Generacion Automatica de Codigo a Partir de Maquinas de Estado
Finito

Automatic Code Generation from Finite State Machines

Mario Rincén Nigro®, José Aguilar Castro® y Francisco Hidrobo Torres®
'CEMISID, Facultad de Ingenieria, Universidad de los Andes
Mérida. Venezuela
aguilar@ula.ve
2SUMA, Facultad de Ciencias, Universidad de los Andes
Mérida. Venezuela
hidrobo@ula.ve

Articulo recibido en Febrero 16, 2010; aceptado en Octubre 04, 2010

Resumen. Este trabajo presenta una herramienta de
generacion automatica de codigo fuente en lenguajes
orientados a objetos para modelos abstractos expresados
en UML. La herramienta permite la generacion de codigo,
tanto de la estructura estatica como del comportamiento
dinamico, presentes en modelos de sistemas de software.
En especifico, permite generar cédigo fuente en el
lenguaje C++, a partir de los diagramas de clases,
diagramas de estados, y diagramas de actividad del UML.
Dicha herramienta podra ser integrada a herramientas
CASE de modelado, con capacidades apropiadas de
exportacion de modelos del UML en formato XMI. En el
trabajo se presentan detalles sobre el diseno y la
implementacion de la herramienta, haciendo hincapié en
la generacion del comportamiento dinamico. Ademas, se
muestran los resultados de su evaluacion en casos de
estudio.

Palabras clave: Teoria de la Computacion, Modelos de
Computacion, Maquinas de Estado Finito, Generacion
Automatica de Codigo, UML.

Abstract. In this work, we present a tool for automatic
source code generation, in OO languages, from abstract
models expressed in UML. The tool allows the code
generation, as much of the static structure as the dynamic
behavior, present in models of software systems.
Specifically, it allows to generate source code in the C++
language, from the classes diagrams, state diagrams, and
activities diagrams of the UML. This tool could be
integrated to a modeling CASE tool, with appropriate
exporting capacities of UML models in format XMl . We
present details of tool design and implementation, with
special attention in code generation for dynamic behavior.
In addition, to evaluate the tool, we present study cases
Keywords: Theory of Computing, Models of Computation,
Finite State Machines, Automatic Code Generation, UML.

1 Introduccién

El uso de herramientas de generacion automatica
de cddigo, para agilizar el desarrollo de sistemas de
software e incrementar su confiabilidad, es un
concepto bien conocido en el area de la
computacion (Bell, 1998; Herrington et al., 2003).
Actualmente, gran parte del esfuerzo que se invierte
en la investigacion en el area de la generacion
automatica de cédigo, esta orientada a la
generacion de codigo en lenguajes de alto nivel a
partir de modelos abstractos de sistemas de
software. Por otro lado, el UML (Eriksson et al.,
2004; Pilone et al., 2005) se ha convertido en el
estandar de la industria para especificar y modelar
sistemas de software en general. Este lenguaje
permite definir conceptos relacionados a los
sistemas de software, establece la notacion gréafica
para comunicar estos conceptos, y es lo
suficientemente formal como para apoyar procesos
de automatizacion dentro del desarrollo de software.
Junto a lenguajes como el UML, han surgido
iniciativas de desarrollo de software centradas en
modelos, como por ejemplo la MDA (Model Driven
Architecture) del OMG (Object Management Group),
que se apoyan en las herramientas de generacion
de cddigo para facilitar la integracion entre las
distintas fases del desarrollo de software (Herrington
et al., 2003; Pinter et al., 2003).

En la actualidad existen herramientas CASE
(Computer Aided Software Engineering) libres y de
codigo abierto, entre las que destacan ArgoUML
(ArgoUML, 2009) y Umbrello (Umbrello UML, 2009),
gue implementan algunas funcionalidades para

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

406 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

generar codigo desde modelos UML.
Especificamente, generan caédigo para
representaciones de estructura estatica, esto es,
para diagramas de clase. Por otro lado, diversos
autores han propuesto patrones de disefio para la
implementacién de maquinas de estado del UML en
lenguajes orientados a objetos (Pinter et al., 2003;
Eriksson et al., 2004; Pilone et al., 2005), éstos han
servido de base para nuestra propuesta. Ahora bien,
la mayoria de las herramientas existentes que
permiten la generacibn de cédigo para
representaciones de comportamiento dinamico de
modelos del UML no son libres. Se cuenta con muy
pocas herramientas libres para la generacion de
codigo fuente a partir de modelos del UML, y las
capacidades de dichas herramientas resultan
modestas en comparacion con las que ofrecen las
herramientas no libres. Normalmente, ellas se
limitan a la generacion de codigo fuente para
representaciones de la estructura estatica de los
sistemas modelados.

En este articulo se presenta una herramienta de
“software libre” que permite generar, de manera
automatica, cédigo fuente en lenguajes orientados a
objetos (OO) a partir de modelos del UML. La
herramienta usa tanto las representaciones de la
estructura estética, como las del comportamiento
dinamico. Particularmente, esto Ultimo es descrito
usando los diagramas de estado. Con dichos
diagramas se genera el codigo fuente que
implementa el ciclo de vida de los objetos, y su
comportamiento ante eventos externos. La
herramienta CASE considerada para exportar los
modelos, fue ArgoUML (0.24). La herramienta se
prueba en dos aplicaciones que simulan un reloj
digital y el juego de Tretis. La eleccion de ellas es
debido a que son aplicaciones bien conocidas, por
lo que no es necesario invertir tiempo en el analisis
de requisitos. Ademas, estas aplicaciones han sido
presentadas como ejemplo de modelado dindmico
con maquinas de estado en (Pinter et al., 2003;
Eriksson et al, 2004). El codigo fuente fue generado
para el lenguaje C++.

El articulo estd organizado como sigue: en la
primera parte hacemos una introduccién al
problema de Generacibn de Cdbdigo para
comportamiento Dindmico, en la siguiente seccion
presentamos nuestra propuesta de generacion de
cédigo fuente usando Maquinas de Estado Finito.
En la seccién 3 se detalla la propuesta para generar
cédigo automatico, en especifico, el patrén de
disefio. La seccion 4 presenta la herramienta, la

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

seccién 5 los casos de estudio, y finalmente se
presentan las conclusiones.

2 Generacioén de Coédigo para
Comportamiento Dindmico

La generacién automatica de cddigo es el proceso
mediante el cual un programa produce, de manera
automatica, cédigo en un lenguaje, a partir de un
esquema expresado en otro lenguaje.
Tradicionalmente, se usa para traducir esquemas en
lenguajes de alto nivel, mas cercanos a la manera
de pensar del humano, a lenguajes de mas bajo
nivel (ensamblador o lenguaje de maquina)
orientados a su interpretacidbn por parte de
computadores. Se denominan generadores de
codigo a las aplicaciones que llevan a cabo dicha
tarea. Las aplicaciones de generacion de codigo de
uso mas extendido son los compiladores. Estos
toman un programa escrito en un lenguaje de alto
nivel, y lo transforman en cddigo objeto. Los
generadores de codigo fuente operan en el nivel
inmediatamente superior al de los compiladores,
produciendo, valga la redundancia, cddigo fuente
(Herrington et al., 2003; Pinter et al., 2003).

La generacion automética de coédigo fuente ha
sido aplicada exitosamente a diversas actividades,
entre las que cabe mencionar: el desarrollo de
compiladores, la documentacion de sistemas de
software, el desarrollo de interfaces gréaficas de
usuario, el desarrollo de sistemas Web, entre otras.
Ejemplos de herramientas de generacion
automética de cddigo fuente, ampliamente utilizadas
para algunas de las actividades mencionadas, son:
Yacc, Lex, Doxygen, Javadoc y QtDesigner, por
mencionar algunas.

La clase de generacion de coédigo de interés
para el presente trabajo es la denominada
generacion de codigo fuente basada en modelos. La
generacion de cddigo basada en modelos consiste
en la produccion de cédigo fuente en lenguajes de
alto nivel, de manera automdtica, a partir de
modelos gréaficos que describen la estructura, el
comportamiento, o la arquitectura de los sistemas.
Las herramientas de desarrollo de software
actuales, muestran la tendencia a facilitar el
desarrollo basado en modelos, permitiendo a los
desarrolladores trabajar a un nivel de abstraccion
mas alto, y las herramientas de generacién de
coédigo fuente basadas en modelos facilitan la

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 407

transicion entre la fase de disefio y la fase de
implementacion de los sistemas de software.

La generacién de cddigo basada en modelos es
una tecnologia en emergencia. El disefio de
lenguajes de modelado que soporten la generacion
de cédigo posee relativamente una base teérica
muy reducida, en comparacidon al conocimiento
tedrico que existe para el disefio de lenguajes de
programacion y el desarrollo de compiladores. Las
herramientas que generan codigo a partir de
modelos generan cédigo fuente (en vez de codigo
ejecutable) para que los usuarios puedan
modificarlo y compensar asi posibles deficiencias y
errores.

En (Bell, 1998) se caracterizan tres enfoques
para la generacion de cédigo basada en modelos: el
enfoque estructural, el enfoque de comportamiento
y el enfoque de traduccion. El orden en el que se
presentan los enfoques no es accidental, pues
representa la evolucion de las herramientas de
generacion de codigo en el tiempo. Cada uno de
estos enfoques extiende las capacidades del
enfoque anterior. El enfoque estructural permite
generar el cddigo correspondiente a definiciones de
clases y sus relaciones estéticas. El enfoque de
comportamiento permite generar codigo para
especificaciones de comportamiento y
especificaciones de accion expresadas en un
lenguaje de alto nivel. Por ultimo, el enfoque de
traduccion utiliza modelos de aplicaciones
independientes de las arquitecturas, para dar a los
usuarios mayor control sobre la traduccién a codigo
fuente para arquitecturas de software especificas.

En nuestro caso, el enfoque de comportamiento
es el de interés para generar codigo de la parte
dindmica. Especificamente, el enfoque de
comportamiento se basa en modelos de maquinas
de estado, extendidas con especificaciones de
acciones en lenguajes de alto nivel. Un beneficio
adicional del enfoque es que posibilita la verificacion
de los modelos de comportamiento del sistema,
antes de que el cédigo sea generado (Herrington et
al., 2003; Pinter et al., 2003). En el enfoque de
comportamiento los desarrolladores pueden crear
un modelo de implementaciéon, a partir de los
modelos producidos en las fases de analisis y
disefio, mediante un modelado mas preciso,
afiadiendo detalles a la estructura de las clases y a
las representaciones de comportamiento. Las
herramientas que soportan este enfoque
usualmente cuentan con maquinas virtuales que
interpretan especificaciones de maquinas de

estados (ejemplo de esto es la herramienta descrita
en (Pinter et al., 2003)).

Otros trabajos recientes interesantes son los
siguientes: en (Zapata et al., 2007) se presenta una
metodologia para generar automaticamente cédigo
para controladores ldgicos programables (PLCs), a
partir de modelos de automatismo construidos en
redes de Petri jerarquicas. Esta metodologia permite
aprovechar técnicas de la ingenieria de software,
como la programacion por objetos, y las
capacidades de alto nivel embebidas en los
controladores légicos, para resolver problemas
complejos de automatizacién industrial via la
reusabilidad del cédigo. En (Mufieton et. al., 2007)
se proponen reglas para la generacion de codigo a
partir de metamodelos de diagramas de clases,
secuencial y de maquinas de estados de UML. Las
reglas estan definidas en l6gica de primer orden,
permitiendo una especificaciéon donde se evitan las
ambigiiedades y la necesidad de aprender un
lenguaje de programacion especifico. En (Meszaros
et al., 2009) proponen técnicas de modelado visual
para definir el comportamiento dinamico de
lenguajes. Ellos se basan en la técnica de
transformacion de modelos, basado en el modelo de
transformacion reescritura basada en grafos. En
(Knap et al, 2002) describen un proyecto que
desarrolla un conjunto de herramientas, llamado
HUGO, cuyo modelo de verificacion de disefio utiliza
los diagramas de maquinas de estado y de
interaccion de UML. ElI modelo de verificacion
asegura que un sistema funciona segun lo
especificado por dichos diagramas. El modelo de
verificacion detecta errores en los disefios, pero
errores de codificacion pueden todavia ocurrir. Por
otro lado, investigaciones han probado que el meta-
modelado es una forma de definir la sintaxis y el
comportamiento dindmico en lenguajes de
programacion. Especificamente, una de esas
formas de modelado, denominado DSLs (Domain-
Specific Languages) por sus siglas en ingles, es
propuesta en (Levendovszky et al., 2009) para
automatizar procesos de generacion de coédigo de
simulacion de procesos. Como podemos ver, hay
mucho interés en trabajos previos por el uso de
modelos formales basados en las maquinas de
estado finito o redes de Petri para especificar el
comportamiento de un objeto. Algunos han
propuestos metamodelos, reglas l6gicas, o verifican
comportamiento, nosotros en este trabajo
proponemos generar codigo directamente desde
UML.

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

408 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

3 Propuesta para Generar Cédigo desde
Maquinas de Estado Finito

La informacién contenida en los diagramas de clase
de un modelo del UML brinda la base estatica para
la implementacién en codigo fuente del modelo. Los
diagramas de clase por si solos no expresan
informacion relevante sobre como deben
implementarse las operaciones de una clase. Los
diagramas de estado definidos en el contexto de
una clase resultan de utilidad para representar el
comportamiento dinamico de los objetos. Estos
permiten describir el comportamiento que muestra
una clase ante la recepcion de eventos externos, y
de esta representacién es posible extraer detalles
sobre cdmo implementar las operaciones asociadas
a eventos de llamadas en transiciones.

3.1 Patron de implementacién de diagramas
de estado

Existen diversas maneras de implementar en cédigo
fuente las representaciones de diagramas del UML.
Un diagrama de estado particular del UML puede
ser implementado elegantemente en codigo fuente
por un desarrollador, pero la estrategia que dicho
desarrollador siga para la implementacion puede ser
de tal naturaleza que no permita implementar
correctamente otros diagramas de estados, o
incluso el mismo diagrama de estado con algunas
modificaciones. En este sentido, se propone el uso
de patrones de disefio para la automatizacion del
proceso de implementacion en cédigo fuente desde
diagramas UML, particularmente, desde el diagrama
de maquinas de estado. En nuestro trabajo, un
patron de disefio es entendido como una solucion
genérica y repetible para un problema de ocurrencia
recurrente en el desarrollo de software. Es
importante contar con patrones bien definidos para
la implementacion de los diagramas del UML, pues
estos patrones sirven como guia para el proceso de
generacion automatica de codigo. El patron de
disefio presentado a continuacion se encuentra
basado en el patron descrito en (Pinter et al., 2003).
El objetivo de éste es la implementacién de
maquinas de estado definidas en el contexto de una
clase.

Las maquinas de estado permiten representar el
comportamiento de un objeto instancia de una clase
a lo largo de su ciclo de vida. Muestran el conjunto
de estados que puede tener un objeto, y como se
producen transiciones entre dichos estados en

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

respuesta a ciertos eventos. Expresado de otra
manera, las maquinas de estado permiten describir
el conjunto de acciones que un objeto debe realizar
como respuesta a un evento (por ejemplo, la
invocacion de un método), dependiendo del estado
particular en el que se encuentre.

3.1.1 Descripcion del patron de disefio

El elemento trascendental de nuestra propuesta es
el uso de los diagramas de estado de UML para
extraer la informaciéon del comportamiento dindmico
del codigo a generar. En general, la estrategia de
implementacién de diagramas de estado se basa en
la construccion de un mapeo entre pares estado-
evento y un conjunto de acciones a ejecutar.
Basado en ello, en nuestra propuesta definimos un
patron de disefio que caracteriza al diagrama de
estado de UML como un diagrama de clases. El
patron propuesto permite caracterizar el diagrama
de estado de UML como un diagrama de clases que
implementa su funcionalidad. La figura 1 muestra el
diagrama de clases para el patron de disefio que
implementa los diagramas de estado. Pasamos a
describir dicho diagrama de clases. La maquina de
estado se representa como una clase activa que
compone a la clase contexto. Llamamos clase
contexto a la clase cuyo comportamiento describe la
maquina de estados. Los estados y transiciones que
conforman la maquina de estados son
representados a su vez como clases. Todas esas
clases son descritas en la seccion 3.1.2.

Las clases que representan a la maquina de
estados, a los estados y a las transiciones, son
todas especializaciones de un grupo de clases
generales que definen funciones bésicas. En lo
sucesivo, a las clases especializadas para
maquinas de estado, estados y transiciones, las
llamaremos clases particulares. El patrén de disefio
propuesto implica la sobre-escritura de métodos de
las clases base, para proveer la funcionalidad
descrita por la maquina de estados. Cada clase
particular que represente a una maquina de estados
debe sobre-escribir el método inicializar(). La clase
base para las maquinas de estado es una clase
abstracta, es necesario que sus subclases
concretas sobre-escriban dicho método, e
instancien en él a todas las clases particulares que
representen los estados y transiciones,
especificando, ademas, las relaciones de jerarquia
que se den entre los estados. El codigo fuente
resultante de la aplicacion del patron descrito es el
de las operaciones asociadas a los eventos de

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 409

llamadas de las transiciones del diagrama de
estado.

3.1.2 Clases base del patron

La figura 2 muestra el diagrama de clases de la
base del patrén de implementacién, donde se
especifican los atributos, métodos y asociaciones de
cada clase. A continuacion se describen las clases
presentes en dicho diagrama.

e Clase MaquinaEstado: es la base para las
magquinas de estado particulares definidas en el
contexto de una clase. Es una clase activa, esto
es, posee un hilo propio de ejecucion en el que
se procesan los eventos recibidos. Esta
compuesta por un conjunto de estados y
transiciones, segun lo indique la maquina de
estados que representa. Dicha maquina posee
una cola de eventos externos, donde se
almacenan los eventos generados
externamente y los eventos de tiempo, para su
procesamiento. Ademas de la cola de eventos
externos, posee una cola de eventos en la que
se almacenan los eventos generados
internamente.

e Clase Estado: Esta clase abstracta es la base
para los estados particulares definidos por la
maquina de estados. Los objetos de esta clase
son capaces de ejecutar sus acciones
asociadas.

e Clase Transicion: Esta clase representa las
transiciones definidas en la maquina de
estados. Los objetos de esta clase son capaces
de ejecutar la accion efecto asociada a la
transicion.

e Clase ColaEventos: representa la cola de
eventos externos de una maquina de estados.
La clase puede ser implementada como un
envoltorio para una cola, por ejemplo una cola
de la biblioteca STL de C++. La clase provee
métodos para encolar y desencolar eventos, en
orden FIFO, de modo seguro, para su uso por
parte de distintos hilos.

e Clase Evento: Esta clase representa los
eventos que se pueden recibir y procesar en la
maquina de estados.

e Clase ManejadorDisparo: provee un envoltorio
adecuado para una transicion compuesta y un
estado objetivo. La transiciébn compuesta es la
secuencia de transiciones habilitadas que se
deben tomar como consecuencia del
procesamiento de un evento. Esta secuencia de
transiciones y el estado objetivo asociado es

calculado por la operacién manejaEvento() de
cada estado particular. Luego es utilizada por la
clase MaquinaEstado para ejecutar los efectos
del disparo de transicion.

e Clase HiloDestinador: es el responsable de
ubicar los eventos en la cola de eventos de las
magquinas de estado. Luego de ser creado, el
hilo existe hasta que cumple con la tarea de
ubicar el evento en la cola de eventos externos.
La creacién de estos hilos para ubicar los
eventos en la cola tiene como finalidad evitar
que el hilo de ejecucién de la maquina de
estados monopolice la cola de eventos
externos. El hilo de ejecucion de la maquina de
estados puede monopolizar la cola de eventos,
pues como consecuencia de acciones de
estado es posible levantar eventos de llamada a
operaciones asociados a las transiciones de la
magquina de estados.

e Clase Tope: Esta subclase de la clase Estado
representa el estado tope de las maquinas de
estado. Toda maquina de estados instancia un
objeto de este tipo.

3.1.3 Descripcion del Codigo producido

Como ya se menciond, el cédigo producido por el
patron descrito implementa las operaciones de clase
asociadas a eventos de llamada en las transiciones
de la maquina de estados. Una maquina de estados
definida en el contexto de una clase, deberia
permitir el uso de atributos y operaciones definidas
por la clase contexto, con el mismo nombre con el
que fueron definidas en dicha clase, y sin
restricciones de visibilidad. Debido a que la maquina
de estados es implementada también como una
clase, es necesario definir en la clase contexto un
conjunto de operaciones que permitan ejecutar las
expresiones asociadas a las acciones y guardias
definidos en la maquina de estados. La
implementacion en C++ de la maquina de estados
implica también que ésta debe definirse como una
clase amiga de la clase contexto, con el fin de que
pueda hacer uso de sus caracteristicas privadas.
Adicionalmente, para la clase contexto se deben
definir los atributos y operaciones que indiquen los
diagramas de clase:

e Atributos para el objeto instancia de la maquina
de estados particular, y para los identificadores
de eventos de llamada y eventos de tiempo.

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

410 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

e Métodos para cada accién de estado: entrada, Las clases particulares para la maquina de estados
hacer y salida; cada guardia de transicion, y pueden ser declaradas de manera anidada en la
cada efecto de transicién. clase contexto.

ClaseContexto

1

-contgxtp
Estade
Transicion Magquinabstade { qw
———» »>—
+manejabventole : Evento) : ManejadorDisparo
+ejecutabfecto] : void 0% 1 #inicializad : void +emrajda0:voi§| ! J P
+hacer(: void
+salidal) : void
TransicionP1 TransicionP2 MaquinaEstadoP EstadoPl
+ejecutabfectod : void +ejecutabfectod : void #inicializa) : void +manejabventole : Evento) : ManejadorDisparo
+entradal : void
+hacer(: void
+salidal : void

Fig. 1. Diagrama de clase para el patron de implementacion de méaquinas de estado

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

Transicidn

-conEfecto : bool

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 411

~transiciones

+Transition(e : bool,m : MaquinaEstados) : void
+tieneEfecto(: bool
+ejecutaEfectof : void

0.

Fmaquina

i

secuencia

1

ManejadorDisparo

+ManejadorDisparoise : ListaTransiciones,ob : Estado)
+obtenSecuencial : ListaTransiciones

+obtenObjetivo(: Estado

MaquinaEstados

-terminada : bool
-colaComplecion : Cola

Finicializal : void

+ejecutard : void

+enviarEventole : Evento) : void
FenviarEventoTiempole : Evento,cuando : int) : void
-ejecutarEntradas(mac : Estado,o : Estado) : void
-ejecutarSalidasif : Estado,mac : Estado) : void
-ejecutarEfectositr : ListaTransiciones) : void
-menorAncestroComunia : Estado,b : Estado) : Estado

Evento

-hombre :int

-evento

+Eventoin : int) ™
+obtenNombred : int

1
encolados

1

ColaEventos

-CAPACIDAD : int

+ColaBventosd
+encolaiev : Evento) : void
+desencolad : Evento

1 , 1 1 1 1 1 B 1
#maqyina FcolaOtros [-cola
-objeflivo -estados
¢ 1 1
1 1% m .
HiloDestinador
———< Esfado -retraso : int
1| -esperados : Listakventos +HiloDestinador{e : Evento,c : ColaBventos,r: int) : void

+Estado(m : MaquinaEstados) : void _gails #correr(: void
+daAncestrofe : Estado) : void

+obtenAncestrof : Estado

+entradal : void

1 |+hacerd : void

+salidad : void
#agregaEsperadoie : Evento) : void
#quitaEsperadofe : Evento) : void
#limpiaEsperadosd : void
#esEsperadofe : Evento) : bool

#ancestto

Tope ~tope

+manejabventoie : Evento) : ManejadorDisparo | 1

Fig 2. Diagrama de clases base del patron de implementacion

4 Herramienta
4.1 Alcances de la herramienta

La herramienta no esta ligada a la generacion
automética de codigo para aplicaciones de algin
tipo particular, permitiendo generar cédigo para
cualquier aplicacion orientada a objetos que pueda
modelarse mediante los elementos del UML
soportados. Esta herramienta puede ser integrada
en cualquier aplicacion de modelado en el UML, que

soporte los elementos del UML 1.4 reconocidos por
la herramienta, y que permita exportar los modelos
en el formato XMl 1.2. Se da soporte a los
elementos presentes en diagramas de clases,
diagramas de estados y diagramas de actividad.
Ademés, se soporta la integracion de
representaciones del UML, reconociendo méaquinas
de estado definidas en el contexto de una clase. El
lenguaje de implementacion de la herramienta es el
lenguaje de programacion Python, y todo el software
involucrado en la codificacién de la herramienta es
software libre.

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

412 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

4.2 Proceso de Generacion de Cédigo

La figura 3 representa el conjunto de actividades
que realiza la herramienta durante el proceso de
generacion automética de cdodigo fuente.

e El generador de codigo toma como entrada un
archivo en formato XMI, que describe un
modelo expresado en el UML (Grose et al.,
2002).

e El archivo de entrada es analizado por el parser
de XMI, y el resultado de esta actividad es un
conjunto de objetos (instancias de clases) que
representan el modelo UML contenido en el
archivo.

e Los objetos se transforman para simplificar su
representacion. Para esto se aplica, entre otras
actividades: resolucion de referencias, calculo
de dependencias, calculo de espacios de
nombre, clasificacion y ordenamiento.

e Se generan, usando plantilas de texto, las
cadenas de caracteres que representan el
cédigo fuente de la aplicacion.

e Para favorecer su legibilidad y dar uniformidad
al Cadigo fuente, se realizan transformaciones
al cédigo obtenido (tabulacién, eliminacion de
espacios en blanco, eliminacion de lineas en
blanco consecutivas, etc.)

e Finalmente, se procede a almacenar,
organizados en directorios, los archivos de
cédigo fuente generados.

4.3 Implementacion

Como se menciond anteriormente, la codificacion de
la herramienta se realiz6 en Python. La herramienta
de generacion de cobdigo hace uso de tres
bibliotecas: dos bibliotecas para el andlisis de
archivos en XML, y una incluida con el motor para el
procesamiento de plantillas de texto que permite

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

qgue scripts en Python interactien con el motor.
Todas estas bibliotecas estan escritas en Python.
Para la lectura de archivos en XML se usan las
bibliotecas PyXML y 4SuitXML. Para el manejo de
las plantillas se usa Cheetah. Adicionalmente, se
usa una biblioteca hebras de QT 4.1.1 para dar
soporte al manejo de hebras POSIX.

En cuanto al esquema funcional de la
herramienta, en la version actual trabaja en modo
comando. Recibe como argumentos el nombre del
archivo que contiene al modelo para el que se va a
generar codigo, un identificador para el lenguaje
objetivo de la generacion de cédigo, y el directorio
del sistema de archivos en el que se desea
almacenar el codigo fuente generado. Esto facilita
tanto su integracién con una herramienta para el
modelado en UML, como su uso a modo de
herramienta independiente. Debido a que en el
lenguaje C++ existen numerosas caracteristicas no
soportadas directamente por el UML, surgio la
necesidad de definir un conjunto de elementos del
UML para poder expresar en los modelos dichas
caracteristicas. Asi, se crearon estereotipos y
definiciones de etiquetas. Los estereotipos
reconocidos por la herramienta son

o framework: Sirve para indicar a la herramienta
qgue las clases y elementos definidos en este
paquete ya existen y son utilizados por la
aplicacion modelada. Por lo tanto, las clases
definidas en este paquete o0 en paquetes
anidados, directa o transitivamente, en el
paquete, no son generadas en codigo fuente.

e utility: las clases que contengan un estereotipo
utility ya existen, al igual que los paquetes
framework, por lo que la implementacién en
coédigo fuente de estas clases tampoco es
generada.

e create: permite indicar que una operacion de
clase es un constructor.

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 413

Archivo XMI

Tabla de Elementos de Modelo

Modelo transformado

Escritura del
cddigo fuente

Plantillas de Texto

Escritura de archivos
de cddigo fuente

W

1
Formateo del o e
cddigo fuente >
Cddigo fuente formateado

L

Cadenas de caracteres

Archivos de cédigo fuente

Fig. 3. Actividades de la generacién de cédigo

destroy: permite indicar que una operacion de
clase es un destructor.

reference: permite indicar que un atributo de
clase es una referencia.

Las siguientes definiciones de etiquetas son
reconocidas por la herramienta:

variables_declaration: Permite expresar en el
lenguaje objetivo de la generacion de cadigo, el
conjunto de variables que deben ser declaradas
dentro de una operacion de clase.

pointer_status: Permite expresar si un atributo es
de tipo apuntador, apuntador a apuntador, etc.

array_status: Igual que la anterior, pero permite
expresar que un atributo de clase es una arreglo
y su tamafio.

macro_definition: Permite definir macros en el
archivo de definicion para una clase.
macro_expand: Permite expandir macros en la
definicion de una clase.

header_include: Permite incluir archivos de
cabecera en el archivo de definicion de una
clase.

using_directive: Permite declarar que en el
archivo de definicion de una clase se va a hacer
uso de un espacio de nombres.

Permite declarar para los
de clase, como deben
algunos atributos y a que
de clase llamar para la

e create_initializer:
constructores
inicializarse
constructores
inicializacion.

5 Caso de Estudio

El cddigo fuente de la herramienta, asi como de los
casos de estudios presentados en este trabajo,
generados a través de ella (al igual que los modelos
del UML a partir de los cuales se produjeron), se
pueden conseguir en:
http://gennaproject.googlecode.com/svn/trunk/.

5.1 Reloj Digital

La primera aplicacion simula un reloj digital. El
modelado de la aplicacion se llevd a cabo de la

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

414 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

siguiente manera: primero fueron construidas las
representaciones de estructura estatica, y luego
sobre éstas fueron definidas las representaciones
de comportamiento dinamico. Para las clases en las
que se identific6 un comportamiento complejo,
fueron definidas las maquinas de estado.

5.1.1 Criterios de Evaluacion

Para evaluar el grado en el que se corresponden el
cédigo fuente generado y el modelo de las
aplicaciones, se opt6 por el uso de algunas métricas
simples para sistemas orientados a objetos,
descritas en (Booch, 1994). Estas incluyen una
comparacion del nimero de clases y el niumero de
caracteristicas por clase, especificadas en el
modelo y presentes en el codigo fuente. También se
presentan tablas con la cantidad de lineas de cédigo
‘completas” e ‘“incompletas” generadas para la
aplicacion, con la finalidad de dar una idea intuitiva
del esfuerzo que permite ahorrar la herramienta en
la implementacién en cddigo fuente de los modelos
del UML.

Se consideran lineas de cddigo “incompletas”
todas aquellas que contengan expresiones escritas
por el modelador en el lenguaje de programacion
objetivo de la generacion de codigo (por ejemplo,
las expresiones para guardias, acciones de estado,
efectos de transicion, definiciones de etiqueta, etc.).
Las lineas de cddigo “completas” son aquellas
generadas automaticamente por la herramienta a
partir de elementos presentes en el modelo que son
independientes del lenguaje objetivo de la
generacion de cédigo. Por ejemplo, son lineas
“‘completas” las que indican la herencia entre clases
(lo cual, en modelos del UML se expresa mediante
relaciones de generalizacion). El punto importante
de las lineas de codigo “completas” es que surgen
de elementos de los modelos del UML que son
independientes de los lenguajes de programacion,
esos elementos de modelo facilitan la generacién de
cédigo en distintos lenguajes de programacion.

Definir lo que es una linea de cddigo también
resulta dificil, pues para ello no existe un consenso
general. En nuestro caso, estamos considerando
como una ‘linea de cédigo” en el lenguaje C++,
todas las sentencias que terminan en
(expresiones aritméticas, de asignacion, llamadas a
funciones, etc.), bloques de estructuras de control
(ifO{}, switch(){}, case expr:, break;, while(){}, for(){},
do{}while();), las sentencias iniciales de Ia
declaracion de clase (class X {};), especificadores

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

de visibilidad (public:, private:, etc.), declaraciones
de miembros de dato, definiciones de funciones
miembro, signaturas en declaraciones de funciones
miembro, y directivas include.

5.1.2 Disefio del Reloj Digital

La aplicaciéon implantada con el apoyo de la
herramienta de generacion de codigo es una
aplicacion grafica que muestra la hora en formato
digital, de la misma manera que un reloj de pulsera.
Esta aplicacién es presentada como ejemplo de
modelado dinamico con maquinas de estado en
(Pinter et al., 2003; Eriksson et al, 2004). Al modelo
se le agregaron las siguientes funcionalidades: la
posibilidad de establecer los segundos que muestra
el reloj, la posibilidad de disminuir las horas, minutos
y segundos, y un evento de tiempo que evita que el
reloj esté inactivo tras establecer algin elemento de
la hora.

El reloj digital posee cuatro modalidades: Mostrar
Hora, en la cual la hora es desplegada y actualizada
a cada segundo, y las modalidades Establecer
Hora, Establecer Minuto y Establecer Segundo, en
las que las horas, minutos y segundos que
despliega el reloj pueden ser modificadas. El cambio
de modalidad en el reloj ocurre cada vez que se
presiona el botdn Mode, y se da ciclicamente en el
orden en el que se mencionan las modalidades. La
figura 4, muestra un grafico de pantalla con la
aplicacion Reloj Digital. Bajo las tres ultimas
modalidades, la presién de los botones Inc o Dec
(ver figura 4) incrementa o disminuir la hora (minuto
0 segundo, segln sea el caso), respectivamente. Si
el reloj se encuentra en alguna de estas
modalidades, y durante un lapso de 10 segundos no
ocurre ningun intento por modificar las horas, los
minutos o los segundos, segun sea el caso, el reloj
regresa a la modalidad Mostrar Hora.

s s

Mode | | Inc | | Dec

Fig. 4. Aplicacion Reloj Digital

Estructura estatica de la aplicacién: La figura 5
muestra el diagrama de clases de la aplicacion, tres
de las cuales (QPushButton, QWidget y QFrame)

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 415

son clases de la libreria QT, y estan contenidas en
un paquete del modelo etiquetado con
<<framework>>. La funcién de las otras dos clases
(Clock y DigitalDisplay) se describe a continuacion:

e Clock: Esta clase representa el motor del reloj,
mantiene y actualiza las horas, minutos y
segundos que deben mostrarse. La clase es un
componente grafico, para el que se identificd un
comportamiento dinamico. Es una subclase de
la clase QWidget de la libreria QT. Posee tres
asociaciones con la clase QPushButton (una
por cada boton que debe mostrar), y una
asociacién con la clase DigitalDisplay. Esta
clase presenta el comportamiento descrito en la
figura7. Para la clase se definieron cinco
operaciones, que se especifican en el modelo
de la siguiente manera: i) Mediante maquinas
de estado: inc():void, modeButton():void vy
dec():void. i) Mediante expresiones en

elementos Method: Clock() y %Clock().

e DigitalDisplay: es también un componente
gréfico que permite desplegar la hora
graficamente, en formato militar. La clase define
tres operaciones especificadas de la siguiente
manera: i) Mediante grafos de actividad:
paintEvent(e: QPaintEvent):void, i) Mediante
expresiones en elementos Method:
DigitalDisplay() y show(h: int, m: int, s: int, high:
int):void.

Comportamiento dindmico de la aplicacion: El

diagrama de la figura 6 muestra la maquina de

estados definida en el contexto de la clase Clock,
por medio del cual se especificaron las operaciones
inc, modeButton y dec.

5.1.3 Evaluacion de resultados

La herramienta genera las definiciones de clases y
caracteristicas, conforme a la representacion de
estructura estatica expresada en el modelo,
tomando en cuenta todos los elementos presentes:
clases, atributos, operaciones, relaciones de
herencia, asociaciones, estereotipos y valores de
etigueta. El coédigo fuente correspondiente a las
representaciones de comportamiento dinamico del
modelo también fue generado, conforme a la
funcionalidad que expresan. El cédigo fuente que
implementa las operaciones especificadas en los
diagramas de estado y diagramas de actividad fue
producido tomando en cuenta acciones de estado,
efectos de transicion, eventos asociados a
transiciones, etc. El cédigo fuente generado es

compilable y esta ajustado a la funcionalidad
expresada en el modelo.

Las tablas 1 y 2 muestran el ndmero de
caracteristicas (atributos, asociaciones y
operaciones) para cada clase en el modelo del Reloj
Digital y en el cédigo fuente generado. La diferencia
entre ambas tablas se da en la clase Clock, la cual
define una maquina de estados. El cédigo fuente
generado define diez atributos y quince operaciones
mas que las especificadas explicitamente en el
modelo, ademas de que requiere de mas
asociaciones. Estas caracteristicas son las
requeridas por el patrén de implementacion de
maquinas de estado. Las veintiséis clases que se
definen dentro de la clase Clock son las subclases
de MaquinaEstado, Estado y Transicion,
presentadas en la seccidén 3; estas subclases se
corresponden con la maquina de estados, los dos
estados iniciales, el estado final, los cuatros estados
simples, el estado compuesto, y las diecisiete
transiciones que muestra el diagrama de la figura 6.

Los datos presentados en la tabla 3 muestran la
cantidad de lineas de codigo “completas” e
“incompletas”. La tabla 3 indica que el 88% de las
lineas de cddigo generadas para la aplicacion
fueron lineas de coédigo producidas en base a
informacion expresada en el modelo, y que es
independiente del lenguaje de implementacion
objetivo. Los datos que se ofrecen sé6lo permiten dar
una idea intuitiva del esfuerzo que debe llevar a
cabo un programador para terminar la aplicacion,
trabajando sobre el cddigo fuente generado, si el
modelo de entrada no tuviera ninguna expresion en
el lenguaje de programacién objetivo C++. Un
programador deberia agregar expresiones en 83
lineas de caAdigo, y crear una funcidon principal en
C++, para que la aplicacién del Reloj Digital pudiera
ser compilada y ejecutada con todas sus
funcionalidades. Las expresiones que serian
necesario agregar son todas expresiones sencillas
del lenguaje C++ (ejemplos serian las expresiones
en C++ de los guardias de transicion, y de las
acciones de los estados, mostradas en la figura 6).
Por otro lado, la declaracién de la funcién principal
tampoco requiere mucho esfuerzo (sélo requiere la
declaracién de una variable de aplicacion QT y de
una variable de tipo Clock).

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

416 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

Tabla 1. Numero de atributos, asociaciones y
operaciones, para cada clase en el modelo del Reloj

Digital
Clase Atrib. | Asoc. Oper.
Clock 3 4 5
DigitalDisplay 6 0 3

Tabla 2. Numero de atributos, asociaciones y
operaciones, para cada clase en el modelo del Reloj

Digital en el cédigo fuente generado con la herramienta

del Reloj Digital

Clase Atrib. | Asoc. Oper.
Clock 13 26 20
DigitalDisplay 6 0 3
QWidget
~incr Clock
QPushButton < | _hours - int
{-mode | |-minutes:int
< < -seconds @ int
i 1 U {eccreatess +Clockd) : void
1 <=qt_slot=x= +inc : void
-decr <=Qt_slot=x= +modeButton{ : void
——® <<qt_slot== +decl) : void
1 | ==destroy== +~Clock{ : void

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421

ISSN 1405-5546

1 1

-cDisplay

QFrame

DigitalDisplay

-time :int

+H:int =0
+M:int =1
+5:int =2
-which : int

+NONE : int = -1

+showih :int,m :int,s :int,high : int) : void

<=(reate=x= +DigitalDisplay) : void
#paintEventie : QPaintEvent) : void

Fig. 5. Diagrama de clases del modelo del Reloj Digital

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 417

after{l000) / seconds = ++seconds %60;

minutes = seconds == 07 ++minutes % 60 : minutes;
hours = (minutes == 0 &&Seconds ==|0) ? ++hours % 24 : hours;
Displaying N

.Hemry fcDisplay-=showihours, minutes, seconds, DigitalDisplay:NONE;

.

o

S

ModeButtond

Setting

Incrementd / hours = thours + 1) % 24; I

after{10000)

SetHours

entry /cDisplay-=showihours, minutes, seconds, DigitalDisplay::H); I

Increment(/ minutes = iminutes + 1) % 60;

ModeButtond
Decrement(d / hoyrs = fhours + 23) % 24;

ModeButtond

SetMinutes

after{10000) = = = = 1
.?%emry JcDisplay-=showihours, minutes, seconds, DigitalDisplay::M); I

Decrementd / minutps = fminutes + 59) % 60;

Incrementd / seconds = (seconds + 1) % 60;

ModeButtond

SetSeconds

Lafterd 0000 lentry /cDisplay-=showihours, minutes, seconds, DigitalDisplay::S);

Decrement / seconhs = Fseconds + 59) % 60;

Fig. 6. Diagrama de méaquina de estado definida en el contexto de la clase Clock

Tabla 3. Lineas de cédigo generadas para el modelo del Reloj Digital

Clase Lineas de cédigo | %Lineas Total
Completas | Incompletas A Completas | Incompletas
Clock 557 54 91 9 611
DigitalDisplay 58 29 67 33 87
Total 615 83 88 12 698

5.2 Juego de Tetris

5.2.1 Descripcion del problema

El juego de Tetris consiste en un conjunto de
blogues de formas distintas, a los que se llama
tetrominoes, que caen y se acumulan en el fondo de
en un pozo, por efecto de una gravedad simulada.
El objetivo del juego es evitar que los tetrominoes
lleguen el tope del pozo durante la mayor cantidad
de tiempo posible. Cuando los tetrominoes forman

una linea completa desde uno de los muros del
pozo, hasta el muro opuesto, dicha linea
desaparece y todos los bloques sobre esa linea
caen efecto de la gravedad simulada. El jugador
puede mover los blogues hacia la derecha del pozo,
hacia la izquierda, o puede rotar los bloques,
mediante el teclado. Puede también mover los
blogues hacia abajo de dos maneras: puede iniciar
una “caida suave”, esto es, el bloque se mueve
hacia abajo un solo espacio, o puede llevar a cabo
una “caida dura”, o sea, el bloque cae

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

418 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

inmediatamente hasta el fondo del pozo o hasta que
colisione con otros bloques en el fondo del pozo.
Cada vez que un bloque llega al fondo del pozo,
otro bloque es seleccionado de manera aleatoria por
el juego, y comienza su caida desde el tope. La
velocidad de caida de los bloques aumenta a lo
largo del juego, cada vez que el jugador alcanza un
cierto nimero de lineas completas de bloques (por
ejemplo: cada vez que el jugador completa diez
lineas). El puntaje del jugador aumenta cada vez
gue un nuevo tetromino es generado, y cada vez
que el jugador completa una linea de bloques. El
juego termina cuando la pila de bloques que
comienza en el fondo, alcanza el tope.

5.2.2 Modelo de la aplicaciéon

Estructura estatica: Las clases definidas y sus

operaciones son.

e Block: representa un blogque o tetromino del
juego tetris. El bloque puede tener siete formas
distintas. La forma y la ubicacion del bloque se
representa en un arreglo que contiene las
coordenadas del pozo, en las que se ubica el
bloque. La clase provee operaciones para
calcular las nuevas coordenadas del bloque
luego de los movimientos. Las operaciones
fueron especificadas mediante grafos de
actividad.

e Playground: representa el pozo en el que caen
los bloques. La clase provee operaciones para
acumular los blogues cuando llegan al fondo,
para limpiar las lineas completadas, y para
generar nuevos blogues aleatoriamente. Las
operaciones fueron especificadas mediante
grafos de actividad.

e Engine: es un motor de juego, esta clase se
encarga de hacer las llamadas a los métodos
correspondientes conforme el jugador genera
eventos, y se encarga de crear los eventos de
tiempo que simulan la gravedad. El diagrama de
la maquina de estados de la figura 7 describe el
comportamiento de Engine.

e NextWidget: es un componente de interfaz
grafica que renderiza el proximo bloque que va
a caer. Las operaciones fueron especificadas
mediante grafos de actividad.

e PlaygroundWidget: es el componente de
interfaz gréafica que renderiza el pozo en el que
caen los bloques. Las operaciones fueron
especificadas mediante grafos de actividad.

e TetrisWindow: componente de interfaz gréafico
para la ventana del juego. Incluye botones para

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

pausar el juego, comenzar un nuevo juego y

terminar la aplicacion. Las operaciones fueron

especificadas mediante grafos de actividad.
Comportamiento dindmico: La figura 7 muestra la
maquina de estados definida en el contexto de la
clase Engine. Dicha maquina de estado presenta
caracteristicas no presentes en la maquina de
estados del Reloj Digital, que son: transiciones
compuestas y pseudoestados de decision.

5.2.3 Evaluacion de resultados

Se generaron todas las definiciones de clases, sus
caracteristicas y relaciones conforme a lo expresado
en el modelo. El cédigo fuente correspondiente a las
representaciones de comportamiento dinamico
también esta ajustado a la funcionalidad expresada
en ellas. Las operaciones definidas en la maquina
de estado funcionan conforme a lo expresado en el
modelo, el cédigo fuente generado para la maquina
de estado (que incluye eventos de tiempo, puntos
de decision, transiciones compuestas, etc.)
mostrada en el diagrama de la figura 7 es correcto.
La tabla 4 muestra el conteo de caracteristicas entre
el modelo y el cddigo fuente para la aplicacion del
Tetris de la clase Engine (para el resto de clases no
hubo diferencias). EI mismo requiere de mas
caracteristicas que las definidas en el modelo.

Tabla 4. Numero de atributos, asociaciones y
operaciones, para la clase Engine del Modelo y del Cédigo

generado
Engine Atrib. | Asoc. Oper.
Modelo 8 2 17
Cadigo 19 38 33
Generado

La tabla 5 muestra el conteo de lineas de cdodigo
completas e incompletas, para cada una de las
clases generadas por la herramienta. La
interpretacion es similar a la de los datos de la tabla
3. En este caso existen 339 lineas de cddigo
incompletas, lo cual representa el 20% del total de
las lineas de codigo generadas.

La generacion del codigo correspondiente a la base
estructural que proveen los diagramas de clases
libra al programador de la tarea (en ocasiones
tediosa) de declarar las clases y sus atributos en el
lenguaje de implementacion, y provee los
fundamentos para la integracion en el modelo de las
representaciones dinamicas. Los diagramas de
estado resultan un medio poderoso para el

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 419

modelado del comportamiento de los objetos. La
implementacion manual en cédigo fuente de la
funcionalidad descrita por medio de las maquinas de
estado resulta una tarea mas dificil que el modelado
de las mismas. En este sentido, la herramienta de
generacion de cédigo resulta un medio idéneo para
acelerar el proceso de desarrollo de las dos
aplicaciones. Sobre el uso de diagramas de

fissettled])

actividades para especificar las acciones que deben
llevar a cabo las operaciones, no es un requisito
para la generacion de cddigo con la herramienta, y
utilizarlos queda como decisibn de los
desarrolladores.

¢ moe (D OWN);

)k/[isSettledol /\
b ¢

[isGameOverd]

aftgrispeed)

Inhkdation

Start / setNewGamed);

entry fsetSpeedd;

! renew(;

HardFalling

SoftFalling
entry fmoveiDOWN);

Initialized

entry fsethewGamen;

Paused

startf

Dropi

BNty fmove (D OWN;

GoDo

g

Craming

entry fdraw;

Startd / setMewlamed;

Goleftq

GoRight(

Rotated

Paused

Pausel

Raotating '|
entry fmove ROTATE;

GoingRight

entry fmoveiRIGHT);

GoingLeft

entry fmoveilEFT);

<

.

Fig. 7. Diagrama de maquina de estado definida en el contexto de la clase Engine

Tabla 5. Lineas de codigo generadas

Clase Lineas de cédigo | %Lineas Total
Completas | Incompletas Completas | Incompletas
Block 122 47 72 28 169
Playground 154 57 73 27 211
Engine 884 100 90 10 984
PlaygroundWidget 59 40 60 40 99
NextWidget 43 28 61 39 71
TetrisWindow 58 37 61 39 95
Total 1351 339 80 20 1690

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

420 Mario Rincon Nigro, José Aguilar Castro y Francisco Hidrobo Torres

6 Conclusiones

La experiencia de utilizar la herramienta para el
desarrollo de aplicaciones, dejé en claro cuales de
los elementos del UML considerados en el presente
trabajo son los mas (tiles para el proceso de
generacion de codigo: los elementos de diagramas
de clases y las maquinas de estados. Los
diagramas de estado resultan un medio poderoso
para el modelado del comportamiento de los
objetos. La implementacion manual en codigo
fuente de la funcionalidad descrita por medio de las
maquinas de estado, resulta una tarea mas dificil
que el modelado de las mismas. En este sentido, la
herramienta de generacion de cdédigo resulta de
utilidad para acelerar el proceso de desarrollo. En
general, el codigo fuente generado por la
herramienta es correcto y compilable, en la medida
en que los modelos que le sirven de entrada estén
definidos con precision. Aun cuando los modelos
que sirven de entrada a la herramienta no posean el
grado de detalle requerido para que el cédigo fuente
generado sea compilable, éste puede ser
completado manualmente. Como ultimo comentario,
debemos mencionar que el UML no permite
expresar de manera independiente a los lenguajes
de programacion, las expresiones que especifican
las acciones a realizar en operaciones, acciones, las
condiciones de guardias, etc. El uso de dichas
expresiones en los modelos los hace dependientes
de los lenguajes de programacion objetivo. Si se
deseara generar cédigo fuente para los mismos
modelos en otros lenguajes de programacion,
dichas expresiones tendrian que ser sustituidas por
expresiones en el nuevo lenguaje objetivo.

Como trabajos futuros se deben hacer
implementaciones de la herramienta que generen
cédigo en otros lenguajes de programacion.
Ademas, se deben realizar una mayor cantidad de
pruebas de generacion de coédigo sobre otros
dominios de uso frecuente. La herramienta de
generacion de cédigo ain no soporta el chequeo
sintactico y semantico automatico de los modelos
que le sirven de entrada, por lo que un nuevo
componente que realice dicha tarea esta en
desarrollo, basado en la herramienta de verificacion
de modelos SPIN [29]. Tampoco en la presente
version se considero la generacion de codigo fuente
para elementos que expresan procesamiento
concurrente en los diagramas de estados. La
herramienta sera extendida para incluir la

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

implementacién de los elementos de concurrencia
gue pueden modelarse en dichos diagramas.

Referencias

1. ArgoUML Project Home. (s.f.). Retrieved from
http://argouml.tigris.org/

2. Bell, R. (1998). Code Generation from Object Models.
Embedded Systems Programming. 11 (3) 74 — 88

3. Booch, G., Maksimchuk R., Engle M., Young B.,
Conallen J., & Houston K. (2007). Object-Oriented
Analysis and Design with applications (3’“' ed.). Upper
Saddle River, NJ : Addison-Wesley

4, BOUML User Manual, (s.f.).
http://bouml.free.fr/doc/index.html

5. Eriksson, H., Penker, M., Lyons, B., Fado, D. (2004)
UML 2 Toolkit. Indianapolis, Ind. : Wiley Publishing.

6. Grose, T., Doney, G. C., Brodsky, S.A. (2002).
Mastering XMI: Java programming with XMI, XML and
UML. New York: John Wiley.

7. Herrington, J. (2003). Code Generation in Action.
Greenwich: Manning Publications.

8. Knapp A. Merz S. (2002). Model Checking and Code
Generation for UML State Machines and Collaborations,
5th Workshop Tools for System Design and Verification,
Augsburg, Alemania, 59-64.

9. Levendovszky T, Meszaros T (2009). Tooling the
Dynamic Behavior Models of Graphical DSLs, Human-
Computer Interaction. Novel Interaction Methods and
Techniques, Lecture Notes in Computer Science, 5611,
830-839.

10. Meszaros T., Levendovszky T., Mezei G. (2009). Code
Generation with the Model Transformation of Visual
Behavior Models. Electronic Communications of the
EASST, 21, 110-119

11. Mufieton A., Zapata C.M., Arango F. (2007). Reglas para
la Generacion Automética de Codigo definidas sobre
Metamodelos Simplificados de los Diagramas de Clases
de Secuencias y Maquinas de Estado de UML2.0, Dyna,
74 (153), 267-283.

12. Pilone, D., Pitman, N. (2005). UML 2.0 in a Nutshell.
Sebastopol, CA: O'Reilly Media.

13. Pinter, G., Majzik, |. (2003). Program Code Generation
Based on UML Statechart Models. Periodica Polytechnica-
Electrical Engineering. 47 (3-4), 187-204.

14. Umbrello UML Modeller (s.f.). Retrieved from
http://uml.sourceforge.net/index.php

15. Zapata G., Branch J. Quintero L.F. (2007). Metodologia
para el Modelado y Generacion de Cadigo de Control de
Sistemas Secuenciales mediante Redes de Petri
Jeréarquicas, Revista Avances en Sistemas e Informatica,
4 (1), 59-65

Retrieved from

http://argouml.tigris.org/
http://bouml.free.fr/doc/index.html
http://www.pst.ifi.lmu.de/veroeffentlichungen/knapp-merz:2002.pdf
http://www.pst.ifi.lmu.de/veroeffentlichungen/knapp-merz:2002.pdf
http://www.springerlink.com/content/0302-9743/

Generacion Automatica de Cédigo a Partir de Maquinas de Estado Finito 421

Mario Rincon Nigro

Recibio el titulo de Ingeniero de Sistemas de la Universidad
de Los Andes, Mérida, Venezuela en 2007. Actualmente cursa
estudios doctorales en la University of Houston, Houston TX,
USA, y pertenece al Computer Graphics & Interactive Media
Lab en la misma institucion. Sus intereses incluyen
computacion de altas prestaciones en GPUs y algoritmos de
renderizacion.

Obtuvo una Maestria en Informatica en 1991 en la

José Aguilar Castro

Universidad Paul Sabatier-Toulouse-France, y el Doctorado
en Ciencias Computacionales en 1995 en la Universidad
Rene Descartes-Paris-France. Ademas, realiz6 un
Postdoctorado en la Universidad de Houston entre 1999 y
2000. El es Profesor del Departamento de Computacion de la
Universidad de los Andes e investigador del Centro de
Microcomputacion y Sistemas Distribuidos (CEMISID) de la
Universidad de los Andes. Dr. Aguilar ha sido
profesor/investigador visitante en varias universidades y
laboratorios (Universite Pierre et Marie Curie Paris-France,
Laboratoire d’Automatique et Analyses de Systemes
Toulouse-France, University of Houston-USA, Universidad
Complutense Madrid-Espafia, Institute National de Recherche
en Informatique Niza-Francia, entre otros).Sus areas de
interés son los Sistemas Paralelos y Distribuidos,
Computacion Inteligente, Optimizacion ~ Combinatoria,
Reconocimiento de Patrones, y Automatizacion Industrial. Ha
publicado méas de 250 articulos en revistas, libros y actas de
congresos y ha participado en diversos proyectos de
investigacion financiados, entre otros, por Petréleos de
Venezuela S.A. (PDVSA), FONACIT, CNRS. Es miembro del
Sistema Nacional de Promocion del Investigador (PPI) Nivel
V.

Francisco Hidrobo Torres

Se gradu6 de Ingeniero de Sistemas en la Universidad de Los
Andes (ULA) en 1993; luego obtuvo el grado de MSc. en
ComputaciA3n en la misma Universidad. En 2003 obtiene el
Diploma de Estudios Avanzados (DEA) y en 2004 el grado de
Doctor en Informética, ambos en la Universidad Politécnica de
Catalunya (Espafia). Trabaja en las areas de computacion
inteligente y computacion de alto rendimiento, en las cuales
ha publicado varios trabajos en conferencias internacionales y
revistas especializadas. Asesor en diversos proyectos de
investigacion y desarrollo llevados en conjunto entre la
Universidad de los Andes y Petréleos de Venezuela S.A.
(PDVSA). Profesor Titular de la Facultad de Ciencias de la
Universidad de Los Andes. Miembro del Sistema Nacional de
Promocién del Investigador (PPI) Nivel | y del Programa de
Estimulo al Investigador (PEI) de la ULA desde 1997.

Computacion y Sistemas Vol. 14 No. 4, 2011 pp 405-421
ISSN 1405-5546

