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A bstract. In this paper we propose a multiobjective 
modified differential evolution based feature selection 
and classifier ensemble approach for biochemical entity 
extraction. The algorithm performs in two layers. The 
first layer concerns with determining an appropriate set 
of features for the task within the framework of a super­
vised statistical classifier, namely, Conditional Random 
Field (CRF). This produces a set of solutions, a subset 
of which is used to construct an ensemble in the second 
layer. The proposed approach is evaluated for entity ex­
traction in chemical texts, which involves identification of 
IUPAC and IUPAC-like names and classification of them 
into some predefined categories. Experiments that were 
carried out on a benchmark dataset show the recall, 
precision and F-measure values of 86.15%, 91.29% and 
88.64%, respectively.

Keywords. Multiobjective modified differential evolution 
(MODE), feature selection, ensemble learning, condi­
tional random field (CRF), named entity (NE).

1 Introduction

In recent times information extraction in the 
biomedical or biochemical domain has drawn sig­
nificant attention of researchers and practitioners. 
Nowadays the amount of information available in 
the web is enormous, but most of these are not 
properly structured. The significant amount of new 
information is also being added to it daily, making 
the size bigger and bigger day after day. New 
terms, medical terminologies, medicines, etc. are 
constantly being invented, and therefore, organiz­
ing, finding and extracting relevant information from 
such a huge amount of data pose many chal­
lenges. In chemical and/or life science literature, 
the most important entities are mostly formed by

chemical compounds like small signal molecules 
or other biologically active chemical substances. 
Past literature shows that there exist many repre­
sentations and nomenclatures for chemical names 
like SMILES, InChI and IUPAC. The representa­
tions of SMILES and InChI are more flexible than 
IUPAC and allow direct structure search. However, 
IUPAC or IUPAC-like names are more frequent in 
biochemical texts. Finding trivial chemical names 
is not very complex. This can be easily achieved 
by developing a dictionary-based approach for en­
tity identification and mapping to the correspond­
ing structures. In contrast, it is quite infeasible 
to enumerate all the IUPAC or IUPAC-like names. 
Thus, developing accurate text mining techniques 
for automatic identification of chemical compounds 
in texts is of great interest and has a potential in ap­
plications of different text processing activities such 
as predictions of drug-drug/protein-protein interac­
tions, determining relations to adverse reactions 
of chemical compounds and their associations to 
toxicological endpoints or the extraction of pathway 
and metabolic reaction relations. A good entity 
extraction system can help in semantic search by 
enabling the search engine to return only those 
documents containing elements of the entity class.

It is a well-established fact that the performance 
of any classifier greatly depends on the features 
of training/testing and the parameters used in the 
classifier. Feature selection [7, 6], also termed 
as variable selection, attribute selection or variable 
subset selection, is a commonly used technique 
in pattern recognition and machine learning do­
mains. By removing most irrelevant and redundant 
features from the data, feature selection helps to 
improve the performance of a classifier. The issue
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of feature selection can be modeled as an opti­
mization problem. Evolutionary approaches have 
been effectively used for feature selection in the 
past for solving many problems, e.g., [3, 4]. In 
these works, the concepts of single and multiob­
jective optimization have been used. Classifier en­
semble is a technique that is constructed by com­
bining the decisions of many classifiers in order to 
achieve higher accuracy. Some of the evolution­
ary approaches for building ensembles have been 
reported in [2, 4, 1, 3, 8].

In this paper, we propose a multiobjective mod­
ified differential evolution based approach for fea­
ture selection and classifier ensemble. The strate­
gies used in the modified differential evolution are 
not exactly similar to that of the standard (or tradi­
tional) differential evolution [10]. In particular, the 
mutation process works differently. We develop 
the multiobjective optimization (MOO) based fea­
ture selection technique by optimizing recall and 
precision simultaneously. As a base classifier we 
make use of Conditional Random Field (CRF) [5]. 
The algorithm produces a set of solutions on the 
final Pareto optimal front. None of these solutions 
dominates other in the objective space. Rather 
than choosing a unique solution from these, we 
hypothesize that an ensemble might be more ef­
fective if we can effectively combine the classifiers 
generated from the feature combinations, as repre­
sented by the solutions of the final Pareto optimal 
front.

We develop the MOO based ensemble tech­
nique that determines the best weights by which 
the classifiers are combined. In ensemble con­
struction one of the problems is to find the mech­
anism to combine the decisions of several clas­
sifiers. Existing approaches (e.g., stacking, Ad- 
aBoost, bagging, etc.) combine the outputs of all 
the classifiers by using either majority voting or 
weighted voting. The weights of votes depend on 
the error rate/performance of the individual classi­
fiers.

However, in reality, in an ensemble system all the 
classifiers are not equally efficient in detecting all 
types of output classes. Thus, weights should be 
varied depending upon the strength or weakness 
of the classifiers. The weight should be high for

the class for which the corresponding classifier per­
forms well, and low otherwise. Therefore it is cru­
cial to determine the appropriate weights of votes 
for all the classes in each classifier. The single 
objective DE based ensemble technique proposed 
in [8] is based on this hypothesis. In contrast to 
this work, here we present a method based on the 
concept of MOO that can optimize more than one 
objective functions simultaneously. The working 
principle of MOO is inherently distinct from that of 
SOO. The MOO algorithm provides a set of alter­
native solutions, each of which is non-dominated 
with respect to the other. This paper presents 
an extension of the work reported in our earlier 
attempt [9].

The work reported in [9] concerns with the SOO. 
But the current work deals with the concept of 
multiobjective optimization (MOO) and solves the 
issues of feature selection and ensemble learning. 
As already mentioned, from the algorithmic point 
of view, MOO has completely different behaviors 
to SOO. Some of the key advantages of MOO 
over SOO are (i) the ability to optimize more than 
one objective function simultaneously and (ii) the 
ability to generate more than one solution on the 
Pareto optimal front. Multiobjective optimization 
provides the user with a set of alternative solutions, 
and hence s/he can choose a solution depend­
ing upon the requirement. Experiments on the 
benchmark datasets yield the recall, precision and 
F-measure values of 86.15%, 91.29% and 88.64%, 
respectively. Comparisons with the existing work 
show that our proposed approach attains the per­
formance at par the state-of-the-art methods.

The rest of the paper is organized as follows. 
Section 2 gives an overview of the multiobjective 
differential evolution. In Section 3 we present our 
proposed feature selection approach that is based 
on multiobjective differential evolution. Section 
4 describes our approach for ensemble learning 
based on multiobjective differential evolution. In 
Section 5 we describe the features that we have 
used for chemical entity extraction. Section 6 and 
Section 7 report on the datasets and experiments, 
respectively. Finally, Section 8 concludes the pa­
per.
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2 Overview of Multiobjective Modified 
Differential Evolution

Differential Evolution (DE) [10] is a parallel direct 
search method which performs search in com­
plex, large and multi-modal landscapes, and in 
general provides near-optimal solutions for an op­
timization problem. In DE, the parameters of 
the search space are encoded in the form of 
strings called chromosomes. A collection of such 
type of chromosomes is called a population, de­
noted by N P . This set denotes the |NP| num­
ber of D-dimensional parameter vectors X ijG =  
\x i,i,o, x 2,i,o ,. . . ,  xD,i,o\, i =  1,2, .. . , N P  for each 
generation G. The value of D denotes the total 
number of parameters of a chromosome.

The optimization function depends on this D 
number of parameters. The values of Ds are the 
same for all the chromosomes in a population.

The population size N P  is fixed and does not 
change during the execution of the DE process. 
There are mainly four operators: initialization, mu­
tation, crossover, and selection.

In the initialization process, all the chromosomes 
in the first generation of the population are initial­
ized with the real values which cover the entire 
search space. In the next step, we modify the 
mutation operator which is different from the tra­
ditional mutation operator of DE. We always select 
the best chromosome from the whole population 
and add this to the weighted difference between 
two randomly chosen chromosomes.

In crossover, mutant vector parameters are 
mixed with the parameters of another predefined 
vector called the base vector and generate trial 
vector. For the concept of MOO, we modify the 
selection operator. Here, we merge the trial vec­
tors with the current population and generate the 
solutions arranged in ranks using the concept of 
domination and non-domination. The solutions in 
the next generation are selected from the previous 
generation.

All the solutions of the first rank are added first 
and if it is less than N P  then the solutions from 
the subsequent ranks are included. If the number 
of solutions of the first rank is more than N P  then 
crowding distance sorting algorithm is applied to 
select the best N P  solutions. The process of

selection, crossover, and mutation continues for a 
fixed number of generations or till a termination 
condition is satisfied. The pseudo code for the mul­
tiobjective modified differential evolution is shown 
in Algorithm 1.

3 Proposed Approach for Feature 
Selection

In this section we present a method of feature se­
lection based on multiobjective modified differential 
evolution (MODE). The feature selection is per­
formed for a popular statistical classifier, namely, 
Conditional Random Field [5]. Suppose, the D 
number of available features for a given classifier 
are denoted by F \ , . . . ,  FD. The MOO based fea­
ture selection method is then stated as follows: De­
termine the appropriate subset of features A  c  A  
such that the classifier trained using this subset 
of features should have optimized some evaluation 
metrics. Here we optimize two objective functions, 
namely, recall and precision.

3.1 Chromosome Representation and 
Population Initialization

The features are encoded as bit strings called chro­
mosomes. The length of chromosomes is set equal 
to the number of available features. The bits are 
randomly initialized to either 0 or 1. The value 
of 1 in the ith bit position indicates that the cor­
responding feature participates in constructing the 
CRF based classifier, and the value of 0 denotes 
that the feature does not participate. If the size of 
the population is N P , then all the chromosomes in 
the population of the first generation are initialized 
in the above way. An example of chromosome 
representation is shown in Figure 1.

3.2 Fitness Computation

Here we describe how to compute the objec­
tive/fitness function values.

1. Suppose, there are K  number of features 
present in a chromosome (i.e., there are total 
K  number of 1's and D -  K  number of 0's 
present in a chromosome where K  < D).
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Algorithm 1 Pseudo Code for Multi-Objective Modified Differential Evolution
1 G=0
2 Create a random initial population X ijG, Vi, i =  1,. . . ,  N P
3 Select best vector, rb from the initial population X i G, Vi, i =  1,. . . ,  N P
4 for G=1 to MAXGEN do ’
5 for i=1 to NP do
6 Ui,G+1 =  Xi,G
7 end for
8 for i=1 to NP do
9 Select randomly two different chromosomes r1 and r2

10 jrand = randint(1,D)/generate a random integer value from 1 to D */
11 for j=1 to D do
12 rndj = randfloat(0,1)/generate a random real value belonging to [0,1]*/
13 if rndj <  CR or j= jrand then
14 UNP+i,j,G+1 =  xrb,j,G +  F  X (xr1,j,G -  xr2,j,G)
15 else
16 UNP+i,j,G+1 =  Xi,j,G
17 end if
18 end for
19 end for
20 /* Evaluate the value of K  objective/fitness functions */
21 Evaluate f k(UijG+1) Vi, i =  1,... ,2 x  N P  and Vk, k =  1, . . . ,  K
22 n = 0
23 j = 1
24 while n <  N P  do
25 Select all the non-dominated solutions Vp,G+1 of rankj

from UijG+1, Vi, i =  1,... ,2 x  N P  and Vp,p =  1,. .. , I  where 1 < I  <  2 x N P
26 if n +  k < N P  then
27 for i=n+1 to n+k do
28 Xi,G+1 =  Vi-n,G+1
29 end for
30 else
31 Apply crowding distance sorting to Vp,G+1
32 for i=n+1 to NP do
33 Xi,G+1 =  Vi-n,G+1
34 end for
35 end if
36 n=n+k
37 j=j+1
38 end while
39 Select the best vector rb from the next generation population X ijG+1, Vi, i =  1,. .. ,  N P
40 end for
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2. Using these K  number of features, the classi­
fier is constructed using CRF.

3. Perform 3-fold cross validation and compute 
the average recall, precision, and F-measure.

4. Using the search capability of DE based MOO, 
we optimize recall and precision. These two 
objective functions are maximized.

3.3 New Mutation Operator

In multiobjective modified DE, a mutant vector 
is generated for each target vector X ijG; i =
1 ,2,3, . . . ,  N P , according to

Vi,G+1 =  X rb,G +  F  (X r1,G — X r2,G ̂  (1)

where rb represents the best chromosome with 
respect to the F-measure value within the current 
population and r l  and r2 are the random indices 
which belong to { l, 2 , . . . ,  N P }. The index value 
of r l  and r2 are mutually different and F >  0. 
The randomly chosen r l  and r2 are different from 
the running index rb and i, so that N P  must be 
greater or equal to four (three in case when i and 
rb are the same vectors). The value of F  belongs 
[0, l]. It controls the amplification of the differential 
variation (X r1,G -  X r2,G). The VijG+1 is termed as 
the mutated vector. If each parameter of the mutant 
vector VijG+1 > 0.5 then we set the parameter 
value to 1, otherwise 0. A collection of N P  number 
of mutated vectors is called the mutant population.

3.4 Crossover Operator

To increase the diversity of each target vector X ijG;
i =  l,  2,3, . . . ,  N P , in a population, crossover is 
needed. This is also called recombination. Here 
the parameter values of the target vector are mixed 
with the parameter values of the mutated vector. At 
the end of this process, for each target vector, a 
trial vector is generated according to

Ui,G+1 =  (u1,iJG+1, u2,i,G+1, . . . , uD,i,G+1 ), (2)

where

uj,i,G+1 =  Vj,i,G+1
if (randb(j) <  CR) or j  =  rnbr(i)

xj,i,G
if (randb(j) >  CR) and j  =  rnbr(i)

for j  =  l , 2 , . . . ,  D,
In the above equation, the value of randb(j) be­

longs to [0, l]. randb(j) is chosen randomly. CR  is 
the crossover constant which has to be determined 
by the user. CR  can take any value between [0, l] 
but in our case we set the value of CR  equals to
0.5. rnbr(i) returns a random number belonging 
to { l ,  2 , . . . ,  D } which ensures that the trial vector 
Ui G+1 gets at least one parameter from the mutant 
vector Ui G+1. A collection of N P  number of trial 
vectors is called the trial population.

3.5 New Selection Operator

In the selection process, we merge the trial pop­
ulation with the current population. Thus there 
are 2 x N P  chromosomes. In this process we 
extract best N P  number of chromosomes from
2 x N P  chromosomes for the population of the 
next generation, denoted by G +  l.  For the con­
cept of domination and non-domination relations, 
ranked solutions are generated from these 2 x N P  
solutions. Ranked solutions (starting from the first 
rank) are added to the population of the next gen­
eration until its size becomes N P . If the number 
of solutions exceeds N P , then we apply crowing 
distance sorting algorithm to choose the best N P  
solutions. If the number of solutions is below N P  
then the solutions from the subsequent rank(s) are 
included. At the end of this process best N P  
number of chromosomes are found to be stored in 
the next generation population.

3.6 Termination Condition

The processes of mutation, crossover (or recom­
bination), fitness computation and selection are 
executed for a maximum number of generations. 
In the last generation, the proposed method gen­
erates a set of solutions (representing classifiers) 
with (near)-optimal subset of features. This forms
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Fig. 1. Chromosome representation for feature selection

the final Pareto optimal front. Some of the so­
lutions are good with respect to recall and some 
are good with respect to precision. From the set 
of all these solutions we select the 14 promising 
solutions (best 7 with respect to recall and 7 with 
respect to precision). The classifiers formed with 
these feature combinations are combined together 
into a final system (in the second step) using a 
MODE based classifier ensemble. The key inten­
tion was to further improve the performance.

4 Method for Classifier Ensemble

This section presents our method of classifier en­
semble that determines the best weight combina­
tions to construct the ensemble. The weighted vote 
based classifier ensemble problem[3] is stated as 
follows. Suppose, there are N  number of classi­
fiers that are denoted by C 1, . . . , CN . Let, A  =  
{Cn : n =  1; N } and there are M  target classes. 
The weighted ensemble is then defined as follows.

Determine the voting weights V  per classifier 
which will optimize the fitness function F (V ) using 
the search capability of the modified differential 
evolution. The size of V  is N  x M  and it repre­
sents a real array. V(n, m) represents the voting 
weight of the nth classifier for the mth class. These 
weights can vary from one generation to another. 
The algorithm ultimately determines the appropri­
ate values of these weights while combining the 
outputs of the classifiers.

The problem under the MODE based ap­
proach can be stated as: For each classi­
fier, find the weights of votes V per classi­
fier such that, maximize [F (V )], where F  € 
{recall, precision, F-measure}. We optimize F = 
{recall, precision} as the two objective functions.

C la s s if ie r  1 C la s s if ie r  2 C la s s if ie r  3

Fig. 2. Problem representation for the ensemble

4.1 Encoding of the Problem

Like in the feature selection problem, ensemble 
weights are also represented by the chromosomes. 
The length of this chromosome depends on the 
number of classifiers and the set of potential target 
classes. For example, if we have N  number of 
classifiers and M  number of target classes, then 
the chromosome length is D  =  N  x M . As an 
example, the chromosome representation is shown 
in Figure 2. This shows an encoding of three 
classifiers (i.e. N  =  3) and three classes (i.e., 
M  =  3). Therefore, we have 9 (3 x  3 =  9) votes. 
The chromosome represents the ensemble with 
the following weights, respectively:

Classifier-1: 0.59, 0.12 and 0.56;

Classifier-2: 0.09, 0.91 and 0.02;

Classifier-3: 0.76, 0.50 and 0.21.

We use real encoding, and all the chromosomes 
in the entire population are randomly initialized to a 
real value (r) which belongs to [0,1]. Here,

rand()
r  = ------------------------- .

R A N D M A X  +  1

If the population size is N P  then all the N P  number 
of chromosomes are initialized in the above way.

4.2 Objective Functions Computation

We perform the following sequence of steps to 
compute the objective function values.

1. Let us assume that for N  number of classifiers, 
the F-measure values are denoted by Fn, n =  
1 . . . N .
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2. For each token instance we have M  output 
classes, coming from the M  classifiers. The 
final predicted output for each token is deter­
mined based on the weighted voting of these 
N  classifiers' outputs. The weight of a partic­
ular class for a particular token t is:

f  (om) =  ^  Fn x C(n, m),

Vn = 1  to N  and op(t, n) =  om

Here, C(n, m) corresponds to the nth classifier 
and mth class; and op(t, n) denotes the pre­
dicted class of the nth classifier for the token t. 
The final output corresponds to the class that 
receives the maximum weight.

3. Compute the recall and precision values of the 
ensemble.

4. Repeat the second and third steps 3 times for 
3-fold cross validation.

5. Average recall and precision are considered 
to be the objective functions, and these are 
optimized using the multiobjective modified dif­
ferential evolution algorithm.

4.3 Mutation

The mutation process is almost similar to the pro­
cess followed in feature selection. Here, if the 
values of the mutant vector parameter violate the 
boundary constraints then the violating mutant vec­
tor parameter values are reflected back from the 
violated boundary as follows:

—  if(vj,i ,G+ 1  < 0) then
Vj,i ,G+ 1 = 2 x lower -  vjii,G+1 ;
where lower = 0;

—  if(vj,i,o+1 >  1) then
v j ,i ,G+ i  = 2 x upper -  vj,i,G+ 1 ;
where upper = 1; 

where j  =  1 ,2, . . . ,  D and i =  1,2, .. . ,  N P .

4.4 Operators

The values of the other operators for multiobjective 
DE are determined in the similar way as we did in 
the feature selection approach.

4.5 Selecting the Best Solution

The MODE based ensemble yields a set of so­
lutions on the final Pareto optimal front. Each 
solution represents a particular voting weight com­
bination to construct the ensemble. None of the 
solutions is dominated by the others in the objec­
tive space, and therefore all are equally important 
from the algorithmic point of view. However, at the 
end we must select one unique solution. For each 
of the voting weight combinations we construct 
the ensemble and compute the F-measure values. 
Finally, we select the particular solution that yields 
the highest F-measure value.

5 Features for Chemical Entity 
Extraction

We use the following set of features [9] for the 
classifier's training and testing. Most of these 
features were generated without much use of the 
domain-specific knowledge and/or resources.

1. Surface words and lemma: we use the surface 
forms of the words and their lemmas as the 
features.

2. Local contexts: we use the local contexts 
within the previous three and next three words 
as features in the model. This was incorpo­
rated based on the assumption that contexts 
carry effective information for the identification 
of biochemical names.

3. Word prefix and suffix: these denote the fixed 
length character sequences that are stripped 
from either the leftmost (for prefix) or the right­
most (for suffix) positions of words. We use 
the prefixes and suffixes of length up to three 
characters.

4. Word length: in general, chemical names are 
longer. More the length of an entity, higher 
is the chance of being a potential chemical 
compound name. A binary valued feature is 
set to high when the number of characters in 
a given word is above some predefined value; 
otherwise its value is set to low.
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5. Infrequent word: a frequent word has less 
chance of being a chemical name. A feature 
is defined that fires for the words that appear 
more than a predetermined number of times in 
the training set.

6. Part-of-Speech (PoS) information: syntactic 
information such as PoS provides useful in­
formation about the types of the words. We 
use the PoS information of the current word 
and its surrounding tokens as the features. 
GENIA tagger V2.0.2 1 was used to extract this 
information.

7. Chunk information: as already mentioned, 
chemical compounds are longer in lengths and 
contain many common words, digits and/or 
symbols in these. Hence it is important to 
identify the boundaries (i.e., where it starts 
and where it ends) of a chemical name. Chunk 
information that we extracted from the GENIA 
tagger helps to denote the boundaries.

8. Unknown token feature: this feature checks 
whether the current token was seen in the 
training set or not. For the training set this 
feature was set randomly.

9. Word normalization: word shapes refer to the 
mapping of each word to their equivalence 
classes. Here each capitalized character of 
the word is replaced by ‘A', small characters 
are replaced by ‘a' and all consecutive digits 
are replaced by ‘0'. For example, ‘IL-88' is 
normalized to ‘AA-00'. This feature will group 
the names having similar structures into the 
same class.

10. Orthographic features: these binary-valued 
features are defined based on the contents 
of the wordforms. For example, initial cap­
ital (initial letter is capital or not), all capital 
(all the letters of the word are capitalized or 
not), capital in inner (word contains any capi­
tal letter inside), initial capital then mix (word 
starts with a capital letter and then a mixture 
of capitals and small letters), only digit (word 
contains only a digit), digit with special char­
acter (word contains digits along with special

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger

characters), initial digit then alphabetic (word 
starts with a digit and contains alphabets), etc. 
The presence of some special characters like 
(‘,',‘-',‘.',‘)',‘(' etc.) is highly indicative that the 
target word is a potential candidate for being 
a chemical name. Depending on this ortho­
graphic information we defined 24 features.

11. Informative words: the words that frequently 
appear in the surroundings of chemical names 
can provide useful indicative clues about their 
identification and classification. We prepared 
two lists from the training set by extracting 
most frequently occurring words that appear 
in the left and right contexts of the chemical 
names. Two features are then defined that 
check whether the target word appears in the 
respective list or not.

12. Chemical prefix and suffix: the frequent pre­
fixes or suffixes that appear with the chemical 
names may be effective for detecting IUPAC 
or IUPAC-like names. We extracted frequently 
occurring prefixes and suffixes of length 2 from 
the chemical names present in the training 
data. Based on these two lists we define two 
features that fire accordingly.

13. PubChem prefix and suffix: we also make 
use of the PubChem database 2 and extracted 
frequent prefixes and suffixes of length 2 from 
the IUPAC names. A binary valued feature 
is then defined that fires if and only if any of 
these inflections matches with the character 
sequences stripped either from the starting or 
from the end positions of words.

6 Dataset

There exist various ways to represent biochem­
ical names. One of the most popular ways for 
a standardized representation is the International 
Union of Pure and Applied Chemistry (IUPAC). It 
provides a systematic way of naming conventions 
that maps their chemical structures. Our experi­
ments are based on the datasets that we obtained 
from the source 3. The datasets for training and

2http://pubchem.ncbi.nlm.nih.gov/
3http://www.scai.fraunhofer.de/chem-corpora.html
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Table 1. Statistics of datasets: #abstracts (Total number of abstracts), #sentences (Total number of sentences), #tokens 
(Total number of tokens/words) and #IUPAC (IUPAC and IUPAC like names)

Dataset #abstracts #sentences #tokens #IUPAC
Training dataset 463 3,700 1,61,591 3,712

Test dataset(Patent) 27 160 4,417 471

Table 2. Overall evaluation results

Methods recall precision F-measure
First baseline 90.22 72.91 80.65

Second baseline 82.34 88.26 85.20
Model 1 83.17 89.22 86.09
Model 2 83.98 90.67 87.19

Our Proposed Method 86.15 91.29 88.64

test were generated from the collections of Med­
line database and patent documents, respectively. 
The test dataset contains seven classes, namely, 
IUPAC(e.g., N-methyl), PARTIUPAC(partial chem­
ical names such as 3H-Testosterone, here ”3H” 
is an IUPAC name), TRIVIAL (trade, common or 
generic names of compounds such as paraceta­
mol, aspirin, etc.), MODIFIER, SUM (molecular 
formula such as C9H8O4), ABBREVIATION (ab­
breviations and acronyms of chemicals compounds 
and drugs such as DMSO) and FAMILY (chemical 
names associated to some chemical structure like 
terpenoids). However, the training dataset has only 
the instances of IUPAC, PARTIUPAC, and MODI­
FIER classes. Therefore the test dataset was pre­
processed to convert all the other classes except 
IUPAC, PARTIUPAC, and MODIFIER to the ”O” 
class (denoting other than the chemical names). 
Statistics of the training and test datasets are pre­
sented in Table 1.

7 Experiments

We perform experiments with the training and test 
datasets that we mentioned in the previous section. 
We define two baseline models as below:

1. First baseline: this baseline is constructed by 
training CRF with the following feature com­
bination: context of previous one and next

one token along with all the features listed in 
Section 5.

2. Second baseline: we define this baseline 
based on the single objective optimization 
based feature selection technique, reported 
in [9].

We also compare our proposed method with the 
following two models.

1. Model-1: this model is built based on the MOO 
based feature selection technique that makes 
use of simple DE. The best solution from the 
final Pareto optimal front is determined based 
on the F-measure value.

2. Model-2: this model corresponds to the MOO 
based feature selection technique that makes 
use of modified DE. The process of selecting 
the best solution is the same as that of the first 
model.

The parameters of the proposed algorithm are 
determined by performing 3-fold cross validation on 
the training set. The parameters of MODE based 
feature selection are set as follows: population size 
= 30, CR (probability of crossover) = 0.5, number 
of generations = 20 and F (mutation factor) = 0.5. 
Please note that we execute feature selection al­
gorithm using both modified DE and classical DE. 
Each of these approaches produces a set of solu­
tions on the final Pareto optimal front. We combine
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Table 3. Evaluation results with various feature combinations for the CRF based classifiers. Here, the following 
abbreviations are used: ‘A ’:ContextFeatures, ‘B’:InitialCapitalThenSmall, ‘D’:InitialSmallThenMix, ‘E’ WordPreviously- 
Occured,‘F’:InfrequentWord, ‘G’: AlphaDigitAlpha, ‘H’: DigitAlphaDigit, ‘I': SingleCapital, ‘J ’: DigitCommaDigit, ‘K’: Ro- 
manNumber, ‘L’: GreekNumber, ‘M’: PrefixFeature, ‘O ’: SuffixFeature, ‘Q’: WordNormalization, ‘R’: WordMatchVerbBe- 
foreNE, ‘S’: WordMatchVerbAfterNE, ‘T ’: StopWordMatch,‘U’: DigitInner, ‘V ’: SpecialChar, ‘W ’: InitialDigitThenAlpha, ‘Y ’: 
DigitWithSpecialCharacter, ‘Z ’: RealNumber, ‘a ’: AllDigit, ‘b’: InitialCapitalThenMix, ‘c ’: CapitalInner, ‘d ’: AllCapital, ‘e ’: 
InitialCapital, ‘g ’: PubChem Prefix and Sufix, ‘l’: Chemical prefix, ‘m’: Chemical Sufix, ‘q ’: RootWord, ‘s’: Part-Of-Spech 
Tag, ‘t ’: Chunk Information, ‘P’, ‘C’ and ‘N’: Previous, current and next tokens, ‘— i, j ’: Words spanning from the i th left 
position to the j th right position, Current token is at 0th position, ‘X ’: Denotes the presence of the corresponding feature, 
‘r’: recall, ‘p ’: precision, ‘F’: F-measure

Cl A B D E F G H I J K L M O Q R S T U V W Y Z a b c d e g l m q s t p r F
C i -3,3 X X X X X 3 3 X X X X X X X X X X X X 80.67 87.33 83.87
C2 -1,3 X X X X X X X 2 2 X X X X X X X X X X X X X 90.63 72.30 80.43
C3 -3,2 X X X X X X 2 1 X X X X X X X X X X X 90.70 72.28 80.45
C4 -3,3 X X X X X 3 1 X X X X X X X X X X X X X X 90.70 72.20 80.40
C5 -2,2 X X X X X X X X 4 1 X X X X X X X X X X X X 90.47 72.43 80.45
C6 -2,3 X X X X X X X 3 1 X X X X X X X X X X X 90.69 72.49 80.58
C7 -2,3 X X X X X X 2 3 X X X X X X X X X X X X 80.29 87.36 83.68
Cs -3,1 X X X 3 3 X X X X X X X X X X X 80.79 87.39 83.96
C9 -3,3 X X X X X 3 3 X X X X X X X X X 80.56 87.29 83.79

C10 -1,2 X X X X 2 3 X X X X X X X X X X X X 80.54 87.46 83.86
C11 -2,2 X X X X X X 2 4 X X X X X X X X X X X X X X 80.86 87.55 84.07
C12 -2,1 X X X 2 3 X X X X X X X X X X X X 80.45 87.34 83.75
C13 -2,3 X X X X X 2 3 X X X X X X X X X X X X 90.56 72.18 80.33
C14 -3,3 X X X X X X 3 1 X X X X X X X X X X X X X 90.77 72.60 80.67

these two sets of solutions and select 14 promising 
solutions from the resultant set. These promis­
ing solutions correspond to the classifiers that are 
generated by training with the feature combinations 
which yield good recall and precision values. Eval­
uation results of the classifiers with these feature 
combinations are shown in Table 3.

The second step of our proposed approach com­
bines all these 14 classifiers based on the MODE 
based ensemble technique. The parameters are 
fixed as follows: population size=60; number of 
generations=300; other operators are same as the 
feature selection approach. Results of the base­
lines and three different models are shown in Ta­
ble 2.

The baseline which is constructed by including 
all the features in CRF model yield s the recall, pre­
cision and F-measure values of 90.22%, 72.91% 
and 80.65%, respectively. The results show that 
the system suffers because of many false posi­
tives, and this, in turn, affects the precision much. 
This is clearly evident as precision is much lower

compared to recall. This ultimately reduces the 
overall F-measure value. When we apply SOO 
based feature selection [9], the precision increases 
significantly (eliminating false positives), but at the 
cost of recall. The proposed MODE based feature 
selection technique shows superior performance 
compared to the SOO based method. This shows 
the efficacy of MOO over SOO with an increment 
of 3.44 percentage F-measure points.

The first model which is developed using the 
MOO technique that incorporates traditional DE 
shows the recall, precision and F-measure of 
83.17%, 89.22% and 86.09%, respectively. The 
multiobjective modified DE based feature selection 
shows further performance improvement over the 
traditional DE.

The ensemble which is constructed in the sec­
ond stage by combining the classifiers yields the 
recall, precision and F-measure values of 86.15%, 
91.29% and 88.64%, respectively. An improve­
ment of 1.45 percentage F-measure points over 
the feature selection method (Model-2) is a clear
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evidence that we gain in performance if multiple 
competing classifiers are effectively combined to­
gether.

8 Conclusion

In this paper we present our work on feature se­
lection and classifier ensemble for biochemical en­
tity extraction. Our proposed methods for feature 
selection and ensemble learning are based on the 
concept of MOO that incorporates modified version 
of differential evolution as an optimization algo­
rithm. The traditional DE is modified by changing 
the mutation operator.

We performed feature selection within the frame­
work of a robust statistical classifier, namely, CRF. 
The classifier is trained using a diverse feature 
set. Most of these features were generated with­
out using much domain-specific knowledge and/or 
resources. The MOO based feature selection was 
developed by finding the optimized feature set with 
respect to recall and precision.

The solutions obtained on the final Pareto opti­
mal fronts of both the traditional and modified DE 
based feature selection approaches were merged. 
We selected 14 good classifiers from these merged 
set and combined them together into a single sys­
tem by a MODE based ensemble technique.

Our experiments on the benchmark datasets 
show that our proposed approach attains the level 
of performance which is superior compared to 
the baseline constructed by training CRF with 
all the available features. For feature selection, 
MOO based approach performs better compared 
to SOO. Our evaluation also suggests that by com­
bining more than one classifier we can achieve 
better performance.

An immediate extension of the current work is 
to test the efficacy of the proposed approach for 
the other benchmark biochemical corpora that can 
be obtained from other sources, e.g., recently held 
BioCreative campaigns, etc. We also plan to adapt 
the proposed approach for other domains in order 
to get an overall impression about its generalization 
ability.
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