
Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

Generación Automática de Código a Partir de Máquinas de Estado
Finito

 Automatic Code Generation from Finite State Machines

Mario Rincón Nigro
1
, José Aguilar Castro

1
 y Francisco Hidrobo Torres

2

1
CEMISID, Facultad de Ingeniería, Universidad de los Andes

Mérida. Venezuela
aguilar@ula.ve

2
SUMA, Facultad de Ciencias, Universidad de los Andes

Mérida. Venezuela
hidrobo@ula.ve

Artículo recibido en Febrero 16, 2010; aceptado en Octubre 04, 2010

Resumen. Este trabajo presenta una herramienta de
generación automática de código fuente en lenguajes
orientados a objetos para modelos abstractos expresados
en UML. La herramienta permite la generación de código,
tanto de la estructura estática como del comportamiento
dinámico, presentes en modelos de sistemas de software.
En específico, permite generar código fuente en el
lenguaje C++, a partir de los diagramas de clases,
diagramas de estados, y diagramas de actividad del UML.
Dicha herramienta podrá ser integrada a herramientas
CASE de modelado, con capacidades apropiadas de
exportación de modelos del UML en formato XMI. En el
trabajo se presentan detalles sobre el diseño y la
implementación de la herramienta, haciendo hincapié en
la generación del comportamiento dinámico. Además, se
muestran los resultados de su evaluación en casos de
estudio.
Palabras clave: Teoría de la Computación, Modelos de
Computación, Máquinas de Estado Finito, Generación
Automática de Código, UML.

Abstract. In this work, we present a tool for automatic
source code generation, in OO languages, from abstract
models expressed in UML. The tool allows the code
generation, as much of the static structure as the dynamic
behavior, present in models of software systems.
Specifically, it allows to generate source code in the C++
language, from the classes diagrams, state diagrams, and
activities diagrams of the UML. This tool could be
integrated to a modeling CASE tool, with appropriate
exporting capacities of UML models in format XMI . We
present details of tool design and implementation, with
special attention in code generation for dynamic behavior.
In addition, to evaluate the tool, we present study cases
Keywords: Theory of Computing, Models of Computation,
Finite State Machines, Automatic Code Generation, UML.

1 Introducción

El uso de herramientas de generación automática
de código, para agilizar el desarrollo de sistemas de
software e incrementar su confiabilidad, es un
concepto bien conocido en el área de la
computación (Bell, 1998; Herrington et al., 2003).
Actualmente, gran parte del esfuerzo que se invierte
en la investigación en el área de la generación
automática de código, está orientada a la
generación de código en lenguajes de alto nivel a
partir de modelos abstractos de sistemas de
software. Por otro lado, el UML (Eriksson et al.,
2004; Pilone et al., 2005) se ha convertido en el
estándar de la industria para especificar y modelar
sistemas de software en general. Este lenguaje
permite definir conceptos relacionados a los
sistemas de software, establece la notación gráfica
para comunicar estos conceptos, y es lo
suficientemente formal como para apoyar procesos
de automatización dentro del desarrollo de software.
Junto a lenguajes como el UML, han surgido
iniciativas de desarrollo de software centradas en
modelos, como por ejemplo la MDA (Model Driven
Architecture) del OMG (Object Management Group),
que se apoyan en las herramientas de generación
de código para facilitar la integración entre las
distintas fases del desarrollo de software (Herrington
et al., 2003; Pinter et al., 2003).
En la actualidad existen herramientas CASE
(Computer Aided Software Engineering) libres y de
código abierto, entre las que destacan ArgoUML
(ArgoUML, 2009) y Umbrello (Umbrello UML, 2009),
que implementan algunas funcionalidades para

406 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

generar código desde modelos UML.
Específicamente, generan código para
representaciones de estructura estática, esto es,
para diagramas de clase. Por otro lado, diversos
autores han propuesto patrones de diseño para la
implementación de máquinas de estado del UML en
lenguajes orientados a objetos (Pinter et al., 2003;
Eriksson et al., 2004; Pilone et al., 2005), éstos han
servido de base para nuestra propuesta. Ahora bien,
la mayoría de las herramientas existentes que
permiten la generación de código para
representaciones de comportamiento dinámico de
modelos del UML no son libres. Se cuenta con muy
pocas herramientas libres para la generación de
código fuente a partir de modelos del UML, y las
capacidades de dichas herramientas resultan
modestas en comparación con las que ofrecen las
herramientas no libres. Normalmente, ellas se
limitan a la generación de código fuente para
representaciones de la estructura estática de los
sistemas modelados.

En este artículo se presenta una herramienta de
“software libre” que permite generar, de manera
automática, código fuente en lenguajes orientados a
objetos (OO) a partir de modelos del UML. La
herramienta usa tanto las representaciones de la
estructura estática, como las del comportamiento
dinámico. Particularmente, esto último es descrito
usando los diagramas de estado. Con dichos
diagramas se genera el código fuente que
implementa el ciclo de vida de los objetos, y su
comportamiento ante eventos externos. La
herramienta CASE considerada para exportar los
modelos, fue ArgoUML (0.24). La herramienta se
prueba en dos aplicaciones que simulan un reloj
digital y el juego de Tretis. La elección de ellas es
debido a que son aplicaciones bien conocidas, por
lo que no es necesario invertir tiempo en el análisis
de requisitos. Además, estas aplicaciones han sido
presentadas como ejemplo de modelado dinámico
con máquinas de estado en (Pinter et al., 2003;
Eriksson et al, 2004). El código fuente fue generado
para el lenguaje C++.

El artículo está organizado como sigue: en la
primera parte hacemos una introducción al
problema de Generación de Código para
comportamiento Dinámico, en la siguiente sección
presentamos nuestra propuesta de generación de
código fuente usando Máquinas de Estado Finito.
En la sección 3 se detalla la propuesta para generar
código automático, en específico, el patrón de
diseño. La sección 4 presenta la herramienta, la

sección 5 los casos de estudio, y finalmente se
presentan las conclusiones.

2 Generación de Código para
Comportamiento Dinámico

La generación automática de código es el proceso
mediante el cual un programa produce, de manera
automática, código en un lenguaje, a partir de un
esquema expresado en otro lenguaje.
Tradicionalmente, se usa para traducir esquemas en
lenguajes de alto nivel, más cercanos a la manera
de pensar del humano, a lenguajes de más bajo
nivel (ensamblador o lenguaje de máquina)
orientados a su interpretación por parte de
computadores. Se denominan generadores de
código a las aplicaciones que llevan a cabo dicha
tarea. Las aplicaciones de generación de código de
uso más extendido son los compiladores. Estos
toman un programa escrito en un lenguaje de alto
nivel, y lo transforman en código objeto. Los
generadores de código fuente operan en el nivel
inmediatamente superior al de los compiladores,
produciendo, valga la redundancia, código fuente
(Herrington et al., 2003; Pinter et al., 2003).

La generación automática de código fuente ha
sido aplicada exitosamente a diversas actividades,
entre las que cabe mencionar: el desarrollo de
compiladores, la documentación de sistemas de
software, el desarrollo de interfaces gráficas de
usuario, el desarrollo de sistemas Web, entre otras.
Ejemplos de herramientas de generación
automática de código fuente, ampliamente utilizadas
para algunas de las actividades mencionadas, son:
Yacc, Lex, Doxygen, Javadoc y QtDesigner, por
mencionar algunas.

La clase de generación de código de interés
para el presente trabajo es la denominada
generación de código fuente basada en modelos. La
generación de código basada en modelos consiste
en la producción de código fuente en lenguajes de
alto nivel, de manera automática, a partir de
modelos gráficos que describen la estructura, el
comportamiento, o la arquitectura de los sistemas.
Las herramientas de desarrollo de software
actuales, muestran la tendencia a facilitar el
desarrollo basado en modelos, permitiendo a los
desarrolladores trabajar a un nivel de abstracción
más alto, y las herramientas de generación de
código fuente basadas en modelos facilitan la

Generación Automática de Código a Partir de Máquinas de Estado Finito 407

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

transición entre la fase de diseño y la fase de
implementación de los sistemas de software.

La generación de código basada en modelos es
una tecnología en emergencia. El diseño de
lenguajes de modelado que soporten la generación
de código posee relativamente una base teórica
muy reducida, en comparación al conocimiento
teórico que existe para el diseño de lenguajes de
programación y el desarrollo de compiladores. Las
herramientas que generan código a partir de
modelos generan código fuente (en vez de código
ejecutable) para que los usuarios puedan
modificarlo y compensar así posibles deficiencias y
errores.

En (Bell, 1998) se caracterizan tres enfoques
para la generación de código basada en modelos: el
enfoque estructural, el enfoque de comportamiento
y el enfoque de traducción. El orden en el que se
presentan los enfoques no es accidental, pues
representa la evolución de las herramientas de
generación de código en el tiempo. Cada uno de
estos enfoques extiende las capacidades del
enfoque anterior. El enfoque estructural permite
generar el código correspondiente a definiciones de
clases y sus relaciones estáticas. El enfoque de
comportamiento permite generar código para
especificaciones de comportamiento y
especificaciones de acción expresadas en un
lenguaje de alto nivel. Por último, el enfoque de
traducción utiliza modelos de aplicaciones
independientes de las arquitecturas, para dar a los
usuarios mayor control sobre la traducción a código
fuente para arquitecturas de software específicas.

En nuestro caso, el enfoque de comportamiento
es el de interés para generar código de la parte
dinámica. Específicamente, el enfoque de
comportamiento se basa en modelos de máquinas
de estado, extendidas con especificaciones de
acciones en lenguajes de alto nivel. Un beneficio
adicional del enfoque es que posibilita la verificación
de los modelos de comportamiento del sistema,
antes de que el código sea generado (Herrington et
al., 2003; Pinter et al., 2003). En el enfoque de
comportamiento los desarrolladores pueden crear
un modelo de implementación, a partir de los
modelos producidos en las fases de análisis y
diseño, mediante un modelado más preciso,
añadiendo detalles a la estructura de las clases y a
las representaciones de comportamiento. Las
herramientas que soportan este enfoque
usualmente cuentan con máquinas virtuales que
interpretan especificaciones de máquinas de

estados (ejemplo de esto es la herramienta descrita
en (Pinter et al., 2003)).

Otros trabajos recientes interesantes son los
siguientes: en (Zapata et al., 2007) se presenta una
metodología para generar automáticamente código
para controladores lógicos programables (PLCs), a
partir de modelos de automatismo construidos en
redes de Petri jerárquicas. Esta metodología permite
aprovechar técnicas de la ingeniería de software,
como la programación por objetos, y las
capacidades de alto nivel embebidas en los
controladores lógicos, para resolver problemas
complejos de automatización industrial vía la
reusabilidad del código. En (Muñeton et. al., 2007)
se proponen reglas para la generación de código a
partir de metamodelos de diagramas de clases,
secuencial y de maquinas de estados de UML. Las
reglas están definidas en lógica de primer orden,
permitiendo una especificación donde se evitan las
ambigüedades y la necesidad de aprender un
lenguaje de programación especifico. En (Meszaros
et al., 2009) proponen técnicas de modelado visual
para definir el comportamiento dinámico de
lenguajes. Ellos se basan en la técnica de
transformación de modelos, basado en el modelo de
transformación reescritura basada en grafos. En
(Knap et al, 2002) describen un proyecto que
desarrolla un conjunto de herramientas, llamado
HUGO, cuyo modelo de verificación de diseño utiliza
los diagramas de máquinas de estado y de
interacción de UML. El modelo de verificación
asegura que un sistema funciona según lo
especificado por dichos diagramas. El modelo de
verificación detecta errores en los diseños, pero
errores de codificación pueden todavía ocurrir. Por
otro lado, investigaciones han probado que el meta-
modelado es una forma de definir la sintaxis y el
comportamiento dinámico en lenguajes de
programación. Específicamente, una de esas
formas de modelado, denominado DSLs (Domain-
Specific Languages) por sus siglas en ingles, es
propuesta en (Levendovszky et al., 2009) para
automatizar procesos de generación de código de
simulación de procesos. Como podemos ver, hay
mucho interés en trabajos previos por el uso de
modelos formales basados en las máquinas de
estado finito o redes de Petri para especificar el
comportamiento de un objeto. Algunos han
propuestos metamodelos, reglas lógicas, o verifican
comportamiento, nosotros en este trabajo
proponemos generar código directamente desde
UML.

408 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

3 Propuesta para Generar Código desde
Máquinas de Estado Finito

La información contenida en los diagramas de clase
de un modelo del UML brinda la base estática para
la implementación en código fuente del modelo. Los
diagramas de clase por sí solos no expresan
información relevante sobre cómo deben
implementarse las operaciones de una clase. Los
diagramas de estado definidos en el contexto de
una clase resultan de utilidad para representar el
comportamiento dinámico de los objetos. Estos
permiten describir el comportamiento que muestra
una clase ante la recepción de eventos externos, y
de esta representación es posible extraer detalles
sobre cómo implementar las operaciones asociadas
a eventos de llamadas en transiciones.

3.1 Patrón de implementación de diagramas
de estado

Existen diversas maneras de implementar en código
fuente las representaciones de diagramas del UML.
Un diagrama de estado particular del UML puede
ser implementado elegantemente en código fuente
por un desarrollador, pero la estrategia que dicho
desarrollador siga para la implementación puede ser
de tal naturaleza que no permita implementar
correctamente otros diagramas de estados, o
incluso el mismo diagrama de estado con algunas
modificaciones. En este sentido, se propone el uso
de patrones de diseño para la automatización del
proceso de implementación en código fuente desde
diagramas UML, particularmente, desde el diagrama
de máquinas de estado. En nuestro trabajo, un
patrón de diseño es entendido como una solución
genérica y repetible para un problema de ocurrencia
recurrente en el desarrollo de software. Es
importante contar con patrones bien definidos para
la implementación de los diagramas del UML, pues
estos patrones sirven como guía para el proceso de
generación automática de código. El patrón de
diseño presentado a continuación se encuentra
basado en el patrón descrito en (Pinter et al., 2003).
El objetivo de éste es la implementación de
máquinas de estado definidas en el contexto de una
clase.

Las máquinas de estado permiten representar el
comportamiento de un objeto instancia de una clase
a lo largo de su ciclo de vida. Muestran el conjunto
de estados que puede tener un objeto, y cómo se
producen transiciones entre dichos estados en

respuesta a ciertos eventos. Expresado de otra
manera, las máquinas de estado permiten describir
el conjunto de acciones que un objeto debe realizar
como respuesta a un evento (por ejemplo, la
invocación de un método), dependiendo del estado
particular en el que se encuentre.

3.1.1 Descripción del patrón de diseño

El elemento trascendental de nuestra propuesta es
el uso de los diagramas de estado de UML para
extraer la información del comportamiento dinámico
del código a generar. En general, la estrategia de
implementación de diagramas de estado se basa en
la construcción de un mapeo entre pares estado-
evento y un conjunto de acciones a ejecutar.
Basado en ello, en nuestra propuesta definimos un
patrón de diseño que caracteriza al diagrama de
estado de UML como un diagrama de clases. El
patrón propuesto permite caracterizar el diagrama
de estado de UML como un diagrama de clases que
implementa su funcionalidad. La figura 1 muestra el
diagrama de clases para el patrón de diseño que
implementa los diagramas de estado. Pasamos a
describir dicho diagrama de clases. La máquina de
estado se representa como una clase activa que
compone a la clase contexto. Llamamos clase
contexto a la clase cuyo comportamiento describe la
máquina de estados. Los estados y transiciones que
conforman la máquina de estados son
representados a su vez como clases. Todas esas
clases son descritas en la sección 3.1.2.

Las clases que representan a la máquina de
estados, a los estados y a las transiciones, son
todas especializaciones de un grupo de clases
generales que definen funciones básicas. En lo
sucesivo, a las clases especializadas para
máquinas de estado, estados y transiciones, las
llamaremos clases particulares. El patrón de diseño
propuesto implica la sobre-escritura de métodos de
las clases base, para proveer la funcionalidad
descrita por la máquina de estados. Cada clase
particular que represente a una máquina de estados
debe sobre-escribir el método inicializar(). La clase
base para las máquinas de estado es una clase
abstracta, es necesario que sus subclases
concretas sobre-escriban dicho método, e
instancien en él a todas las clases particulares que
representen los estados y transiciones,
especificando, además, las relaciones de jerarquía
que se den entre los estados. El código fuente
resultante de la aplicación del patrón descrito es el
de las operaciones asociadas a los eventos de

Generación Automática de Código a Partir de Máquinas de Estado Finito 409

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

llamadas de las transiciones del diagrama de
estado.

3.1.2 Clases base del patrón

La figura 2 muestra el diagrama de clases de la
base del patrón de implementación, donde se
especifican los atributos, métodos y asociaciones de
cada clase. A continuación se describen las clases
presentes en dicho diagrama.

 Clase MáquinaEstado: es la base para las
máquinas de estado particulares definidas en el
contexto de una clase. Es una clase activa, esto
es, posee un hilo propio de ejecución en el que
se procesan los eventos recibidos. Está
compuesta por un conjunto de estados y
transiciones, según lo indique la máquina de
estados que representa. Dicha máquina posee
una cola de eventos externos, donde se
almacenan los eventos generados
externamente y los eventos de tiempo, para su
procesamiento. Además de la cola de eventos
externos, posee una cola de eventos en la que
se almacenan los eventos generados
internamente.

 Clase Estado: Esta clase abstracta es la base
para los estados particulares definidos por la
máquina de estados. Los objetos de esta clase
son capaces de ejecutar sus acciones
asociadas.

 Clase Transición: Esta clase representa las

transiciones definidas en la máquina de
estados. Los objetos de esta clase son capaces
de ejecutar la acción efecto asociada a la
transición.

 Clase ColaEventos: representa la cola de
eventos externos de una máquina de estados.
La clase puede ser implementada como un
envoltorio para una cola, por ejemplo una cola
de la biblioteca STL de C++. La clase provee

métodos para encolar y desencolar eventos, en
orden FIFO, de modo seguro, para su uso por
parte de distintos hilos.

 Clase Evento: Esta clase representa los

eventos que se pueden recibir y procesar en la
máquina de estados.

 Clase ManejadorDisparo: provee un envoltorio
adecuado para una transición compuesta y un
estado objetivo. La transición compuesta es la
secuencia de transiciones habilitadas que se
deben tomar como consecuencia del
procesamiento de un evento. Esta secuencia de
transiciones y el estado objetivo asociado es

calculado por la operación manejaEvento() de
cada estado particular. Luego es utilizada por la
clase MaquinaEstado para ejecutar los efectos
del disparo de transición.

 Clase HiloDestinador: es el responsable de

ubicar los eventos en la cola de eventos de las
máquinas de estado. Luego de ser creado, el
hilo existe hasta que cumple con la tarea de
ubicar el evento en la cola de eventos externos.
La creación de estos hilos para ubicar los
eventos en la cola tiene como finalidad evitar
que el hilo de ejecución de la máquina de
estados monopolice la cola de eventos
externos. El hilo de ejecución de la máquina de
estados puede monopolizar la cola de eventos,
pues como consecuencia de acciones de
estado es posible levantar eventos de llamada a
operaciones asociados a las transiciones de la
máquina de estados.

 Clase Tope: Esta subclase de la clase Estado
representa el estado tope de las máquinas de
estado. Toda máquina de estados instancia un
objeto de este tipo.

3.1.3 Descripción del Código producido

Como ya se mencionó, el código producido por el
patrón descrito implementa las operaciones de clase
asociadas a eventos de llamada en las transiciones
de la máquina de estados. Una máquina de estados
definida en el contexto de una clase, debería
permitir el uso de atributos y operaciones definidas
por la clase contexto, con el mismo nombre con el
que fueron definidas en dicha clase, y sin
restricciones de visibilidad. Debido a que la máquina
de estados es implementada también como una
clase, es necesario definir en la clase contexto un
conjunto de operaciones que permitan ejecutar las
expresiones asociadas a las acciones y guardias
definidos en la máquina de estados. La
implementación en C++ de la máquina de estados

implica también que ésta debe definirse como una
clase amiga de la clase contexto, con el fin de que
pueda hacer uso de sus características privadas.
Adicionalmente, para la clase contexto se deben
definir los atributos y operaciones que indiquen los
diagramas de clase:

 Atributos para el objeto instancia de la máquina
de estados particular, y para los identificadores
de eventos de llamada y eventos de tiempo.

410 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

 Métodos para cada acción de estado: entrada,
hacer y salida; cada guardia de transición, y
cada efecto de transición.

Las clases particulares para la máquina de estados
pueden ser declaradas de manera anidada en la
clase contexto.

Fig. 1. Diagrama de clase para el patrón de implementación de máquinas de estado

Generación Automática de Código a Partir de Máquinas de Estado Finito 411

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

 Fig 2. Diagrama de clases base del patrón de implementación

4 Herramienta

4.1 Alcances de la herramienta

La herramienta no está ligada a la generación
automática de código para aplicaciones de algún
tipo particular, permitiendo generar código para
cualquier aplicación orientada a objetos que pueda
modelarse mediante los elementos del UML
soportados. Esta herramienta puede ser integrada
en cualquier aplicación de modelado en el UML, que

soporte los elementos del UML 1.4 reconocidos por
la herramienta, y que permita exportar los modelos
en el formato XMI 1.2. Se da soporte a los
elementos presentes en diagramas de clases,
diagramas de estados y diagramas de actividad.
Además, se soporta la integración de
representaciones del UML, reconociendo máquinas
de estado definidas en el contexto de una clase. El
lenguaje de implementación de la herramienta es el
lenguaje de programación Python, y todo el software
involucrado en la codificación de la herramienta es
software libre.

412 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

4.2 Proceso de Generación de Código

La figura 3 representa el conjunto de actividades
que realiza la herramienta durante el proceso de
generación automática de código fuente.

 El generador de código toma como entrada un
archivo en formato XMI, que describe un
modelo expresado en el UML (Grose et al.,
2002).

 El archivo de entrada es analizado por el parser
de XMI, y el resultado de esta actividad es un
conjunto de objetos (instancias de clases) que
representan el modelo UML contenido en el
archivo.

 Los objetos se transforman para simplificar su
representación. Para esto se aplica, entre otras
actividades: resolución de referencias, cálculo
de dependencias, cálculo de espacios de
nombre, clasificación y ordenamiento.

 Se generan, usando plantillas de texto, las
cadenas de caracteres que representan el
código fuente de la aplicación.

 Para favorecer su legibilidad y dar uniformidad
al Código fuente, se realizan transformaciones
al código obtenido (tabulación, eliminación de
espacios en blanco, eliminación de líneas en
blanco consecutivas, etc.)

 Finalmente, se procede a almacenar,
organizados en directorios, los archivos de
código fuente generados.

4.3 Implementación

Como se mencionó anteriormente, la codificación de
la herramienta se realizó en Python. La herramienta
de generación de código hace uso de tres
bibliotecas: dos bibliotecas para el análisis de
archivos en XML, y una incluida con el motor para el
procesamiento de plantillas de texto que permite

que scripts en Python interactúen con el motor.
Todas estas bibliotecas están escritas en Python.
Para la lectura de archivos en XML se usan las
bibliotecas PyXML y 4SuitXML. Para el manejo de
las plantillas se usa Cheetah. Adicionalmente, se

usa una biblioteca hebras de QT 4.1.1 para dar
soporte al manejo de hebras POSIX.
 En cuanto al esquema funcional de la
herramienta, en la versión actual trabaja en modo
comando. Recibe como argumentos el nombre del
archivo que contiene al modelo para el que se va a
generar código, un identificador para el lenguaje
objetivo de la generación de código, y el directorio
del sistema de archivos en el que se desea
almacenar el código fuente generado. Esto facilita
tanto su integración con una herramienta para el
modelado en UML, como su uso a modo de
herramienta independiente. Debido a que en el
lenguaje C++ existen numerosas características no

soportadas directamente por el UML, surgió la
necesidad de definir un conjunto de elementos del
UML para poder expresar en los modelos dichas
características. Así, se crearon estereotipos y
definiciones de etiquetas. Los estereotipos
reconocidos por la herramienta son

 framework: Sirve para indicar a la herramienta
que las clases y elementos definidos en este
paquete ya existen y son utilizados por la
aplicación modelada. Por lo tanto, las clases
definidas en este paquete o en paquetes
anidados, directa o transitivamente, en el
paquete, no son generadas en código fuente.

 utility: las clases que contengan un estereotipo
utility ya existen, al igual que los paquetes
framework, por lo que la implementación en
código fuente de estas clases tampoco es
generada.

 create: permite indicar que una operación de
clase es un constructor.

Generación Automática de Código a Partir de Máquinas de Estado Finito 413

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

Fig. 3. Actividades de la generación de código

 destroy: permite indicar que una operación de
clase es un destructor.

 reference: permite indicar que un atributo de
clase es una referencia.

Las siguientes definiciones de etiquetas son
reconocidas por la herramienta:

• variables_declaration: Permite expresar en el
lenguaje objetivo de la generación de código, el
conjunto de variables que deben ser declaradas
dentro de una operación de clase.

• pointer_status: Permite expresar si un atributo es
de tipo apuntador, apuntador a apuntador, etc.

• array_status: Igual que la anterior, pero permite
expresar que un atributo de clase es una arreglo
y su tamaño.

• macro_definition: Permite definir macros en el
archivo de definición para una clase.

• macro_expand: Permite expandir macros en la
definición de una clase.

• header_include: Permite incluir archivos de
cabecera en el archivo de definición de una
clase.

• using_directive: Permite declarar que en el
archivo de definición de una clase se va a hacer
uso de un espacio de nombres.

 create_initializer: Permite declarar para los
constructores de clase, como deben
inicializarse algunos atributos y a que
constructores de clase llamar para la
inicialización.

5 Caso de Estudio

El código fuente de la herramienta, así como de los
casos de estudios presentados en este trabajo,
generados a través de ella (al igual que los modelos
del UML a partir de los cuales se produjeron), se
pueden conseguir en:
http://gennaproject.googlecode.com/svn/trunk/.

5.1 Reloj Digital

La primera aplicación simula un reloj digital. El
modelado de la aplicación se llevó a cabo de la

414 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

siguiente manera: primero fueron construidas las
representaciones de estructura estática, y luego
sobre éstas fueron definidas las representaciones
de comportamiento dinámico. Para las clases en las
que se identificó un comportamiento complejo,
fueron definidas las máquinas de estado.

5.1.1 Criterios de Evaluación

Para evaluar el grado en el que se corresponden el
código fuente generado y el modelo de las
aplicaciones, se optó por el uso de algunas métricas
simples para sistemas orientados a objetos,
descritas en (Booch, 1994). Estas incluyen una
comparación del número de clases y el número de
características por clase, especificadas en el
modelo y presentes en el código fuente. También se
presentan tablas con la cantidad de líneas de código
“completas” e “incompletas” generadas para la
aplicación, con la finalidad de dar una idea intuitiva
del esfuerzo que permite ahorrar la herramienta en
la implementación en código fuente de los modelos
del UML.
 Se consideran líneas de código “incompletas”
todas aquellas que contengan expresiones escritas
por el modelador en el lenguaje de programación
objetivo de la generación de código (por ejemplo,
las expresiones para guardias, acciones de estado,
efectos de transición, definiciones de etiqueta, etc.).
Las líneas de código “completas” son aquellas
generadas automáticamente por la herramienta a
partir de elementos presentes en el modelo que son
independientes del lenguaje objetivo de la
generación de código. Por ejemplo, son líneas
“completas” las que indican la herencia entre clases
(lo cual, en modelos del UML se expresa mediante
relaciones de generalización). El punto importante
de las líneas de código “completas” es que surgen
de elementos de los modelos del UML que son
independientes de los lenguajes de programación,
esos elementos de modelo facilitan la generación de
código en distintos lenguajes de programación.
 Definir lo que es una línea de código también
resulta difícil, pues para ello no existe un consenso
general. En nuestro caso, estamos considerando
como una “línea de código” en el lenguaje C++,
todas las sentencias que terminan en „;‟
(expresiones aritméticas, de asignación, llamadas a
funciones, etc.), bloques de estructuras de control
(if(){}, switch(){}, case expr:, break;, while(){}, for(){},
do{}while();), las sentencias iniciales de la
declaración de clase (class X {};), especificadores

de visibilidad (public:, private:, etc.), declaraciones
de miembros de dato, definiciones de funciones
miembro, signaturas en declaraciones de funciones
miembro, y directivas include.

5.1.2 Diseño del Reloj Digital

La aplicación implantada con el apoyo de la
herramienta de generación de código es una
aplicación gráfica que muestra la hora en formato
digital, de la misma manera que un reloj de pulsera.
Esta aplicación es presentada como ejemplo de
modelado dinámico con máquinas de estado en
(Pinter et al., 2003; Eriksson et al, 2004). Al modelo
se le agregaron las siguientes funcionalidades: la
posibilidad de establecer los segundos que muestra
el reloj, la posibilidad de disminuir las horas, minutos
y segundos, y un evento de tiempo que evita que el
reloj esté inactivo tras establecer algún elemento de
la hora.
 El reloj digital posee cuatro modalidades: Mostrar
Hora, en la cual la hora es desplegada y actualizada
a cada segundo, y las modalidades Establecer
Hora, Establecer Minuto y Establecer Segundo, en
las que las horas, minutos y segundos que
despliega el reloj pueden ser modificadas. El cambio
de modalidad en el reloj ocurre cada vez que se
presiona el botón Mode, y se da cíclicamente en el
orden en el que se mencionan las modalidades. La
figura 4, muestra un gráfico de pantalla con la
aplicación Reloj Digital. Bajo las tres últimas
modalidades, la presión de los botones Inc o Dec
(ver figura 4) incrementa o disminuir la hora (minuto
o segundo, según sea el caso), respectivamente. Si
el reloj se encuentra en alguna de estas
modalidades, y durante un lapso de 10 segundos no
ocurre ningún intento por modificar las horas, los
minutos o los segundos, según sea el caso, el reloj
regresa a la modalidad Mostrar Hora.

Fig. 4. Aplicación Reloj Digital

Estructura estática de la aplicación: La figura 5
muestra el diagrama de clases de la aplicación, tres
de las cuales (QPushButton, QWidget y QFrame)

Generación Automática de Código a Partir de Máquinas de Estado Finito 415

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

son clases de la librería QT, y están contenidas en
un paquete del modelo etiquetado con
<<framework>>. La función de las otras dos clases
(Clock y DigitalDisplay) se describe a continuación:

 Clock: Esta clase representa el motor del reloj,
mantiene y actualiza las horas, minutos y
segundos que deben mostrarse. La clase es un
componente gráfico, para el que se identificó un
comportamiento dinámico. Es una subclase de
la clase QWidget de la librería QT. Posee tres
asociaciones con la clase QPushButton (una
por cada botón que debe mostrar), y una
asociación con la clase DigitalDisplay. Esta
clase presenta el comportamiento descrito en la
figura7. Para la clase se definieron cinco
operaciones, que se especifican en el modelo
de la siguiente manera: i) Mediante máquinas
de estado: inc():void, modeButton():void y
dec():void. ii) Mediante expresiones en

elementos Method: Clock() y %Clock().

 DigitalDisplay: es también un componente
gráfico que permite desplegar la hora
gráficamente, en formato militar. La clase define
tres operaciones especificadas de la siguiente
manera: i) Mediante grafos de actividad:
paintEvent(e: QPaintEvent):void, ii) Mediante
expresiones en elementos Method:
DigitalDisplay() y show(h: int, m: int, s: int, high:
int):void.

Comportamiento dinámico de la aplicación: El
diagrama de la figura 6 muestra la máquina de
estados definida en el contexto de la clase Clock,
por medio del cual se especificaron las operaciones
inc, modeButton y dec.

5.1.3 Evaluación de resultados

La herramienta genera las definiciones de clases y
características, conforme a la representación de
estructura estática expresada en el modelo,
tomando en cuenta todos los elementos presentes:
clases, atributos, operaciones, relaciones de
herencia, asociaciones, estereotipos y valores de
etiqueta. El código fuente correspondiente a las
representaciones de comportamiento dinámico del
modelo también fue generado, conforme a la
funcionalidad que expresan. El código fuente que
implementa las operaciones especificadas en los
diagramas de estado y diagramas de actividad fue
producido tomando en cuenta acciones de estado,
efectos de transición, eventos asociados a
transiciones, etc. El código fuente generado es

compilable y está ajustado a la funcionalidad
expresada en el modelo.
 Las tablas 1 y 2 muestran el número de
características (atributos, asociaciones y
operaciones) para cada clase en el modelo del Reloj
Digital y en el código fuente generado. La diferencia
entre ambas tablas se da en la clase Clock, la cual
define una máquina de estados. El código fuente
generado define diez atributos y quince operaciones
más que las especificadas explícitamente en el
modelo, además de que requiere de más
asociaciones. Estas características son las
requeridas por el patrón de implementación de
máquinas de estado. Las veintiséis clases que se
definen dentro de la clase Clock son las subclases
de MaquinaEstado, Estado y Transicion,
presentadas en la sección 3; estas subclases se
corresponden con la máquina de estados, los dos
estados iniciales, el estado final, los cuatros estados
simples, el estado compuesto, y las diecisiete
transiciones que muestra el diagrama de la figura 6.
 Los datos presentados en la tabla 3 muestran la
cantidad de líneas de código “completas” e
“incompletas”. La tabla 3 indica que el 88% de las
líneas de código generadas para la aplicación
fueron líneas de código producidas en base a
información expresada en el modelo, y que es
independiente del lenguaje de implementación
objetivo. Los datos que se ofrecen sólo permiten dar
una idea intuitiva del esfuerzo que debe llevar a
cabo un programador para terminar la aplicación,
trabajando sobre el código fuente generado, si el
modelo de entrada no tuviera ninguna expresión en
el lenguaje de programación objetivo C++. Un

programador debería agregar expresiones en 83
líneas de código, y crear una función principal en
C++, para que la aplicación del Reloj Digital pudiera

ser compilada y ejecutada con todas sus
funcionalidades. Las expresiones que serían
necesario agregar son todas expresiones sencillas
del lenguaje C++ (ejemplos serían las expresiones
en C++ de los guardias de transición, y de las

acciones de los estados, mostradas en la figura 6).
Por otro lado, la declaración de la función principal
tampoco requiere mucho esfuerzo (sólo requiere la
declaración de una variable de aplicación QT y de
una variable de tipo Clock).

416 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

Tabla.1. .Número de atributos, asociaciones y
operaciones, para cada clase en el modelo del Reloj
Digital

Clase Atrib. Asoc. Oper.

Clock 3 4 5

DigitalDisplay 6 0 3

Tabla.2. . Número de atributos, asociaciones y
operaciones, para cada clase en el modelo del Reloj
Digital en el código fuente generado con la herramienta
del Reloj Digital

Clase Atrib. Asoc. Oper.

Clock 13 26 20

DigitalDisplay 6 0 3

Fig. 5. Diagrama de clases del modelo del Reloj Digital

Generación Automática de Código a Partir de Máquinas de Estado Finito 417

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

Fig. 6. Diagrama de máquina de estado definida en el contexto de la clase Clock

Tabla 3. Líneas de código generadas para el modelo del Reloj Digital

Clase Líneas de código %Líneas Total

 Completas Incompletas Completas Incompletas

Clock 557 54 91 9 611

DigitalDisplay 58 29 67 33 87

Total 615 83 88 12 698

5.2 Juego de Tetris

5.2.1 Descripción del problema

El juego de Tetris consiste en un conjunto de
bloques de formas distintas, a los que se llama
tetrominoes, que caen y se acumulan en el fondo de
en un pozo, por efecto de una gravedad simulada.
El objetivo del juego es evitar que los tetrominoes
lleguen el tope del pozo durante la mayor cantidad
de tiempo posible. Cuando los tetrominoes forman

una línea completa desde uno de los muros del
pozo, hasta el muro opuesto, dicha línea
desaparece y todos los bloques sobre esa línea
caen efecto de la gravedad simulada. El jugador
puede mover los bloques hacia la derecha del pozo,
hacia la izquierda, o puede rotar los bloques,
mediante el teclado. Puede también mover los
bloques hacia abajo de dos maneras: puede iniciar
una “caída suave”, esto es, el bloque se mueve
hacia abajo un solo espacio, o puede llevar a cabo
una “caída dura”, o sea, el bloque cae

418 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

inmediatamente hasta el fondo del pozo o hasta que
colisione con otros bloques en el fondo del pozo.
Cada vez que un bloque llega al fondo del pozo,
otro bloque es seleccionado de manera aleatoria por
el juego, y comienza su caída desde el tope. La
velocidad de caída de los bloques aumenta a lo
largo del juego, cada vez que el jugador alcanza un
cierto número de líneas completas de bloques (por
ejemplo: cada vez que el jugador completa diez
líneas). El puntaje del jugador aumenta cada vez
que un nuevo tetromino es generado, y cada vez
que el jugador completa una línea de bloques. El
juego termina cuando la pila de bloques que
comienza en el fondo, alcanza el tope.

5.2.2 Modelo de la aplicación

Estructura estática: Las clases definidas y sus
operaciones son.

 Block: representa un bloque o tetromino del
juego tetris. El bloque puede tener siete formas
distintas. La forma y la ubicación del bloque se
representa en un arreglo que contiene las
coordenadas del pozo, en las que se ubica el
bloque. La clase provee operaciones para
calcular las nuevas coordenadas del bloque
luego de los movimientos. Las operaciones
fueron especificadas mediante grafos de
actividad.

 Playground: representa el pozo en el que caen
los bloques. La clase provee operaciones para
acumular los bloques cuando llegan al fondo,
para limpiar las líneas completadas, y para
generar nuevos bloques aleatoriamente. Las
operaciones fueron especificadas mediante
grafos de actividad.

 Engine: es un motor de juego, esta clase se
encarga de hacer las llamadas a los métodos
correspondientes conforme el jugador genera
eventos, y se encarga de crear los eventos de
tiempo que simulan la gravedad. El diagrama de
la máquina de estados de la figura 7 describe el
comportamiento de Engine.

 NextWidget: es un componente de interfaz
gráfica que renderiza el próximo bloque que va
a caer. Las operaciones fueron especificadas
mediante grafos de actividad.

 PlaygroundWidget: es el componente de
interfaz gráfica que renderiza el pozo en el que
caen los bloques. Las operaciones fueron
especificadas mediante grafos de actividad.

 TetrisWindow: componente de interfaz gráfico
para la ventana del juego. Incluye botones para

pausar el juego, comenzar un nuevo juego y
terminar la aplicación. Las operaciones fueron
especificadas mediante grafos de actividad.

Comportamiento dinámico: La figura 7 muestra la
máquina de estados definida en el contexto de la
clase Engine. Dicha máquina de estado presenta
características no presentes en la máquina de
estados del Reloj Digital, que son: transiciones
compuestas y pseudoestados de decisión.

5.2.3 Evaluación de resultados

Se generaron todas las definiciones de clases, sus
características y relaciones conforme a lo expresado
en el modelo. El código fuente correspondiente a las
representaciones de comportamiento dinámico
también está ajustado a la funcionalidad expresada
en ellas. Las operaciones definidas en la máquina
de estado funcionan conforme a lo expresado en el
modelo, el código fuente generado para la máquina
de estado (que incluye eventos de tiempo, puntos
de decisión, transiciones compuestas, etc.)
mostrada en el diagrama de la figura 7 es correcto.
La tabla 4 muestra el conteo de características entre
el modelo y el código fuente para la aplicación del
Tetris de la clase Engine (para el resto de clases no
hubo diferencias). El mismo requiere de más
características que las definidas en el modelo.

Tabla 4. Número de atributos, asociaciones y
operaciones, para la clase Engine del Modelo y del Código

generado

Engine Atrib. Asoc. Oper.

Modelo 8 2 17

Código
Generado

19 38 33

La tabla 5 muestra el conteo de líneas de código
completas e incompletas, para cada una de las
clases generadas por la herramienta. La
interpretación es similar a la de los datos de la tabla
3. En este caso existen 339 líneas de código
incompletas, lo cual representa el 20% del total de
las líneas de código generadas.
La generación del código correspondiente a la base
estructural que proveen los diagramas de clases
libra al programador de la tarea (en ocasiones
tediosa) de declarar las clases y sus atributos en el

lenguaje de implementación, y provee los
fundamentos para la integración en el modelo de las
representaciones dinámicas. Los diagramas de
estado resultan un medio poderoso para el

Generación Automática de Código a Partir de Máquinas de Estado Finito 419

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

modelado del comportamiento de los objetos. La
implementación manual en código fuente de la
funcionalidad descrita por medio de las máquinas de
estado resulta una tarea más difícil que el modelado
de las mismas. En este sentido, la herramienta de
generación de código resulta un medio idóneo para
acelerar el proceso de desarrollo de las dos
aplicaciones. Sobre el uso de diagramas de

actividades para especificar las acciones que deben
llevar a cabo las operaciones, no es un requisito
para la generación de código con la herramienta, y
utilizarlos queda como decisión de los
desarrolladores.

Fig. 7. Diagrama de máquina de estado definida en el contexto de la clase Engine

Tabla 5. Líneas de código generadas

Clase Líneas de código %Líneas Total

 Completas Incompletas Completas Incompletas

Block 122 47 72 28 169

Playground 154 57 73 27 211

Engine 884 100 90 10 984

PlaygroundWidget 59 40 60 40 99

NextWidget 43 28 61 39 71

TetrisWindow 58 37 61 39 95

Total 1351 339 80 20 1690

420 Mario Rincón Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

6 Conclusiones

La experiencia de utilizar la herramienta para el
desarrollo de aplicaciones, dejó en claro cuáles de
los elementos del UML considerados en el presente
trabajo son los más útiles para el proceso de
generación de código: los elementos de diagramas
de clases y las máquinas de estados. Los
diagramas de estado resultan un medio poderoso
para el modelado del comportamiento de los
objetos. La implementación manual en código
fuente de la funcionalidad descrita por medio de las
máquinas de estado, resulta una tarea más difícil
que el modelado de las mismas. En este sentido, la
herramienta de generación de código resulta de
utilidad para acelerar el proceso de desarrollo. En
general, el código fuente generado por la
herramienta es correcto y compilable, en la medida
en que los modelos que le sirven de entrada estén
definidos con precisión. Aún cuando los modelos
que sirven de entrada a la herramienta no posean el
grado de detalle requerido para que el código fuente
generado sea compilable, éste puede ser
completado manualmente. Como último comentario,
debemos mencionar que el UML no permite
expresar de manera independiente a los lenguajes
de programación, las expresiones que especifican
las acciones a realizar en operaciones, acciones, las
condiciones de guardias, etc. El uso de dichas
expresiones en los modelos los hace dependientes
de los lenguajes de programación objetivo. Si se
deseara generar código fuente para los mismos
modelos en otros lenguajes de programación,
dichas expresiones tendrían que ser sustituidas por
expresiones en el nuevo lenguaje objetivo.
 Como trabajos futuros se deben hacer
implementaciones de la herramienta que generen
código en otros lenguajes de programación.
Además, se deben realizar una mayor cantidad de
pruebas de generación de código sobre otros
dominios de uso frecuente. La herramienta de
generación de código aún no soporta el chequeo
sintáctico y semántico automático de los modelos
que le sirven de entrada, por lo que un nuevo
componente que realice dicha tarea esta en
desarrollo, basado en la herramienta de verificación
de modelos SPIN [29]. Tampoco en la presente
versión se considero la generación de código fuente
para elementos que expresan procesamiento
concurrente en los diagramas de estados. La
herramienta será extendida para incluir la

implementación de los elementos de concurrencia
que pueden modelarse en dichos diagramas.

Referencias

1. ArgoUML Project Home. (s.f.). Retrieved from
http://argouml.tigris.org/

2. Bell, R. (1998). Code Generation from Object Models.
Embedded Systems Programming. 11 (3) 74 – 88

3. Booch, G., Maksimchuk R., Engle M., Young B.,
Conallen J., & Houston K. (2007). Object-Oriented
Analysis and Design with applications (3

rd
 ed.). Upper

Saddle River, NJ : Addison-Wesley
4. BOUML User Manual, (s.f.). Retrieved from

http://bouml.free.fr/doc/index.html
5. Eriksson, H., Penker, M., Lyons, B., Fado, D. (2004)

UML 2 Toolkit. Indianapolis, Ind. : Wiley Publishing.
6. Grose, T., Doney, G. C., Brodsky, S.A. (2002).

Mastering XMI: Java programming with XMI, XML and
UML. New York: John Wiley.

7. Herrington, J. (2003). Code Generation in Action.
Greenwich: Manning Publications.

8. Knapp A. Merz S. (2002). Model Checking and Code
Generation for UML State Machines and Collaborations,
5th Workshop Tools for System Design and Verification,
Augsburg, Alemania, 59-64.

9. Levendovszky T, Meszaros T (2009). Tooling the
Dynamic Behavior Models of Graphical DSLs, Human-
Computer Interaction. Novel Interaction Methods and
Techniques, Lecture Notes in Computer Science, 5611,
830-839.

10. Meszaros T., Levendovszky T., Mezei G. (2009). Code
Generation with the Model Transformation of Visual
Behavior Models. Electronic Communications of the
EASST, 21, 110-119

11. Muñeton A., Zapata C.M., Arango F. (2007). Reglas para
la Generación Automática de Código definidas sobre
Metamodelos Simplificados de los Diagramas de Clases
de Secuencias y Máquinas de Estado de UML2.0, Dyna,
74 (153), 267-283.

12. Pilone, D., Pitman, N. (2005). UML 2.0 in a Nutshell.
Sebastopol, CA: O‟Reilly Media.

13. Pinter, G., Majzik, I. (2003). Program Code Generation
Based on UML Statechart Models. Periodica Polytechnica-
Electrical Engineering. 47 (3-4), 187-204.

14. Umbrello UML Modeller (s.f.). Retrieved from
http://uml.sourceforge.net/index.php

15. Zapata G., Branch J. Quintero L.F. (2007). Metodología
para el Modelado y Generación de Código de Control de
Sistemas Secuenciales mediante Redes de Petri
Jerárquicas, Revista Avances en Sistemas e Informática,
4 (1), 59-65

http://argouml.tigris.org/
http://bouml.free.fr/doc/index.html
http://www.pst.ifi.lmu.de/veroeffentlichungen/knapp-merz:2002.pdf
http://www.pst.ifi.lmu.de/veroeffentlichungen/knapp-merz:2002.pdf
http://www.springerlink.com/content/0302-9743/

Generación Automática de Código a Partir de Máquinas de Estado Finito 421

Computación y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

Mario Rincón Nigro

Recibió el título de Ingeniero de Sistemas de la Universidad
de Los Andes, Mérida, Venezuela en 2007. Actualmente cursa
estudios doctorales en la University of Houston, Houston TX,
USA, y pertenece al Computer Graphics & Interactive Media
Lab en la misma institución. Sus intereses incluyen
computación de altas prestaciones en GPUs y algoritmos de
renderización.

Obtuvo una Maestría en Informática en 1991 en la

Universidad Paul Sabatier-Toulouse-France, y el Doctorado
en Ciencias Computacionales en 1995 en la Universidad
Rene Descartes-Paris-France. Además, realizó un
Postdoctorado en la Universidad de Houston entre 1999 y
2000. Él es Profesor del Departamento de Computación de la
Universidad de los Andes e investigador del Centro de
Microcomputación y Sistemas Distribuidos (CEMISID) de la
Universidad de los Andes. Dr. Aguilar ha sido
profesor/investigador visitante en varias universidades y
laboratorios (Universite Pierre et Marie Curie Paris-France,
Laboratoire d’Automatique et Analyses de Systemes
Toulouse-France, University of Houston-USA, Universidad
Complutense Madrid-España, Institute National de Recherche
en Informatique Niza-Francia, entre otros).Sus áreas de
interés son los Sistemas Paralelos y Distribuidos,
Computación Inteligente, Optimización Combinatoria,
Reconocimiento de Patrones, y Automatización Industrial. Ha
publicado más de 250 artículos en revistas, libros y actas de
congresos y ha participado en diversos proyectos de
investigación financiados, entre otros, por Petróleos de
Venezuela S.A. (PDVSA), FONACIT, CNRS. Es miembro del
Sistema Nacional de Promoción del Investigador (PPI) Nivel
IV.

Francisco Hidrobo Torres

Se graduó de Ingeniero de Sistemas en la Universidad de Los
Andes (ULA) en 1993; luego obtuvo el grado de MSc. en
ComputaciÃ³n en la misma Universidad. En 2003 obtiene el
Diploma de Estudios Avanzados (DEA) y en 2004 el grado de
Doctor en Informática, ambos en la Universidad Politécnica de
Catalunya (España). Trabaja en las áreas de computación
inteligente y computación de alto rendimiento, en las cuales
ha publicado varios trabajos en conferencias internacionales y
revistas especializadas. Asesor en diversos proyectos de
investigación y desarrollo llevados en conjunto entre la
Universidad de los Andes y Petróleos de Venezuela S.A.
(PDVSA). Profesor Titular de la Facultad de Ciencias de la
Universidad de Los Andes. Miembro del Sistema Nacional de
Promoción del Investigador (PPI) Nivel I y del Programa de
Estímulo al Investigador (PEI) de la ULA desde 1997.

José Aguilar Castro

