison study. The European 
Physical Journal Applied Physic, Vol. 20, pp. 135–
140. 

2. Ma, Yinping & Huang, Yongxing (2012). Adaptive 

Threshold Based on Wavelet Transform Fingerprint 
Image Denoising. Computer Science and 
Electronics Engineering, International Conference, 
Vol. 3, pp. 494–497. 

3. Li, Z., Ni, J., & Gu, X. (2012). A Denoising 

Framework for ECG Signal Preprocessing. 
International Conference on Internet Computing in 
Science and Engineering, pp. 176–179. 

4. Nounou, M.N., Nounou, H.N., Meskin, N., Datta, 
A., & Dougherty, E.R. (2002). Multiscale 

Denoising of Biological Data: A Comparative 
Analysis. IEEE/ACM Transactions on 
Computational Biology and Bioinformatics, Vol. 9, 
pp. 1539–1545. 

5. Xia, R., Meng, K., Qian, F. & Wang, Zh.-L. (2007). 

Online Wavelet Denoising via a Moving Window. 
Acta Automatica Sinica, Vol. 33, No. 9, pp. 897–
901. 

6. Khadem Olama, E. & Jazayeri-Rad, H. (2011). 

Online Averaging Wavelet Denoising Method. 
Computer Modeling and Simulation, UKSIM 
European Symposium, IEEE Computer Society, 
pp. 202–204. 

7. Huang, Hsiao-Ping & Luo, Kuo-Yuan (2007). On-

Line Wavelets Filtering with Application to Linear 
Dynamic Data Reconciliation. Industrial and 
Engineering Chemistry Research, Vol. 46, No. 25, 
pp. 8746–8755. 

8. Chui, C.K. (1992). An introduction to wavelets. 
Academic Press, San Diego, CA. 

9. Daubechies, I. (1998). Orthonormal bases of 
compactly supported wavelets. Comm. Pure Appl. 
Math., Vol. 41, pp. 909–996. 

10. Donoho, D., Johnstone, I., & Johnstone, I.M. 
(1993). Ideal spatial adaptation by wavelet 
shrinkage. Biometrika, Vol. 81, 425–455. 

11. Antoniadis, A., Bigot, J., & Sapatinas, T. (2001). 

Wavelet estimators in nonparametric regression: a 
comparative simulation study. Journal of Statistical 
Software, Vol. 6, pp. 1–83. 

Antonio Cedeño Pozo es Ingeniero en Ciencias 
Informáticas, trabaja en el Centro de Informática 
Industria de la Universidad de las Ciencias 
Informáticas, Cuba.  

Rafael Trujillo Codorniú es Licenciado en 
Matemática y Doctor en Ciencias Físico 
Matemáticas. Trabaja en el Instituto Superior 
Minero Metalúrgico de Moa, Cuba.  

Article received on 19/10/2012, accepted on 27/01/2014.

 

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 767–772
ISSN 1405-5546
doi: 10.13053/CyS-18-4-1426

772   Antonio Cedeño Pozo y Rafael Trujillo Codorniú


