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Resumen. Este trabajo presenta una herramienta de 
generación automática de código fuente en lenguajes 
orientados a objetos para modelos abstractos expresados 
en UML. La herramienta permite la generación de código, 
tanto de la estructura estática como del comportamiento 
dinámico, presentes en modelos de sistemas de software. 
En específico, permite generar código fuente en el 
lenguaje C++, a partir de los diagramas de clases, 
diagramas de estados, y diagramas de actividad del UML. 
Dicha herramienta podrá ser integrada a herramientas 
CASE de modelado, con capacidades apropiadas de 
exportación de modelos del UML en formato XMI. En el 
trabajo se presentan detalles sobre el diseño y la 
implementación de la herramienta, haciendo hincapié en 
la generación del comportamiento dinámico. Además, se 
muestran los resultados de su evaluación en casos de 
estudio. 
Palabras clave: Teoría de la Computación, Modelos de 
Computación, Máquinas de Estado Finito, Generación 
Automática de Código, UML. 
 
Abstract. In this work, we present a tool for automatic 
source code generation, in OO languages, from abstract 
models expressed in UML. The tool allows the code 
generation, as much of the static structure as the dynamic 
behavior, present in models of software systems. 
Specifically, it allows to generate source code in the C++ 
language, from the classes diagrams, state diagrams, and 
activities diagrams of the UML. This tool could be 
integrated to a modeling CASE tool, with appropriate 
exporting capacities of UML models in format XMI . We 
present details of tool design and implementation, with 
special attention in code generation for dynamic behavior. 
In addition, to evaluate the tool, we present study cases 
Keywords: Theory of Computing, Models of Computation, 
Finite State Machines, Automatic Code Generation, UML. 

1 Introducción 

El uso de herramientas de generación automática 
de código, para agilizar el desarrollo de sistemas de 
software e incrementar su confiabilidad, es un 
concepto bien conocido en el área de la 
computación (Bell, 1998; Herrington et al., 2003). 
Actualmente, gran parte del esfuerzo que se invierte 
en la investigación en el área de la generación 
automática de código, está orientada a la 
generación de código en lenguajes de alto nivel a 
partir de modelos abstractos de sistemas de 
software. Por otro lado, el UML (Eriksson et al., 
2004; Pilone et al., 2005) se ha convertido en el 
estándar de la industria para especificar y modelar 
sistemas de software en general. Este lenguaje 
permite definir conceptos relacionados a los 
sistemas de software, establece la notación gráfica 
para comunicar estos conceptos, y es lo 
suficientemente formal como para apoyar procesos 
de automatización dentro del desarrollo de software. 
Junto a lenguajes como el UML, han surgido 
iniciativas de desarrollo de software centradas en 
modelos, como por ejemplo la MDA (Model Driven 
Architecture) del OMG (Object Management Group), 
que se apoyan en las herramientas de generación 
de código para facilitar la integración entre las 
distintas fases del desarrollo de software (Herrington 
et al., 2003; Pinter et al., 2003). 
En la actualidad existen herramientas CASE 
(Computer Aided Software Engineering) libres y de 
código abierto, entre las que destacan ArgoUML 
(ArgoUML, 2009) y Umbrello (Umbrello UML, 2009), 
que implementan algunas funcionalidades para 
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generar código desde modelos UML. 
Específicamente, generan código para 
representaciones de estructura estática, esto es, 
para diagramas de clase. Por otro lado, diversos 
autores han propuesto patrones de diseño para la 
implementación de máquinas de estado del UML en 
lenguajes orientados a objetos (Pinter et al., 2003; 
Eriksson et al., 2004; Pilone et al., 2005), éstos han 
servido de base para nuestra propuesta. Ahora bien, 
la mayoría de las herramientas existentes que 
permiten la generación de código para 
representaciones de comportamiento dinámico de 
modelos del UML no son libres. Se cuenta con muy 
pocas herramientas libres para la generación de 
código fuente a partir de modelos del UML, y las 
capacidades de dichas herramientas resultan 
modestas en comparación con las que ofrecen las 
herramientas no libres. Normalmente, ellas se 
limitan a la generación de código fuente para 
representaciones de la estructura estática de los 
sistemas modelados. 

En este artículo se presenta una herramienta de 
“software libre” que permite generar, de manera 
automática, código fuente en lenguajes orientados a 
objetos (OO) a partir de modelos del UML. La 
herramienta usa tanto las representaciones de la 
estructura estática, como las del comportamiento 
dinámico. Particularmente, esto último es descrito 
usando los diagramas de estado. Con dichos 
diagramas se genera el código fuente que 
implementa el ciclo de vida de los objetos, y su 
comportamiento ante eventos externos. La 
herramienta CASE considerada para exportar los 
modelos, fue ArgoUML (0.24). La herramienta se 
prueba en dos aplicaciones que simulan un reloj 
digital y el juego de Tretis. La elección de ellas es 
debido a que son aplicaciones bien conocidas, por 
lo que no es necesario invertir tiempo en el análisis 
de requisitos. Además, estas aplicaciones han sido 
presentadas como ejemplo de modelado dinámico 
con máquinas de estado en (Pinter et al., 2003; 
Eriksson et al, 2004). El código fuente fue generado 
para el lenguaje C++. 

El artículo está organizado como sigue: en la 
primera parte hacemos una introducción al 
problema de Generación de Código para 
comportamiento Dinámico, en la siguiente sección 
presentamos nuestra propuesta de generación de 
código fuente usando Máquinas de Estado Finito. 
En la sección 3 se detalla la propuesta para generar 
código automático, en específico, el patrón de 
diseño. La sección 4 presenta la herramienta, la 

sección 5 los casos de estudio, y finalmente se 
presentan las conclusiones. 

2 Generación de Código para 
Comportamiento Dinámico 

La generación automática de código es el proceso 
mediante el cual un programa produce, de manera 
automática, código en un lenguaje, a partir de un 
esquema expresado en otro lenguaje. 
Tradicionalmente, se usa para traducir esquemas en 
lenguajes de alto nivel, más cercanos a la manera 
de pensar del humano, a lenguajes de más bajo 
nivel (ensamblador o lenguaje de máquina) 
orientados a su interpretación por parte de 
computadores. Se denominan generadores de 
código a las aplicaciones que llevan a cabo dicha 
tarea. Las aplicaciones de generación de código de 
uso más extendido son los compiladores. Estos 
toman un programa escrito en un lenguaje de alto 
nivel, y lo transforman en código objeto. Los 
generadores de código fuente operan en el nivel 
inmediatamente superior al de los compiladores, 
produciendo, valga la redundancia, código fuente 
(Herrington et al., 2003; Pinter et al., 2003). 

La generación automática de código fuente ha 
sido aplicada exitosamente a diversas actividades, 
entre las que cabe mencionar: el desarrollo de 
compiladores, la documentación de sistemas de 
software, el desarrollo de interfaces gráficas de 
usuario, el desarrollo de sistemas Web, entre otras. 
Ejemplos de herramientas de generación 
automática de código fuente, ampliamente utilizadas 
para algunas de las actividades mencionadas, son: 
Yacc, Lex, Doxygen, Javadoc y QtDesigner, por 
mencionar algunas. 

La clase de generación de código de interés 
para el presente trabajo es la denominada 
generación de código fuente basada en modelos. La 
generación de código basada en modelos consiste 
en la producción de código fuente en lenguajes de 
alto nivel, de manera automática, a partir de 
modelos gráficos que describen la estructura, el 
comportamiento, o la arquitectura de los sistemas. 
Las herramientas de desarrollo de software 
actuales, muestran la tendencia a facilitar el 
desarrollo basado en modelos, permitiendo a los 
desarrolladores trabajar a un nivel de abstracción 
más alto, y las herramientas de generación de 
código fuente basadas en modelos facilitan la 
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transición entre la fase de diseño y la fase de 
implementación de los sistemas de software. 

La generación de código basada en modelos es 
una tecnología en emergencia. El diseño de 
lenguajes de modelado que soporten la generación 
de código posee relativamente una base teórica 
muy reducida, en comparación al conocimiento 
teórico que existe para el diseño de lenguajes de 
programación y el desarrollo de compiladores. Las 
herramientas que generan código a partir de 
modelos generan código fuente (en vez de código 
ejecutable) para que los usuarios puedan 
modificarlo y compensar así posibles deficiencias y 
errores. 

En (Bell, 1998) se caracterizan tres enfoques 
para la generación de código basada en modelos: el 
enfoque estructural, el enfoque de comportamiento 
y el enfoque de traducción. El orden en el que se 
presentan los enfoques no es accidental, pues 
representa la evolución de las herramientas de 
generación de código en el tiempo. Cada uno de 
estos enfoques extiende las capacidades del 
enfoque anterior. El enfoque estructural permite 
generar el código correspondiente a definiciones de 
clases y sus relaciones estáticas. El enfoque de 
comportamiento permite generar código para 
especificaciones de comportamiento y 
especificaciones de acción expresadas en un 
lenguaje de alto nivel. Por último, el enfoque de 
traducción utiliza modelos de aplicaciones 
independientes de las arquitecturas, para dar a los 
usuarios mayor control sobre la traducción a código 
fuente para arquitecturas de software específicas. 

En nuestro caso, el enfoque de comportamiento 
es el de interés para generar código de la parte 
dinámica. Específicamente, el enfoque de 
comportamiento se basa en modelos de máquinas 
de estado, extendidas con especificaciones de 
acciones en lenguajes de alto nivel. Un beneficio 
adicional del enfoque es que posibilita la verificación 
de los modelos de comportamiento del sistema, 
antes de que el código sea generado (Herrington et 
al., 2003; Pinter et al., 2003). En el enfoque de 
comportamiento los desarrolladores pueden crear 
un modelo de implementación, a partir de los 
modelos producidos en las fases de análisis y 
diseño, mediante un modelado más preciso, 
añadiendo detalles a la estructura de las clases y a 
las representaciones de comportamiento. Las 
herramientas que soportan este enfoque 
usualmente cuentan con máquinas virtuales que 
interpretan especificaciones de máquinas de 

estados (ejemplo de esto es la herramienta descrita 
en (Pinter et al., 2003)). 

Otros trabajos recientes interesantes son los 
siguientes: en (Zapata et al., 2007) se presenta una 
metodología para generar automáticamente código 
para controladores lógicos programables (PLCs), a 
partir de modelos de automatismo construidos en 
redes de Petri jerárquicas. Esta metodología permite 
aprovechar técnicas de la ingeniería de software, 
como la programación por objetos, y las 
capacidades de alto nivel embebidas en los 
controladores lógicos, para resolver problemas 
complejos de automatización industrial vía la 
reusabilidad del código. En (Muñeton et. al., 2007) 
se proponen reglas para la generación de código a 
partir de metamodelos de diagramas de clases, 
secuencial y de maquinas de estados de UML. Las 
reglas  están definidas en lógica de primer orden, 
permitiendo una especificación donde se evitan las 
ambigüedades y la necesidad de aprender un 
lenguaje de programación especifico. En (Meszaros 
et al., 2009) proponen técnicas de modelado visual 
para definir el comportamiento dinámico de 
lenguajes. Ellos se basan en la técnica de 
transformación de modelos, basado en el modelo de 
transformación reescritura basada en grafos. En 
(Knap et al,  2002) describen un proyecto que 
desarrolla un conjunto de herramientas, llamado 
HUGO, cuyo modelo de verificación de diseño utiliza 
los diagramas de máquinas de estado y de 
interacción de UML. El modelo de verificación 
asegura que un sistema funciona según lo 
especificado por dichos diagramas. El modelo de 
verificación detecta errores en los diseños, pero 
errores de codificación pueden todavía ocurrir. Por 
otro lado, investigaciones han probado que el meta-
modelado es una forma de definir la sintaxis y el 
comportamiento dinámico en lenguajes de 
programación. Específicamente, una de esas 
formas de modelado, denominado DSLs (Domain-
Specific Languages) por sus siglas en ingles, es 
propuesta en (Levendovszky et al., 2009) para 
automatizar procesos de generación de código de 
simulación de procesos. Como podemos ver, hay 
mucho interés en trabajos previos por el uso de 
modelos formales basados en las máquinas de 
estado finito o redes de Petri para especificar el 
comportamiento de un objeto. Algunos han 
propuestos metamodelos, reglas lógicas, o verifican 
comportamiento, nosotros en este trabajo 
proponemos generar código directamente desde 
UML. 
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3 Propuesta para Generar Código desde 
Máquinas de Estado Finito 

La información contenida en los diagramas de clase 
de un modelo del UML brinda la base estática para 
la implementación en código fuente del modelo. Los 
diagramas de clase por sí solos no expresan 
información relevante sobre cómo deben 
implementarse las operaciones de una clase. Los 
diagramas de estado definidos en el contexto de 
una clase resultan de utilidad para representar el 
comportamiento dinámico de los objetos. Estos 
permiten describir el comportamiento que muestra 
una clase ante la recepción de eventos externos, y 
de esta representación es posible extraer detalles 
sobre cómo implementar las operaciones asociadas 
a eventos de llamadas en transiciones. 
 

3.1 Patrón de implementación de diagramas 
de estado 
 

Existen diversas maneras de implementar en código 
fuente las representaciones de diagramas del UML. 
Un diagrama de estado particular del UML puede 
ser implementado elegantemente en código fuente 
por un desarrollador, pero la estrategia que dicho 
desarrollador siga para la implementación puede ser 
de tal naturaleza que no permita implementar 
correctamente otros diagramas de estados, o 
incluso el mismo diagrama de estado con algunas 
modificaciones. En este sentido, se propone el uso 
de patrones de diseño para la automatización del 
proceso de implementación en código fuente desde 
diagramas UML, particularmente, desde el diagrama 
de máquinas de estado. En nuestro trabajo, un 
patrón de diseño es entendido como una solución 
genérica y repetible para un problema de ocurrencia 
recurrente en el desarrollo de software. Es 
importante contar con patrones bien definidos para 
la implementación de los diagramas del UML, pues 
estos patrones sirven como guía para el proceso de 
generación automática de código. El patrón de 
diseño presentado a continuación se encuentra 
basado en el patrón descrito en (Pinter et al., 2003). 
El objetivo de éste es la implementación de 
máquinas de estado definidas en el contexto de una 
clase. 

Las máquinas de estado permiten representar el 
comportamiento de un objeto instancia de una clase 
a lo largo de su ciclo de vida. Muestran el conjunto 
de estados que puede tener un objeto, y cómo se 
producen transiciones entre dichos estados en 

respuesta a ciertos eventos. Expresado de otra 
manera, las máquinas de estado permiten describir 
el conjunto de acciones que un objeto debe realizar 
como respuesta a un evento (por ejemplo, la 
invocación de un método), dependiendo del estado 
particular en el que se encuentre. 

3.1.1  Descripción del patrón de diseño 

El elemento trascendental de nuestra propuesta es 
el uso de los diagramas de estado de UML para 
extraer la información del comportamiento dinámico 
del código a generar. En general, la estrategia de 
implementación de diagramas de estado se basa en 
la construcción de un mapeo entre pares estado-
evento y un conjunto de acciones a ejecutar. 
Basado en ello, en nuestra propuesta definimos un 
patrón de diseño que caracteriza al diagrama de 
estado de UML como un diagrama de clases. El 
patrón propuesto permite caracterizar el  diagrama 
de estado de UML como un diagrama de clases que 
implementa su funcionalidad. La figura 1 muestra el 
diagrama de clases para el patrón de diseño que 
implementa los diagramas de estado. Pasamos a 
describir dicho diagrama de clases. La máquina de 
estado se representa como una clase activa que 
compone a la clase contexto. Llamamos clase 
contexto a la clase cuyo comportamiento describe la 
máquina de estados. Los estados y transiciones que 
conforman la máquina de estados son 
representados a su vez como clases. Todas esas 
clases son descritas en la sección 3.1.2. 

Las clases que representan a la máquina de 
estados, a los estados y a las transiciones, son 
todas especializaciones de un grupo de clases 
generales que definen funciones básicas. En lo 
sucesivo, a las clases especializadas para 
máquinas de estado, estados y transiciones, las 
llamaremos clases particulares. El patrón de diseño 
propuesto implica la sobre-escritura de métodos de 
las clases base, para proveer la funcionalidad 
descrita por la máquina de estados. Cada clase 
particular que represente a una máquina de estados 
debe sobre-escribir el método inicializar(). La clase 
base para las máquinas de estado es una clase 
abstracta, es necesario que sus subclases 
concretas sobre-escriban dicho método, e 
instancien en él a todas las clases particulares que 
representen los estados y transiciones, 
especificando, además, las relaciones de jerarquía 
que se den entre los estados. El código fuente 
resultante de la aplicación del patrón descrito es el 
de las operaciones asociadas a los eventos de 
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llamadas de las transiciones del diagrama de 
estado. 

3.1.2  Clases base del patrón 

La figura 2 muestra el diagrama de clases de la 
base del patrón de implementación, donde se 
especifican los atributos, métodos y asociaciones de 
cada clase. A continuación se describen las clases 
presentes en dicho diagrama. 

 Clase MáquinaEstado: es la base para las 
máquinas de estado particulares definidas en el 
contexto de una clase. Es una clase activa, esto 
es, posee un hilo propio de ejecución en el que 
se procesan los eventos recibidos. Está 
compuesta por un conjunto de estados y 
transiciones, según lo indique la máquina de 
estados que representa. Dicha máquina posee 
una cola de eventos externos, donde se 
almacenan los eventos generados 
externamente y los eventos de tiempo, para su 
procesamiento. Además de la cola de eventos 
externos, posee una cola de eventos en la que 
se almacenan los eventos generados 
internamente. 

 Clase Estado: Esta clase abstracta es la base 
para los estados particulares definidos por la 
máquina de estados. Los objetos de esta clase 
son capaces de ejecutar sus acciones 
asociadas. 

 Clase Transición: Esta clase representa las 

transiciones definidas en la máquina de 
estados. Los objetos de esta clase son capaces 
de ejecutar la acción efecto asociada a la 
transición. 

 Clase ColaEventos: representa la cola de 
eventos externos de una máquina de estados. 
La clase puede ser implementada como un 
envoltorio para una cola, por ejemplo una cola 
de la biblioteca STL de C++. La clase provee 

métodos para encolar y desencolar eventos, en 
orden FIFO, de modo seguro, para su uso por 
parte de distintos hilos.  

 Clase Evento: Esta clase representa los 

eventos que se pueden recibir y procesar en la 
máquina de estados. 

 Clase ManejadorDisparo: provee un envoltorio 
adecuado para una transición compuesta y un 
estado objetivo. La transición compuesta es la 
secuencia de transiciones habilitadas que se 
deben tomar como consecuencia del 
procesamiento de un evento. Esta secuencia de 
transiciones y el estado objetivo asociado es 

calculado por la operación manejaEvento() de 
cada estado particular. Luego es utilizada por la 
clase MaquinaEstado para ejecutar los efectos 
del disparo de transición. 

 Clase HiloDestinador: es el responsable de 

ubicar los eventos en la cola de eventos de las 
máquinas de estado. Luego de ser creado, el 
hilo existe hasta que cumple con la tarea de 
ubicar el evento en la cola de eventos externos. 
La creación de estos hilos para ubicar los 
eventos en la cola tiene como finalidad evitar 
que el hilo de ejecución de la máquina de 
estados monopolice la cola de eventos 
externos. El hilo de ejecución de la máquina de 
estados puede monopolizar la cola de eventos, 
pues como consecuencia de acciones de 
estado es posible levantar eventos de llamada a 
operaciones asociados a las transiciones de la 
máquina de estados. 

 Clase Tope: Esta subclase de la clase Estado 
representa el estado tope de las máquinas de 
estado. Toda máquina de estados instancia un 
objeto de este tipo. 

3.1.3  Descripción del Código producido 

Como ya se mencionó, el código producido por el 
patrón descrito implementa las operaciones de clase 
asociadas a eventos de llamada en las transiciones 
de la máquina de estados. Una máquina de estados 
definida en el contexto de una clase, debería 
permitir el uso de atributos y operaciones definidas 
por la clase contexto, con el mismo nombre con el 
que fueron definidas en dicha clase, y sin 
restricciones de visibilidad. Debido a que la máquina 
de estados es implementada también como una 
clase, es necesario definir en la clase contexto un 
conjunto de operaciones que permitan ejecutar las 
expresiones asociadas a las acciones y guardias 
definidos en la máquina de estados. La 
implementación en C++ de la máquina de estados 

implica también que ésta debe definirse como una 
clase amiga de la clase contexto, con el fin de que 
pueda hacer uso de sus características privadas. 
Adicionalmente, para la clase contexto se deben 
definir los atributos y operaciones que indiquen los 
diagramas de clase: 

 Atributos para el objeto instancia de la máquina 
de estados particular, y para los identificadores 
de eventos de llamada y eventos de tiempo.  
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 Métodos para cada acción de estado: entrada, 
hacer y salida; cada guardia de transición, y 
cada efecto de transición.  

    
 

Las clases particulares para la máquina de estados 
pueden ser declaradas de manera anidada en la 
clase contexto. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Diagrama de clase para el patrón de implementación de máquinas de estado 
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              Fig 2. Diagrama de clases base del patrón de implementación 

 

4 Herramienta 

4.1 Alcances de la herramienta 
 

La herramienta no está ligada a la generación 
automática de código para aplicaciones de algún 
tipo particular, permitiendo generar código para 
cualquier aplicación orientada a objetos que pueda 
modelarse mediante los elementos del UML 
soportados. Esta herramienta puede ser integrada 
en cualquier aplicación de modelado en el UML, que 
 

 
 
soporte los elementos del UML 1.4 reconocidos por 
la herramienta, y que permita exportar los modelos  
en el formato XMI 1.2. Se da soporte a los 
elementos presentes en diagramas de clases, 
diagramas de estados y diagramas de actividad. 
Además, se soporta la integración de 
representaciones del UML, reconociendo máquinas 
de estado definidas en el contexto de una clase. El 
lenguaje de implementación de la herramienta es el 
lenguaje de programación Python, y todo el software 
involucrado en la codificación de la herramienta es 
software libre. 
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4.2 Proceso de Generación de Código 
 

La figura 3 representa el conjunto de actividades 
que realiza la herramienta durante el proceso de 
generación automática de código fuente.  

 El generador de código toma como entrada un 
archivo en formato XMI, que describe un 
modelo expresado en el UML (Grose et al., 
2002).  

 El archivo de entrada es analizado por el parser 
de XMI, y el resultado de esta actividad es un 
conjunto de objetos (instancias de clases) que 
representan el modelo UML contenido en el 
archivo. 

 Los objetos se transforman para simplificar su 
representación. Para esto se aplica, entre otras 
actividades: resolución de referencias, cálculo 
de dependencias, cálculo de espacios de 
nombre, clasificación y ordenamiento. 

 Se generan, usando plantillas de texto, las 
cadenas de caracteres que representan el 
código fuente de la aplicación. 

 Para favorecer su legibilidad y dar uniformidad 
al Código fuente, se realizan transformaciones 
al código obtenido (tabulación, eliminación de 
espacios en blanco, eliminación de líneas en 
blanco consecutivas, etc.) 

 Finalmente, se procede a almacenar, 
organizados en directorios, los archivos de 
código fuente generados. 

 
4.3 Implementación 
 

Como se mencionó anteriormente, la codificación de 
la herramienta se realizó en Python. La herramienta 
de generación de código hace uso de tres 
bibliotecas: dos bibliotecas para el análisis de 
archivos en XML, y una incluida con el motor para el 
procesamiento de plantillas de texto que permite  
 
 
 
 

que scripts en Python interactúen con el motor. 
Todas estas bibliotecas están escritas en Python. 
Para la lectura de archivos en XML se usan las 
bibliotecas PyXML y 4SuitXML. Para el manejo de 
las plantillas se usa Cheetah. Adicionalmente, se 

usa una biblioteca hebras de QT 4.1.1 para dar 
soporte al manejo de hebras POSIX. 
   En cuanto al esquema funcional de la 
herramienta, en la versión actual trabaja en modo 
comando. Recibe como argumentos el nombre del 
archivo que contiene al modelo para el que se va a 
generar código, un identificador para el lenguaje 
objetivo de la generación de código, y el directorio 
del sistema de archivos en el que se desea 
almacenar el código fuente generado. Esto facilita 
tanto su integración con una herramienta para el 
modelado en UML, como su uso a modo de 
herramienta independiente. Debido a que en el 
lenguaje C++ existen numerosas características no 

soportadas directamente por el UML, surgió la 
necesidad de definir un conjunto de elementos del 
UML para poder expresar en los modelos dichas 
características. Así, se crearon estereotipos y 
definiciones de etiquetas. Los estereotipos 
reconocidos por la herramienta son 

 framework: Sirve para indicar a la herramienta 
que las clases y elementos definidos en este 
paquete ya existen y son utilizados por la 
aplicación modelada. Por lo tanto, las clases 
definidas en este paquete o en paquetes 
anidados, directa o transitivamente, en el 
paquete, no son generadas en código fuente. 

 utility: las clases que contengan un estereotipo 
utility ya existen, al igual que los paquetes 
framework, por lo que la implementación en 
código fuente de estas clases tampoco es 
generada. 

 create: permite indicar que una operación de 
clase es un constructor. 
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Fig. 3. Actividades de la generación de código 

 

 

 destroy: permite indicar que una operación de 
clase es un destructor. 

 reference: permite indicar que un atributo de 
clase es una referencia. 

Las siguientes definiciones de etiquetas son 
reconocidas por la herramienta: 

• variables_declaration: Permite expresar en el 
lenguaje objetivo de la generación de código, el 
conjunto de variables que deben ser declaradas 
dentro de una operación de clase. 

• pointer_status: Permite expresar si un atributo es 
de tipo apuntador, apuntador a apuntador, etc.  

• array_status: Igual que la anterior, pero permite 
expresar que un atributo de clase es una arreglo 
y su tamaño. 

• macro_definition: Permite definir macros en el 
archivo de definición para una clase. 

• macro_expand: Permite expandir macros en la 
definición de una clase. 

• header_include: Permite incluir archivos de 
cabecera en el archivo de definición de una 
clase. 

• using_directive: Permite declarar que en el 
archivo de definición de una clase se va a hacer 
uso de un espacio de nombres.  

 create_initializer: Permite declarar para los 
constructores de clase, como deben 
inicializarse algunos atributos y a que 
constructores de clase llamar para la 
inicialización. 

5 Caso de Estudio 

El código fuente de la herramienta, así como de los 
casos de estudios presentados en este trabajo, 
generados a través de ella (al igual que los modelos 
del UML a partir de los cuales se produjeron), se 
pueden conseguir en:  
http://gennaproject.googlecode.com/svn/trunk/. 
 

5.1 Reloj Digital 
 

La primera aplicación simula un reloj digital. El 
modelado de la aplicación se llevó a cabo de la 
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siguiente manera: primero fueron construidas las 
representaciones de estructura estática, y luego 
sobre éstas fueron definidas las representaciones 
de comportamiento dinámico. Para las clases en las 
que se identificó un comportamiento complejo, 
fueron definidas las máquinas de estado. 
 

5.1.1  Criterios de Evaluación 

Para evaluar el grado en el que se corresponden el 
código fuente generado y el modelo de las 
aplicaciones, se optó por el uso de algunas métricas 
simples para sistemas orientados a objetos, 
descritas en (Booch, 1994). Estas incluyen una 
comparación del número de clases y el número de 
características por clase, especificadas en el 
modelo y presentes en el código fuente. También se 
presentan tablas con la cantidad de líneas de código 
“completas” e “incompletas” generadas para la 
aplicación, con la finalidad de dar una idea intuitiva 
del esfuerzo que permite ahorrar la herramienta en 
la implementación en código fuente de los modelos 
del UML. 
   Se consideran líneas de código “incompletas” 
todas aquellas que contengan expresiones escritas 
por el modelador en el lenguaje de programación 
objetivo de la generación de código (por ejemplo, 
las expresiones para guardias, acciones de estado, 
efectos de transición, definiciones de etiqueta, etc.). 
Las líneas de código “completas” son aquellas 
generadas automáticamente por la herramienta a 
partir de elementos presentes en el modelo que son 
independientes del lenguaje objetivo de la 
generación de código. Por ejemplo, son líneas 
“completas” las que indican la herencia entre clases 
(lo cual, en modelos del UML se expresa mediante 
relaciones de generalización). El punto importante 
de las líneas de código “completas” es que surgen 
de elementos de los modelos del UML que son 
independientes de los lenguajes de programación, 
esos elementos de modelo facilitan la generación de 
código en distintos lenguajes de programación. 
   Definir lo que es una línea de código también 
resulta difícil, pues para ello no existe un consenso 
general. En nuestro caso, estamos considerando 
como una “línea de código” en el lenguaje C++, 
todas las sentencias que terminan en „;‟ 
(expresiones aritméticas, de asignación, llamadas a 
funciones, etc.), bloques de estructuras de control 
(if(){}, switch(){}, case expr:, break;, while(){}, for(){}, 
do{}while();), las sentencias iniciales de la 
declaración de clase (class X {};), especificadores 

de visibilidad (public:, private:, etc.), declaraciones 
de miembros de dato, definiciones de funciones 
miembro, signaturas en declaraciones de funciones 
miembro, y directivas include. 
 

5.1.2  Diseño del Reloj Digital 

La aplicación implantada con el apoyo de la 
herramienta de generación de código es una 
aplicación gráfica que muestra la hora en formato 
digital, de la misma manera que un reloj de pulsera. 
Esta aplicación es presentada como ejemplo de 
modelado dinámico con máquinas de estado en 
(Pinter et al., 2003; Eriksson et al, 2004). Al modelo 
se le agregaron las siguientes funcionalidades: la 
posibilidad de establecer los segundos que muestra 
el reloj, la posibilidad de disminuir las horas, minutos 
y segundos, y un evento de tiempo que evita que el 
reloj esté inactivo tras establecer algún elemento de 
la hora.  
   El reloj digital posee cuatro modalidades: Mostrar 
Hora, en la cual la hora es desplegada y actualizada 
a cada segundo, y las modalidades Establecer 
Hora, Establecer Minuto y Establecer Segundo, en 
las que las horas, minutos y segundos que 
despliega el reloj pueden ser modificadas. El cambio 
de modalidad en el reloj ocurre cada vez que se 
presiona el botón Mode, y se da cíclicamente en el 
orden en el que se mencionan las modalidades. La 
figura 4, muestra un gráfico de pantalla con la 
aplicación Reloj Digital. Bajo las tres últimas 
modalidades, la presión de los botones Inc o Dec 
(ver figura 4) incrementa o disminuir la hora (minuto 
o segundo, según sea el caso), respectivamente. Si 
el reloj se encuentra en alguna de estas 
modalidades, y durante un lapso de 10 segundos no 
ocurre ningún intento por modificar las horas, los 
minutos o los segundos, según sea el caso, el reloj 
regresa a la modalidad Mostrar Hora. 
 
 
 

 

 
 
 

 
Fig. 4. Aplicación Reloj Digital 

Estructura estática de la aplicación: La figura 5 
muestra el diagrama de clases de la aplicación, tres 
de las cuales (QPushButton, QWidget y QFrame) 
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son clases de la librería QT, y están contenidas en 
un paquete del modelo etiquetado con 
<<framework>>. La función de las otras dos clases 
(Clock y DigitalDisplay) se describe a continuación: 

 Clock: Esta clase representa el motor del reloj, 
mantiene y actualiza las horas, minutos y 
segundos que deben mostrarse. La clase es un 
componente gráfico, para el que se identificó un 
comportamiento dinámico. Es una subclase de 
la clase QWidget de la librería QT. Posee tres 
asociaciones con la clase QPushButton (una 
por cada botón que debe mostrar), y una 
asociación con la clase DigitalDisplay. Esta 
clase presenta el comportamiento descrito en la 
figura7. Para la clase se definieron cinco 
operaciones, que se especifican en el modelo 
de la siguiente manera: i) Mediante máquinas 
de estado: inc():void, modeButton():void y 
dec():void. ii) Mediante expresiones en 

elementos Method: Clock() y %Clock().  

 DigitalDisplay: es también un componente 
gráfico que permite desplegar la hora 
gráficamente, en formato militar. La clase define 
tres operaciones especificadas de la siguiente 
manera: i) Mediante grafos de actividad: 
paintEvent(e: QPaintEvent):void, ii) Mediante 
expresiones en elementos Method: 
DigitalDisplay() y show(h: int, m: int, s: int, high: 
int):void. 

Comportamiento dinámico de la aplicación: El 
diagrama de la figura 6 muestra la máquina de 
estados definida en el contexto de la clase Clock, 
por medio del cual se especificaron las operaciones 
inc, modeButton y dec.  

5.1.3  Evaluación de resultados 

La herramienta genera las definiciones de clases y 
características, conforme a la representación de 
estructura estática expresada en el modelo, 
tomando en cuenta todos los elementos presentes: 
clases, atributos, operaciones, relaciones de 
herencia, asociaciones, estereotipos y valores de 
etiqueta. El código fuente correspondiente a las 
representaciones de comportamiento dinámico del 
modelo también fue generado, conforme a la 
funcionalidad que expresan. El código fuente que 
implementa las operaciones especificadas en los 
diagramas de estado y diagramas de actividad fue 
producido tomando en cuenta acciones de estado, 
efectos de transición, eventos asociados a 
transiciones, etc. El código fuente generado es 

compilable y está ajustado a la funcionalidad 
expresada en el modelo. 
   Las tablas 1 y 2 muestran el número de 
características (atributos, asociaciones y 
operaciones) para cada clase en el modelo del Reloj 
Digital y en el código fuente generado. La diferencia 
entre ambas tablas se da en la clase Clock, la cual 
define una máquina de estados. El código fuente 
generado define diez atributos y quince operaciones 
más que las especificadas explícitamente en el 
modelo, además de que requiere de más 
asociaciones. Estas características son las 
requeridas por el patrón de implementación de 
máquinas de estado. Las veintiséis clases que se 
definen dentro de la clase Clock son las subclases 
de MaquinaEstado, Estado y Transicion, 
presentadas en la sección 3; estas subclases se 
corresponden con la máquina de estados, los dos 
estados iniciales, el estado final, los cuatros estados 
simples, el estado compuesto, y las diecisiete 
transiciones que muestra el diagrama de la figura 6. 
   Los datos presentados en la tabla 3 muestran la 
cantidad de líneas de código “completas” e 
“incompletas”. La tabla 3 indica que el 88% de las 
líneas de código generadas para la aplicación 
fueron líneas de código producidas en base a 
información expresada en el modelo, y que es 
independiente del lenguaje de implementación 
objetivo. Los datos que se ofrecen sólo permiten dar 
una idea intuitiva del esfuerzo que debe llevar a 
cabo un programador para terminar la aplicación, 
trabajando sobre el código fuente generado, si el 
modelo de entrada no tuviera ninguna expresión en 
el lenguaje de programación objetivo C++. Un 

programador debería agregar expresiones en 83 
líneas de código, y crear una función principal en 
C++, para que la aplicación del Reloj Digital pudiera 

ser compilada y ejecutada con todas sus 
funcionalidades. Las expresiones que serían 
necesario agregar son todas expresiones sencillas 
del lenguaje C++ (ejemplos serían las expresiones 
en C++ de los guardias de transición, y de las 

acciones de los estados, mostradas en la figura 6). 
Por otro lado, la declaración de la función principal 
tampoco requiere mucho esfuerzo (sólo requiere la 
declaración de una variable de aplicación QT y de 
una variable de tipo Clock).  
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Tabla.1. .Número de atributos, asociaciones y 
operaciones, para cada clase en el modelo del Reloj 
Digital 

 

Clase Atrib. Asoc. Oper. 

Clock 3 4 5 

DigitalDisplay 6 0 3 

 
 

Tabla.2. . Número de atributos, asociaciones y 
operaciones, para cada clase en el modelo del Reloj 
Digital en el código fuente generado con la herramienta 
del Reloj Digital 

 

Clase Atrib. Asoc. Oper. 

Clock 13 26 20 

DigitalDisplay 6 0 3 

 
 
 
 
 

 
  

Fig. 5. Diagrama de clases del modelo del Reloj Digital 
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Fig. 6. Diagrama de máquina de estado definida en el contexto de la clase Clock 

 

 

 
Tabla 3. Líneas de código generadas para el modelo del Reloj Digital 

 

Clase Líneas de código %Líneas Total 

 Completas Incompletas Completas Incompletas 

Clock 557 54 91 9 611 

DigitalDisplay 58 29 67 33 87 

Total 615 83 88 12 698 

 

 
5.2 Juego de Tetris 
 

5.2.1  Descripción del problema 

El juego de Tetris consiste en un conjunto de 
bloques de formas distintas, a los que se llama 
tetrominoes, que caen y se acumulan en el fondo de 
en un pozo, por efecto de una gravedad simulada. 
El objetivo del juego es evitar que los tetrominoes 
lleguen el tope del pozo durante la mayor cantidad 
de tiempo posible. Cuando los tetrominoes forman  

 

una línea completa desde uno de los muros del 
pozo, hasta el muro opuesto, dicha línea 
desaparece y todos los  bloques sobre esa línea 
caen efecto de la gravedad simulada. El jugador 
puede mover los bloques hacia la derecha del pozo, 
hacia la izquierda, o puede rotar los bloques, 
mediante el teclado. Puede también mover los 
bloques hacia abajo de dos maneras: puede iniciar 
una “caída suave”, esto es, el bloque se mueve 
hacia abajo un solo espacio, o puede llevar a cabo 
una “caída dura”, o sea, el bloque cae 
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inmediatamente hasta el fondo del pozo o hasta que 
colisione con otros bloques en el fondo del pozo. 
Cada vez que un bloque llega al fondo del pozo, 
otro bloque es seleccionado de manera aleatoria por 
el juego, y comienza su caída desde el tope. La 
velocidad de caída de los bloques aumenta a lo 
largo del juego, cada vez que el jugador alcanza un 
cierto número de líneas completas de bloques (por 
ejemplo: cada vez que el jugador completa diez 
líneas). El puntaje del jugador aumenta cada vez 
que un nuevo tetromino es generado, y cada vez 
que el jugador completa una línea de bloques. El 
juego termina cuando la pila de bloques que 
comienza en el fondo, alcanza el tope. 

5.2.2  Modelo de la aplicación 

Estructura estática: Las clases definidas y sus 
operaciones son. 

 Block: representa un bloque o tetromino del 
juego tetris. El bloque puede tener siete formas 
distintas. La forma y la ubicación del bloque se 
representa en un arreglo que contiene las 
coordenadas del pozo, en las que se ubica el 
bloque. La clase provee operaciones para 
calcular las nuevas coordenadas del bloque 
luego de los movimientos. Las operaciones 
fueron especificadas mediante grafos de 
actividad.  

 Playground: representa el pozo en el que caen 
los bloques. La clase provee operaciones para 
acumular los bloques cuando llegan al fondo, 
para limpiar las líneas completadas, y para 
generar nuevos bloques aleatoriamente. Las 
operaciones fueron especificadas mediante 
grafos de actividad.  

 Engine: es un motor de juego, esta clase se 
encarga de hacer las llamadas a los métodos 
correspondientes conforme el jugador genera 
eventos, y se encarga de crear los eventos de 
tiempo que simulan la gravedad. El diagrama de 
la máquina de estados de la figura 7 describe el 
comportamiento de Engine. 

 NextWidget: es un componente de interfaz 
gráfica que renderiza el próximo bloque que va 
a caer. Las operaciones fueron especificadas 
mediante grafos de actividad. 

 PlaygroundWidget: es el componente de 
interfaz gráfica que renderiza el pozo en el que 
caen los bloques. Las operaciones fueron 
especificadas mediante grafos de actividad. 

 TetrisWindow: componente de interfaz gráfico 
para la ventana del juego. Incluye botones para 

pausar el juego, comenzar un nuevo juego y 
terminar la aplicación. Las operaciones fueron 
especificadas mediante grafos de actividad. 

Comportamiento dinámico: La figura 7 muestra la 
máquina de estados definida en el contexto de la 
clase Engine. Dicha máquina de estado presenta 
características no presentes en la máquina de 
estados del Reloj Digital, que son: transiciones 
compuestas y pseudoestados de decisión. 
 

5.2.3 Evaluación de resultados 

Se generaron todas las definiciones de clases, sus 
características y relaciones conforme a lo expresado 
en el modelo. El código fuente correspondiente a las 
representaciones de comportamiento dinámico 
también está ajustado a la funcionalidad expresada 
en ellas. Las operaciones definidas en la máquina 
de estado funcionan conforme a lo expresado en el 
modelo, el código fuente generado para la máquina 
de estado (que incluye eventos de tiempo, puntos 
de decisión, transiciones compuestas, etc.) 
mostrada en el diagrama de la figura 7 es correcto. 
La tabla 4 muestra el conteo de características entre 
el modelo y el código fuente para la aplicación del 
Tetris de la clase Engine (para el resto de clases no 
hubo diferencias). El mismo  requiere de más 
características que las definidas en el modelo. 
 

Tabla 4. Número de atributos, asociaciones y 
operaciones, para la clase Engine del Modelo y del Código 

generado 
 

Engine Atrib. Asoc. Oper. 

Modelo 8 2 17 

Código 
Generado 

19 38 33 

 

La tabla 5 muestra el conteo de líneas de código 
completas e incompletas, para cada una de las 
clases generadas por la herramienta. La 
interpretación es similar a la de los datos de la tabla 
3. En este caso existen 339 líneas de código 
incompletas, lo cual representa el 20% del total de 
las líneas de código generadas.  
La generación del código correspondiente a la base 
estructural que proveen los diagramas de clases 
libra al programador de la tarea (en ocasiones 
tediosa) de declarar las clases y sus atributos en el 

lenguaje de implementación, y provee los 
fundamentos para la integración en el modelo de las 
representaciones dinámicas. Los diagramas de 
estado resultan un medio poderoso para el 
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modelado del comportamiento de los objetos. La 
implementación manual en código fuente de la 
funcionalidad descrita por medio de las máquinas de 
estado resulta una tarea más difícil que el modelado 
de las mismas. En este sentido, la herramienta de 
generación de código resulta un medio idóneo para 
acelerar el proceso de desarrollo de las dos 
aplicaciones. Sobre el uso de diagramas de 

actividades para especificar las acciones que deben 
llevar a cabo las operaciones, no es un requisito 
para la generación de código con la herramienta, y 
utilizarlos queda como decisión de los 
desarrolladores.   

 

 
 

 
 
Fig. 7. Diagrama de máquina de estado definida en el contexto de la clase Engine 

 

 
Tabla 5. Líneas de código generadas 

 

Clase Líneas de código %Líneas Total 

 Completas Incompletas Completas Incompletas 

Block 122 47 72 28 169 

Playground 154 57 73 27 211 

Engine 884 100 90 10 984 

PlaygroundWidget 59 40 60 40 99 

NextWidget 43 28 61 39 71 

TetrisWindow 58 37 61 39 95 

Total 1351 339 80 20 1690 
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6 Conclusiones 

La experiencia de utilizar la herramienta para el 
desarrollo de aplicaciones, dejó en claro cuáles de 
los elementos del UML considerados en el presente 
trabajo son los más útiles para el proceso de 
generación de código: los elementos de diagramas 
de clases y las máquinas de estados. Los 
diagramas de estado resultan un medio poderoso 
para el modelado del comportamiento de los 
objetos. La implementación manual en código 
fuente de la funcionalidad descrita por medio de las 
máquinas de estado, resulta una tarea más difícil 
que el modelado de las mismas. En este sentido, la 
herramienta de generación de código resulta de 
utilidad para acelerar el proceso de desarrollo. En 
general, el código fuente generado por la 
herramienta es correcto y compilable, en la medida 
en que los modelos que le sirven de entrada estén 
definidos con precisión. Aún cuando los modelos 
que sirven de entrada a la herramienta no posean el 
grado de detalle requerido para que el código fuente 
generado sea compilable, éste puede ser 
completado manualmente. Como último comentario, 
debemos mencionar que el UML no permite 
expresar de manera independiente a los lenguajes 
de programación, las expresiones que especifican 
las acciones a realizar en operaciones, acciones, las 
condiciones de guardias, etc. El uso de dichas 
expresiones en los modelos los hace dependientes 
de los lenguajes de programación objetivo. Si se 
deseara generar código fuente para los mismos 
modelos en otros lenguajes de programación, 
dichas expresiones tendrían que ser sustituidas por 
expresiones en el nuevo lenguaje objetivo. 
      Como trabajos futuros se deben hacer 
implementaciones de la herramienta que generen 
código en otros lenguajes de programación. 
Además, se deben realizar una mayor cantidad de 
pruebas de generación de código sobre otros 
dominios de uso frecuente. La herramienta de 
generación de código aún no soporta el chequeo 
sintáctico y semántico automático de los modelos 
que le sirven de entrada, por lo que un nuevo 
componente que realice dicha tarea esta en 
desarrollo, basado en la herramienta de verificación 
de modelos SPIN [29]. Tampoco en la presente 
versión se considero la generación de código fuente 
para elementos que expresan procesamiento 
concurrente en los diagramas de estados. La 
herramienta será extendida para incluir la 

implementación de los elementos de concurrencia 
que pueden modelarse en dichos diagramas. 
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