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Resumen. El diseño de algoritmos que operen sobre 
plantas con dinámicas no modeladas aún representa un 
reto en el área de control automático. Una solución podría 
ser el uso de algoritmos capaces de aprender en tiempo 
real mediante la interacción directa con la planta. El 
modelo NEFCON, permite construir la estructura de un 
controlador difuso del tipo Mamdani capaz de aprender las 
reglas y adaptar los conjuntos difusos. La principal ventaja 
del modelo NEFCON respecto a otros enfoques de 
aprendizaje, es que su diseño se reduce a expresar la 
calidad del error actual de la planta a controlar. Sin 
embargo, una desventaja del modelo NEFCON es la pobre 
exploración de los estados de la planta durante el 
aprendizaje, lo cual hace imposible su aplicación para 
sistemas dinámicos no lineales. En este trabajo se propone 
la adición de ruido Gaussiano a las variables de estado de 
la planta, con el objetivo de asegurar una exploración 
amplia de los estados, facilitando la convergencia del 
algoritmo de aprendizaje, cuando se aplica a sistemas no 
lineales. En particular, se muestra la efectividad de la 
propuesta en el control del sistema dinámico de la “pelota 
y el balancín” (Ball and Beam)  
Palabras clave: Sistemas de control adaptativos, sistemas de 
control por aprendizaje, control inteligente, control no 
lineal. 
 
Abstract. The design of algorithms that operate on un-
modeled dynamics plants still represents a challenge in 
automatic control area. A solution could be the use of 
algorithms able to learn in real time by direct interaction 
with the plant. NEFCON, allows to build a Mamdani fuzzy 
controller able to learn rules and adapt the fuzzy sets. The 
main advantage of NEFCON compared with other 
learning approaches, is that its design express the current 
error state of the plant to be controlled. However, a 
disadvantage of NEFCON is its poor exploration of the 
states of the plant during the learning; disable its 

application on nonlinear dynamic systems. In this work the 
addition of Gaussian noise to the states of the plant is 
proposed with the objective to assure a wide exploration 
of the states, simplifying the convergence, when it is 
applied to nonlinear systems. In particular, the 
effectiveness of our proposal is shown in the control of the 
“ball and beam” dynamic system.  
Keywords: Adaptive control systems, learning control 
systems, intelligent control, nonlinear control. 
 

1 Introducción 
 
La teoría de control tradicional ha sido 
extensamente aplicada, sin embargo, cuando se 
carece del modelo de la planta o bien es impreciso, 
es necesario establecer la estrategia de control con 
un enfoque diferente. El control inteligente, ha 
demostrado buenos resultados, incluso aun sin 
contar con un modelo del sistema a controlar [Brown 
y Harris, 1994; Jang et al., 1997; Gupta y Sinha, 
1999; Haykin, 1999)]. Diferentes esquemas de 
control inteligente han sido propuestos [Hangos  et 
al., 2004], entre los que se encuentran: la lógica 
difusa, las redes neuronales, los algoritmos 
genéticos, etc. La lógica difusa se puede utilizar 
para generar controladores basados en reglas y 
observaciones cualitativas de los procesos. Sin 
embargo, los controladores “difusos” carecen de la 
capacidad de optimización y aprendizaje. Existen en 
la literatura trabajos que podrían compensar alguna 
de estas carencias, como el de Moon y Jin [Moon y 
Jin, 2002], que propone un controlador organizado 
de manera jerárquica, compuesto de varios 
sistemas difusos del tipo Sugeno y donde dicho 
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controlador restringe el número de reglas que cada 
sistema difuso puede generar. Otro trabajo 
relacionado es el de Shi-Yuan et al. [Shi-Yuan et al., 
2002], donde se propone un controlador basado de 
por lo menos dos sistemas difusos del tipo Sugeno, 
cada uno compuesto de 5 reglas. Aunque su 
propuesta garantiza convergencia, para el cálculo y 
calibración de los parámetros de los consecuentes 
de sus reglas, es necesario conocer diferentes 
características dinámicas del modelo de la planta, lo 
cual lo hace poco ventajoso en comparación a uno 
clásico. Lon-Chen y Huang-Yuan [Lon-Chen y 
Huang-Yuan, 2007], propusieron un controlador 
neuronal adaptativo de modos deslizantes. Dicho 
controlador se compone de dos sistemas 
desacoplados: una red neuronal y un controlador 
por compensación. La idea consiste en asegurar 
estabilidad mediante el uso del compensador, 
mientras que la salida deseada es aproximada por 
la actuación de la red neuronal. Mediante el uso de 
este enfoque, es posible obtener la actuación 
deseada en términos del factor de sobretiro y tiempo 
de estabilización. No obstante, los algoritmos 
usados en la calibración del compensador y en la 
modificación de los pesos de la red neuronal, 
complican la estructura y el tiempo de cómputo 
necesario; por lo que su aplicación se reduce a nivel 
de simulación, haciéndolo restrictivo para su uso en 
tiempo real. 

La mayoría de estos trabajos proponen sistemas 
que adaptan y modifican sus parámetros, 
suponiendo que tanto los datos del proceso y la 
estrategia de control para la planta son conocidos. 
Lo anterior en la práctica, normalmente no se 
cumple. Una solución a este problema, es que el 
controlador aprenda durante su funcionamiento la 
estrategia de control mediante la interacción directa 
con la planta [Domínguez et al., 2004].  

Los sistemas neurodifusos resultan de la 
combinación de redes neuronales con la lógica 
difusa [Harris et al., 2002]. Estos sistemas 
conservan la estructura difusa e incluyen una 
conveniente capacidad de aprendizaje y adaptación. 
Los diferentes tipos de sistemas neurodifusos 
resultan de la utilización de algoritmos de 
aprendizaje en estructuras difusas [Jang, 1993], de 
operadores difusos en redes neuronales y más 
recientemente, de redes neuronales con polinomios 
difusos [Sung-Kwun et al., 2007]. Las capacidades 
de los sistemas neurodifusos para la predicción, 

estimación e identificación son bien conocidas 
[Gonzalez y Tang, 2007]. 

El modelo NEFCON [Nauck et al., 1997], permite 
construir un controlador difuso del tipo Mamdani 
[Yen, et al., 1999]. El controlador se basa en el uso 
de una señal de refuerzo, la cual se usa para medir 
el desempeño, para configurar las reglas y también 
para modificar los conjuntos difusos del controlador. 
En este artículo se describe el modelo NEFCON y 
cómo puede utilizarse en el control de sistemas 
dinámicos no lineales. Una parte muy importante de 
este enfoque, consiste en la definición de la señal 
de refuerzo, que en este artículo se considera como 
la calidad del error actual de la planta a controlar. A 
manera de ejemplo, se utiliza el sistema dinámico 
no lineal de la "pelota y el balancín" (Ball and 
Beam).  

El modelo NEFCON, presenta otras ventajas en 
comparación a los enfoques anteriormente citados. 
Al obtener, como resultado del aprendizaje, un 
controlador basado en un sistema difuso del tipo 
Mamdani, es posible obtener la estrategia de control 
a partir del análisis del conjunto de reglas SI-
ENTONCES típicas del tipo de inferencia Mamdani 
[Yen y Langari, 1999]. En contraposición, para otros 
enfoques tales como [Moon y Jin, 2002] y [Shi-Yuan 
et al., 2002], no es posible obtener ningún tipo de 
información adicional, ya que la información 
obtenida del aprendizaje se encuentra codificada 
(caja negra) en los coeficientes de las funciones del 
consecuente del sistema de inferencia Sugeno [Yen 
y Langari, 1999]. La principal ventaja del modelo 
NEFCON, en comparación con otras propuestas de 
aprendizaje, es que su diseño se reduce a plantear 
cualitativamente el error actual de la planta a 
controlar (señal de refuerzo), por lo que no es 
necesario contar con un modelo de la planta tal y 
como se requiere en [Shi-Yuan et al., 2002]. 
Además, a diferencia de [Lon-Chen y Huang-Yuan, 
2007], su estructura sencilla permite su empleo en 
tiempo real. 

El modelo NEFCON fue concebido originalmente 
para el control de sistemas lineales. En sistemas no 
lineales, NEFCON no asegura la convergencia 
durante el diseño del controlador, dada la pobre 
exploración de los estados de la planta durante el 
aprendizaje, limitando en consecuencia la 
construcción de reglas. 

La propuesta planteada en este artículo se 
inspira en el trabajo de Chapeau-Blondeau y 
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Rousseau [Chapeau-Blondeau y Rousseau, 2005], 
en donde se demuestra que la adición de ruido 
Gaussiano permite detectar de forma óptima 
señales de modelos no lineales. La idea es explorar 
rápidamente el espacio de estados para crear un 
mayor número de reglas durante el proceso de 
aprendizaje, lo cual permitirá regular una planta no 
lineal. 

Este trabajo está organizado como sigue: la 
sección 2 describe el modelo NEFCON y presenta 
la nomenclatura utilizada en secciones posteriores. 
La sección 3 define el error difuso extendido. La 
sección 4 describe los algoritmos de aprendizaje, 
tanto para los conjuntos difusos como para las 
reglas. La sección 5 discute el problema de 
exploración de los estados de la planta y cómo el 
ruido Gaussiano contribuye a la convergencia del 
algoritmo de aprendizaje. La sección 6 muestra el 
modelo matemático y la definición del error para la 
planta no lineal de la “pelota y el balancín”. 
Posteriormente, la sección 7 presenta el controlador 
difuso obtenido como resultado del aprendizaje. Por 
último, en la sección 8 se mencionan las 
conclusiones de este trabajo. 
 
2  El modelo NEFCON 
 
El NEFCON (del inglés NEuro-Fuzzy CONtroller), es 
un modelo que combina las técnicas de lógica 
difusa con la arquitectura neuronal del Perceptrón. 
De esta manera, NEFCON utiliza los principios de 
aprendizaje neuronal para la construcción y 
optimización de un sistema difuso. NEFCON utiliza 
una señal de error E (error difuso extendido) que 
informa al modelo acerca del desempeño del 
controlador sobre la planta (aprendizaje por 
refuerzo), proporcionando así la magnitud y el 
sentido de los cambios en la estructura. La señal de 
error depende del sistema a controlar y representa 
el punto crítico en la generación del controlador 
difuso. 

La figura 1, muestra un sistema NEFCON con 
dos variables de entrada, una variable de salida y 
cinco reglas. Las variables de entrada 1ߦ y 2ߦ, son 
las variables de estado del sistema a controlar S. La 
salida del sistema NEFCON ߟ, es la acción de 
control aplicada a S. Las unidades de la capa oculta 
representan las reglas difusas. La unidad R3 
representa la regla:  

donde A2
(1), A2

(2) y B2 son términos lingüísticos 
representados por los conjuntos difusos 2ߤ

2ߤ , (1)
(2)  y 

ν2. 
En lugar de valores reales, como los usados en 

redes neuronales, los pesos de las conexiones en 
NEFCON son conjuntos difusos. En donde algunas 
conexiones pueden compartir pesos, como se ilustra 
en la figura 1. Por ejemplo, las conexiones de la 
unidad de entrada a R1 y R2 comparten el mismo 
peso 1ߤ

(1) (conjunto difuso) y las conexiones de R4 y 
R5 a la unidad de salida ߟ, comparten el mismo peso 
 El algoritmo de aprendizaje debe realizar .3ߥ
cambios idénticos en los pesos compartidos, ya que 
de lo contrario se perdería la integridad de la 
estructura Mamdani. También, las normas-T, las 
conormas-T y el procedimiento de defusificación, se 
eligen de tal forma que correspondan al sistema de 
inferencia tipo Mamdani [Yen, et al., 1999]. 
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Fig. 1. Arquitectura del modelo NEFCON. Las elipses 
dibujadas alrededor de las conexiones indican los 

pesos compartidos 
 
 
 
 
 
 Si  ξ1 es A2

(1)  y  ξ 2 es A2
(2) entonces ߟ  es B2, (1) 
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3  Conceptos Preliminares 
 
Como se mencionó anteriormente, el modelo 
NEFCON utiliza para la construcción y optimización 
del controlador difuso, una señal de error que 
informa al modelo la calidad del desempeño del 
controlador sobre la planta, proporcionando de esta 
manera, la magnitud y sentido de los cambios en la 
estructura. Esta señal de error es llamada error 
difuso extendido (E), y es usada como señal de 
recompensa durante el proceso de aprendizaje por 
refuerzo. 

Se considera al sistema como controlado, si las 
variables de estado de una planta S alcanzan y 
permanecen en sus valores ideales (punto de 
consigna), definidos por el vector optx . De esta 

manera, se pueden distinguir dos casos en la 
evaluación del estado de la planta. En el primer 
caso, las variables de estado de la planta S se 
encuentran próximas al estado óptimo 

(opt) (opt)
opt 1( ,..., )nx xx , donde n representa el número 

de variables de estado que representan a la planta. 
Por lo tanto, cada variable de estado podría modelar 
su estado óptimo, mediante la definición de 
funciones de membresía que describan 
lingüísticamente su aproximación a él. En el  
segundo caso, las variables de estado pueden tener 
valores lejanos a su valor ideal. Sin embargo, el 
cambio en su magnitud indica si el sistema 
evolucionará o no, hacia un estado óptimo. A esto 
se le llama estado compensatorio.  

    
Definición 1. Sea S un proceso con n variables 

de estado  1X n nX  para el cual se 

conocen s estados compensatorios. De acuerdo al 
número de variables de estado existirán n conjuntos 
difusos que modelen el estado óptimo: 
 

opt
(i): iX  (i  {1,...,n}) (2) 

 
 y s relaciones difusas n-arias:  
 

( )
comp 1μ : ... [0,1],   ( {1,..., })j

nX X j s     (3) 

 

que representan el estado compensatorio. El estado 
actual está dado por 1( ,..., )nx x . 

La bondad difusa G de la planta S está dada por: 
 

 1,0: 1  nXXG    (4) 

1 opt 1 comp 1( ,..., ) ( ( ,..., ), ( ,..., ))n n nG x x g G x x G x x   (5) 

 
donde g es una función apropiada que permite 
combinar los valores de bondad optG y compG , y que 

depende de la planta S. La bondad difusa G 
depende de la bondad difusa acumulativa optG : 

 1,0: 1  nopt XXG   (6) 

          xnxxxG opt
n

optnopt  ,,T-norma,, 1
1

1    (7) 

y de la bondad difusa compensatoria Gcomp 

 
 

 

௡൯ݔ,…,ଵݔ௖௢௠௣൫ܩ ൌ ܽ݉ݎ݋݊ െ ܶ ቄߤሺଵሻ
௖௢௠௣൫ݔଵ,…,ݔ௡൯, … , ሺ௦ሻߤ

௖௢௠௣൫ݔଵ,…,ݔ௡൯ቅ 

 1,0: 1  ncomp XXG        

 
      (8)

 
 

                                                                  
                                                                                  (9) 

 
La bondad difusa acumulativa Gopt, está basada 

en las descripciones del estado óptimo deseado y 
es calculada como la norma-T de las funciones de 
membresía, que modelan la proximidad de cada 
variable de estado. Las funciones de membresía 
(j)

comp que describen el estado compensatorio de 
la bondad difusa Gcomp, no están necesariamente 
definidas sobre todas las variables de estado, así 
que es posible que ésta dependa de sólo dos o más 
de ellas. La función g, que determina la bondad 
difusa (acumulativa) a partir de los valores de 
bondad ܩ௢௣௧ y ܩ௖௢௠௣, debe ser seleccionada de tal 
forma que combine de manera adecuada ambos 
estados. Una función generalmente utilizada para 
combinar g es la operación mínimo.  
 

Definición 2. Sea S un proceso con n variables 
de estado  1X n nX  con una bondad 

difusa G. Si S es controlada por un sistema 



Generación y Optimación de Controladores Difusos Utilizando el Modelo NEFCON  121 
 

  
Computación y Sistemas Vol. 14 No. 2, 2010, pp 117-131 

ISSN 1405-5546 
 

 

NEFCON y 1( ,..., )nx x  es el estado actual de S, 

entonces el error difuso f del sistema NEFCON se 
define como: 

1: ... [0,1]nf X X    (10) 

f 1( ,..., )nx x =1 – G 1( ,..., )nx x  (11) 

Para implementar el aprendizaje se debe 
calcular cómo cada regla es modificada, 
dependiendo de su desempeño en función del 
estado actual de la planta S. Una regla se “premia” 
aumentando su influencia en la salida del control, 
siempre y cuando la señal por refuerzo muestre un 
resultado positivo. Por el contrario, una regla se 
“castiga” disminuyendo su influencia, de manera 
que contribuya menos a la salida de control. 

Para decidir si la contribución de una regla tiene 
una influencia positiva o negativa en el control de la 
planta, es necesario conocer el signo de la salida 
del controlador. Si se asume que para un estado 
óptimo (todas las variables de estado tienen sus 
valores ideales), la salida del controlador es cero, 
como a menudo sucede, entonces se puede saber 
si es necesario que el controlador aplique una señal 
positiva o negativa al proceso, dependiendo de su 
desviación con respecto al estado óptimo.  
 

Definición 3. El error difuso extendido E, de un 
sistema NEFCON se define por: 

 
donde 1( ,..., )nx x  es el estado actual,  f es el error 

difuso, y sgn(opt) es el signo de la señal de control 
óptima.  

En lugar de calcular el error difuso como en la 
definición 3, es posible usar reglas difusas. Para 
hacer esto, el espacio de estados y el intervalo del 
error [-1,1] deben ser divididos en funciones de 
membresía [Nauck y Kruse, 1992].  
 
4  Algoritmos de aprendizaje 

 
Los algoritmos de aprendizaje se basan en el valor 
de E, que se describe en la definición 3. También 
son conocidos como algoritmos de retropropagación 
del error difuso (“fuzzy error backpropagation”). 
Estos algoritmos pueden ser considerados como 
una clase de aprendizaje reforzado sin crítico 

adaptativo [Sutton y Barto, 1998]. En donde el error 
es usado como una señal negativa de refuerzo. El 
proceso de aprendizaje, es similar al utilizado en el 
algoritmo de retroprogacion del error 
(backpropagation) para perceptrones multicapa en 
donde, el valor del error se propaga hacia atrás en 
toda la red, tomando como inicio la capa de salida. 
De esta manera, cada unidad toma una función de 
la señal de error y la utiliza para modificar 
localmente sus pesos (funciones de  membresía). 
Los algoritmos de aprendizaje de NEFCON se 
dividen en dos tipos: aprendizaje de conjuntos 
difusos (aprendizaje de parámetros) y aprendizaje 
de reglas (aprendizaje de estructura). 
 
4.1 Algoritmo de aprendizaje de conjuntos 
difusos 
 
El algoritmo de aprendizaje de conjuntos difusos 
modifica las funciones de membresía de NEFCON, 
a fin de mejorar el desempeño del controlador. Se 
asume la existencia de una base de reglas 
adecuada y que el inadecuado desempeño del 
controlador, se deba a una representación no 
óptima de los conjuntos difusos usados en las 
reglas. De este modo, sólo se cambian aquellas 
funciones de membresía que pertenezcan a reglas 
cuyo grado de activación haya sido mayor que cero 
(reglas disparadas). 

Para premiar (incrementar) la contribución de 
una regla en la respuesta del controlador, se debe 
aumentar el grado de membresía en el estado 
actual 1( ,..., )nx x   y el valor numérico tr aportado 

por la regla a la salida η . El grado de satisfacción 

de la regla aumenta, si se incrementa el soporte 
(intervalo de valores de la variable) de las funciones 
de membresía jr

(i) del antecedente de dicha regla. 
Por otro lado, también el valor numérico de tr  se 
incrementa, si el soporte del conjunto difuso jr del 
consecuente se reduce. Para castigar (disminuir) la 
contribución de una regla, debe hacerse 
exactamente lo contrario al caso anterior; esto es, 
disminuir el soporte de los conjuntos difusos del 
antecedente y aumentar los del consecuente. La 
figura 2 muestra las configuraciones de las 
funciones de membresía antes y después del 
proceso de premiar o castigar a la regla Rr. En esta 
figura, es posible observar que el aumento y 
reducción de los soportes en el antecedente y en el 
consecuente respectivamente, corresponden a un 

 1( ,..., )nx x  sgnopt 1( ,..., )nf x x  (12) 
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incremento en el valor numérico tr de la salida η . En 

otras palabras, se fortalece la influencia de la regla 
Rr en la señal de control.  

Considerando que se pretende controlar un 
sistema S de n variables de estado, con una 
variable de control , a partir de k unidades de regla 
R1,...,Rk, entonces es posible utilizar iterativamente 
el algoritmo de aprendizaje que adaptará las 
funciones de membresía. El ciclo de adaptación se 
repite hasta que E alcance un valor mínimo deseado 
o bien, se haya aplicado un número de ciclos fijo. A 
continuación, se muestran los pasos que se siguen 
durante una iteración:  
 
1. Se calcula la salida o del sistema NEFCON 

usando el estado actual, se aplica o a S y se 
determina el nuevo estado. 
 

2. Se determina E del nuevo estado producido por 
S. 

1 1 

0 0 

Rr: 

( )

r

i
j  

ξ i

rj
v

η

Antes 

Después 

Antecedente Consecuente 

( )

r

i
ja  ( )

r

i
jb  ( )

r

i
jc  tr 

rl
d  

rl
e

Fig. 2.  Modificación del soporte de las funciones de 
membresía 

 
3. Se determina para cada unidad de regla Rr su 

contribución tr al valor de salida o y se calcula 
el error difuso de cada regla ERr, definido por:  

 

 rRrRr tEoE sgn  (13) 

para cada unidad de regla Rr con r  {1,...,k}. 
 
4. Se modifican los parámetros de las funciones 

de membresía en los consecuentes jr,  j 
{1,...,q} y r  {1,...,k},  utilizando:  

݀jr=   ERr   (ejr – djr) (14) 

donde q representa el número de funciones de 
membresía en los que se dividió el universo de 
discurso de la salida o, mientras que d y e, son los 
puntos que definen la función de membresía para el 
consecuente, como se muestra en la figura 2. El 
intervalo 0 σ 1  , representa los valores posibles 
para  (índice de aprendizaje) y determina la 
rapidez con la que el algoritmo realiza las 
modificaciones. 
 
5. Se determinan los cambios en los parámetros 

de las funciones de membresía jr
(i) i  {1,...,n}, 

j {1,...,p} y r  {1,...,k} de los antecedentes de 
las reglas: 

 

ࣵr
(i)=   ERr  (bjr

(i) - ࣵr
(i)) (15) 

cjr
(i)= -  ERr  (cjr

(i) -  bjr
(i)) (16) 

donde p representa el número de funciones de 
membresía en los que se dividió el universo de 
discurso para cada una de las n variables de 
estado, mientras que ࣵ b  y c son los puntos que 
definen la función de membresía para el 
antecedente, como se muestra en la figura 2. 
 
4.2 Aprendizaje de reglas 
 
El modelo NEFCON permite aprender en dos partes 
la estrategia de control. La primera parte, tiene por 
objetivo aprender la base de reglas. La segunda 
parte, optimiza las reglas ya aprendidas (véase la 
sección 4.1). Ambas partes, se basan en E para 
lograr sus objetivos. 

Los algoritmos utilizados para aprender una 
base de reglas se pueden dividir en tres clases: 
aleatorios, vacíos o completos. NEFCON posee 
algoritmos sólo para las dos últimas clases. En este 
trabajo, se considera un algoritmo vacío llamado 
incremental, el cual, se inicia sin ninguna regla y 
estas se van agregando o incrementando. Este 
algoritmo resulta conveniente por ser menos 
costoso en términos de carga computacional. 
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4.3 Algoritmo incremental 
 
El problema en el aprendizaje de reglas se origina 
dado que se desconoce la salida correcta del 
controlador para cada estado. En consecuencia, no 
es posible generar reglas a partir de la observación 
de los estados. Sin embargo, se puede tratar de 
inferir una salida conveniente mediante E. 

El algoritmo se divide en tres fases. En la 
primera fase, se construye el antecedente de las 
reglas y se infiere el valor de salida a partir de E. En 
la segunda fase, se optimiza la base de reglas 
según E. Por último, en la tercera fase se contempla 
la adaptación de las funciones de membresía 
aprendidas. 

Si se considera ahora una planta S, con n 
variables de estado 1( ,..., )nx x  , las cuales están 

divididas por p  conjuntos difusos cada una y una 
variable de control   [ymin, ymax], dividida en q 
conjuntos difusos. Supóngase además, que se tiene 
un sistema NEFCON con k’ unidades de reglas 
predefinidas, donde k’ puede ser cero. El algoritmo 
de aprendizaje de reglas incremental estaría dado 
por los siguientes pasos: 

 
1. Para un número fijo de repeticiones m1, se llevan 

a cabo los siguientes pasos: 
 

a) Para el vector de entrada actual 1( ,..., )nx x , 

encontrar aquellos conjuntos difusos (1)μ ,..., 
( )μ n para los cuales se cumpla que: 

(ij)( ( )μ i ( ix )  ( )μ i
j

( ix ))   (17) 

donde  i  {1,...,n} y j {1,...,p}. 
 

b) Si no se tiene ninguna regla con el 
antecedente de la forma: 

Si 1 es (1)μ y ... y n es ( )μ n  (18) 

Entonces, encontrar el conjunto difuso,  tal 
que se cumpla que: 

(k) ( (η)  (η)k ) (19) 

tal que k  {1,...,q}, donde el valor heurístico 
de salida η , está determinado por 

max

min

( ) si 0
η

( ) si 0

m E y m E

m E m y E

         
     

max min

2

y y
m


  

(20) 

c) Se incorpora la regla: 

Si 1 es (1)μ  y ...y n es ( )μ n  entonces  es    (21) 

al controlador.  
 

 
1

n

x

x


 
   
  


 

1μ   

1x  

 

η

1 q

η

ξPlanta 

Se obtiene el máximo de cada ( )μ i  

Se obtiene el valor máximo de   

Si 1 es (1)μ  y ...y n es 

( )μ n  entonces  es   

Se forma la regla 

E 
Corrección

m1 

m2 

Se forma el antecedente 

Si 1 es (1)μ y ... y n es ( )μ n  

 
Fig. 3. Ciclo de aprendizaje de la estructura del controlador 

realizada por NEFCON 
 

2. Para un número fijo de repeticiones ݉ଶ, se 
llevan a cabo los siguientes pasos: 

 
a) Se propaga el vector de entrada actual a 

través del controlador. Se calcula la 
contribución tr de cada regla Rr, al valor de 
salida η . A partir de tr, se estima la 

contribución ideal de cada regla mediante: 
 

nx  

µP
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* ηr rt t E     (22) 

donde , representa el índice de aprendizaje. 

La contribución ideal *
rt , representa un ajuste 

de la contribución rt  de la regla. El ajuste se 

realiza mediante una estimación del error, 
producido durante la asignación de funciones 
de membresía. 

 
b) Para cada unidad de regla Rr, se determina la 

nueva función de membresía r  del 

consecuente, de manera que se cumpla: 
 

(k) ( r ( *
rt )  k ( *

rt )), (23) 

donde k  {1,...,q}. Lo anterior, puede ser 
considerado como un reajuste de las 
funciones de membresía. 

 
3. Se eliminan todas las reglas que no han sido 

utilizadas, en más de un porcentaje predefinido 
durante el aprendizaje. En otras palabras, serán 
eliminadas aquellas reglas que sólo fueron 
usadas ocasionalmente. Este fenómeno, 
sucede normalmente al inicio del aprendizaje. 

 
4. Se utiliza el algoritmo de aprendizaje de 

conjuntos difusos que se discutió en la sección 
4.1.  

 
La figura 3 muestra el proceso en que NEFCON 

construye la base de reglas del controlador. De esta 
figura pueden distinguirse 2 tipos de flujos de 
información: uno exterior que denota el proceso de 
creación de reglas desempeñado durante las 
primeras repeticiones m1 y otro interior ejecutado en 
las siguientes repeticiones m2, que representan la 
corrección de los consecuentes a partir de la 
evaluación de E. 

 
5  Exploración de los estados de la planta 
 
NEFCON permite construir un controlador difuso a 
partir de los estados explorados durante el 
aprendizaje. Es muy importante considerar que para 
obtener una adecuada base de reglas, debe 
asegurarse que el espacio de estados sea 

explorado ampliamente durante el proceso de 
aprendizaje. En el caso de plantas lineales, es 
posible lograrlo aumentando deliberadamente el 
número de ciclos de aprendizaje y/o alargando la 
duración de los mismos.  

Como se mencionó en la sección 4, durante la 
construcción del controlador, se añaden reglas en 
función de la relación entre el estado actual de la 
planta y la salida inferida mediante E. El proceso de 
añadir reglas en el instante k y usarlas en el ciclo 
siguiente k+1, depende de la cantidad de estados 
que puedan ser explorados.  

El modelo NEFCON fue concebido originalmente 
para el control de sistemas lineales. En sistemas no 
lineales, NEFCON podría no converger durante el 
aprendizaje. Lo anterior, se debe a la pobre 
exploración de los estados de la planta y que en 
consecuencia limitaría la construcción de reglas. Por 
esta razón, para un sistema no lineal, el aumentar 
los ciclos de aprendizaje no seria suficiente. 

La solución propuesta en este artículo, se inspira 
en el trabajo de Chapeau-Blondeau y Rousseau 
[Chapeau-Blondeau y Rousseau, 2005], en donde 
se demuestra que al añadir ruido Gaussiano, es 
posible detectar de forma óptima señales en 
modelos no lineales. La idea consiste en explorar 
más ampliamente el espacio de estados, con el 
objetivo de crear un mayor número de reglas 
durante el proceso de aprendizaje, permitiendo 
regular una planta no lineal. Un análisis riguroso de 
las pruebas de convergencia obtenidas al añadir 
ruido Gaussiano puede ser consultado en 
[Chapeau-Blondeau y Rousseau, 2005]. 
 
6 Modelo matemático y definición del 
error para el sistema de la "pelota y el 
balancín" 
 
El sistema dinámico no lineal de la "pelota y el 
balancín", es frecuentemente utilizado como planta 
de referencia para evaluar el rendimiento de un 
controlador. Ejemplos de ello, se encuentran en 
[Perez-Cisneros, et al., 2004]; en donde se presenta 
la aplicación de diferentes controladores clásicos a 
esta planta y en [Shi-Yuan et al., 2002], donde se 
utiliza la misma planta para probar enfoques de 
control inteligente. A continuación, se describe el 
modelo matemático del sistema de la "pelota y el 
balancín" y el uso de E, implementado como señal 
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de refuerzo para el aprendizaje de reglas y 
adaptación de funciones de membresía. 
 
6.1 El modelo matemático 
 
La figura 4 muestra al sistema dinámico de la 
"pelota y el balancín". La posición r de la pelota, la 
cual se desplaza libremente sobre el balancín B, es 
controlada mediante el giro ߠ  del servomotor M, el 
cual al encontrarse acoplado al balancín B mediante 
la barra C, permite modificar la inclinación ߙ  del 
balancín. El comportamiento dinámico del sistema 
es modelado mediante la ecuación Lagrangiana de 
movimiento definida como: 
 

2
2

2
( ) sin( ) ( )

J d d
m r m gr m r

Rb L L
         (24) 

 
donde J el momento de inercia de la pelota, m es la 
masa de la pelota, Rb el radio de la pelota, r  es la 
aceleración de la pelota, gr es la gravedad, d la 
posición de la barra y   es el ángulo de 
compensación (salida del controlador). Los 
parámetros del sistema utilizados en este trabajo se 
resumen en la Tabla 1. 
 

L 
r 

α 
θ B 

M 

C 

 
Fig. 4. Descripción del sistema de la "pelota y el balancín" 

 
 
 
 
 
 
 
 
 
 
 

Tabla 1. Parámetros del sistema de la "pelota y el 
balancín" 

 
Parámetro Valor 

m 0.11Kg 

Rb 0.015m 

d 0.03m 

gr 9.8m/s2 

L 1m 

J 9.99e-6 Kgm2 

 
 
6.2 Definición del error extendido E 
 
El problema de control para este sistema, consiste 
en mantener la posición de la pelota en un punto de 
referencia del balancín B. Para esto, es necesario 
calcular el error e, que se define como: 
 

e referencia r   (25) 

 
En donde referencia, es el punto a seguir por el 
controlador y r la posición real de la pelota. 
Considerando lo anterior, el sistema tendrá dos 
variables de estado: el error e  y el cambio del error 
e , este último definido como: 

 
_e e e ant   (26) 

 
 
 
donde e_ant, representa el error anterior. 
 
Para el caso en que las variables e  y e , alcanzan 
aproximadamente su valor ideal (estado óptimo), se 
definen las funciones de membresía que modelan 
su proximidad: 

(1) 1 , si 0.2
( ) 0.2

0, en otro caso
opt

e
e

e

  



 (27) 

(2) 1 , si 0.5
( ) 0.5

0, en otro caso
opt

e
e

e

  






  (28) 
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Si e  no es cero, pero el valor de e  indica que en el 
estado siguiente se reducirá el valor de e , entonces 
se tendrá un estado compensatorio, el cual puede 
ser definido por: 

 
 

1 10 , si 10 1
( , )

0, en otro casocomp

e e e e
e e

      
 


 
  (29) 

 
 

A partir de las ecuaciones 7 y 8, se calcula la 
bondad difusa acumulativa optG

 
 

 (1) (2)( , ) min ( ), ( ) ,opt opt optG e e e e    (30) 

 
y la bondad difusa compensatoria Gcomp 

 
( , ) ( , )comp compG e e e e   (31) 

 
Considerando la ecuación 5, se obtiene la expresión 
para la bondad difusa, tal que: 

 
( , ), si sgn( )=sgn( )

( , )
( , ), en otro caso

opt

comp

G e e e e
G e e

G e e


 


 



 (32) 

 
De esta manera puede calcularse a partir de las 
ecuaciones 11 y 12, el error difuso y E, tal que:  

 
( , ) 1 ( , )f e e G e e    (33) 

  
( , ) sgn( ) ( , )E e e e f e e    (34) 

 
 
7  Resultados del aprendizaje 
 
El aprendizaje se realizó en seis ciclos de 20 
segundos. Cuatro de ellos correspondieron al 
aprendizaje de reglas, mientras que los dos 
restantes a la optimización de los conjuntos difusos. 
Un ciclo consiste de 3000 iteraciones, considerando 
݉ଵ =1500 y ݉ଶ =1500. La optimización de 
parámetros también usó 1500 iteraciones. Durante 
el aprendizaje de reglas, se agregó ruido aditivo 
Gaussiano de media cero y desviación estándar 0.1 
a los estados. Se eliminaron aquellas reglas que no 

fueron utilizadas en más de un 2%. Como condición 
inicial fue seleccionada r=0.3. El punto de referencia 
fue 0.5 y la simulación de todo el sistema utiliza un 
intervalo de muestreo de 0.5 segundos. Para 
realizar la simulación de este trabajo, se utilizó la 
implementación en MatLAB del sistema NEFCON 
sugerida en [Nürnberger, et al., 1999]. 
Para el aprendizaje de reglas, se dividió a cada 
variable de entrada e  y e  en tres conjuntos difusos, 
etiquetados como: ne, ce y po, mientras que para la 
variable de salida ߠ , se dividió en 5 conjuntos 
difusos, etiquetados como: ne, nm, ce, pm y po. 
Como resultado del aprendizaje, se obtuvieron las 
siguientes seis reglas: 

1. Si ( e  es ce) y ( e  es ce) entonces (ߠ es ce) 
2. Si ( e  es ce) y ( e  es ne) entonces (ߠ es ce) 
3. Si ( e  es ce) y ( e  es po) entonces (ߠ es pm) 
4. Si ( e  es ne) y ( e  es ne) entonces (ߠ es ne) 
5. Si ( e  es ne) y ( e  es ce) entonces (ߠ es ne)  
6. Si ( e  es ne) y ( e  es po) entonces (ߠ es nm)  

La figura 5 muestra la evolución del proceso de 
aprendizaje obtenido al aplicar el algoritmo 
NEFCON. Como puede verse en esta figura, en los 
dos primeros ciclos el efecto de añadir ruido se 
traduce en una mejor exploración del espacio de 
estados, así se puede formar una regla para cada 
combinación de variables de entrada. En los dos 
siguientes ciclos de aprendizaje (3 y 4), resulta 
evidente como el proceso de depuración de reglas 
trae consigo una mejora en la respuesta dinámica 
del sistema, disminuyendo la magnitud de los 
sobretiros. En la figura 6, se muestra la superficie de 
control obtenida con la base de reglas aprendidas 
por el sistema NEFCON. 
Por último, en los ciclos 5 y 6, la base de reglas 
aprendidas es optimizada mediante la modificación 
de las funciones de membresía (véase 4.1), de tal 
manera que su efecto se percibe al atenuar el 
sobretiro. Las figuras 7a, 8a y 9a muestran las 
funciones de membresía iniciales utilizadas para e  ,
e  y ߠ respectivamente. Estas fueron modificadas 
durante el proceso de aprendizaje, quedando 
finalmente como muestran las figuras 7b, 8b y 9b. 
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Fig. 5. Proceso de 6 ciclos de aprendizaje. La señal continua corresponde a la posición de la pelota r , mientras que la señal 
punteada corresponde al ángulo de compensación ߠ del servomotor (salida del controlador) 
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Fig. 6. Superficie de control obtenida con la base de reglas aprendidas 
 
 
 

 

 

(a) 

 

 

(b) 

Fig. 7. (a) Funciones de membresía iniciales  y (b) funciones de membresía modificadas por el aprendizaje para e  
 
 

−0.5

0

0.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

e

ė
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(a) 

  

                                     

                                       (b) 

Fig. 8. (a) Funciones de membresía iniciales y (b) funciones de membresía modificadas por el aprendizaje para e  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (a) Funciones de membresía iniciales, (b) funciones de membresía modificadas por el aprendizaje, para ߠ 

 
8  Conclusiones 
 
En este trabajo se propone el uso del modelo 
NEFCON para generar y optimizar un controlador 
difuso capaz de controlar una planta no lineal.  
 

NEFCON permite a partir de un algoritmo de 
aprendizaje, construir las reglas y optimizar los 
parámetros del controlador, al utilizar una señal de 
refuerzo obtenida por interacción directa con el 
sistema. En este artículo se presenta la aplicación 
del modelo NEFCON en el control de sistemas 
dinámicos no lineales. Lo anterior se hizo posible 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ė
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mediante la adición de ruido Gaussiano a las 
variables de estado de la planta. El ruido añadido, al 
permitir una rápida exploración de los estados, 
asegura una mejor convergencia del aprendizaje 
durante el diseño del controlador. Con el objetivo de 
probar los alcances de esta propuesta, se utilizó 
como planta el sistema de la "pelota y el balancín". 
Se comprobó que de no añadirse ruido Gaussiano 
durante el aprendizaje, el modelo NEFCON es 
incapaz de construir un controlador, que regule la 
planta. 

Para el control del sistema de la "pelota y el 
balancín", se definieron particiones iniciales de los 
conjuntos difusos para describir tanto las variables 
de entrada como las de salida. Después, se aplicó 
el algoritmo de aprendizaje incremental para el 
aprendizaje de reglas. Por último, se mejoró el 
desempeño del controlador mediante la 
optimización de los conjuntos difusos. El resultado 
comprende un controlador difuso compuesto por 
seis reglas y por conjuntos difusos optimizados, los 
cuales fueron modificados respecto a sus 
particiones iniciales.  

El controlador generado automáticamente a 
partir del aprendizaje, fue capaz de controlar al 
sistema de la "pelota y el balancín" sin experimentar 
sobretiro y con un tiempo de establecimiento dentro 
del intervalo de 2 a 3 segundos. Los experimentos 
sugieren que es posible generar controladores para 
el sistema de la "pelota y el balancín" con la 
utilización de tan solo 3 ciclos de aprendizaje. Sin 
embargo, aunque estos controladores permiten 
someter a la variable de control después de 16 
segundos, muestran una respuesta dinámica 
inadecuada (sobretiros de más del 40%). Por lo que, 
para este sistema es recomendable la utilización de  
más de 5 ciclos de aprendizaje, si se desea atenuar 
el sobretiro y obtener tiempos de establecimiento 
menores.  

La principal ventaja del modelo NEFCON, en 
comparación con otras propuestas, es que su 
diseño se reduce a plantear cualitativamente el error 
actual de la planta a controlar (señal de refuerzo), 
por lo que no es necesario contar con un modelo de 
la planta tal y como se requiere en otros enfoques 
difusos [Shi-Yuan et al., 2002]. Además, a diferencia 
de gran parte de los enfoques inteligentes [Lon-
Chen y Huang-Yuan, 2007], su estructura sencilla 
permite su empleo en tiempo real. Como 
desventaja, NEFCON no permite explícitamente 

definir índices de desempeño del controlador, 
debido a sus características heurísticas, al contrario 
de otros modelos de control no lineal [Perez-
Cisneros, et al., 2004] u otras técnicas inteligentes 
[Lon-Chen y Huang-Yuan, 2007]. Por lo que, 
NEFCON no se recomienda para aquellos casos, en 
donde se deban satisfacer parámetros de respuesta 
del controlador predefinidos, como lo son, por 
ejemplo, tiempos de establecimiento y valores de 
sobretiro máximo. 
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