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Resumen. El disefio de algoritmos que operen sobre
plantas con dinamicas no modeladas aun representa un
reto en el area de control automatico. Una solucion podria
ser el uso de algoritmos capaces de aprender en tiempo
real mediante la interacciéon directa con la planta. El
modelo NEFCON, permite construir la estructura de un
controlador difuso del tipo Mamdani capaz de aprender las
reglas y adaptar los conjuntos difusos. La principal ventaja
del modelo NEFCON respecto a otros enfoques de
aprendizaje, es que su disefo se reduce a expresar la
calidad del error actual de la planta a controlar. Sin
embargo, una desventaja del modelo NEFCON es la pobre
exploracion de los estados de la planta durante el
aprendizaje, lo cual hace imposible su aplicacion para
sistemas dinamicos no lineales. En este trabajo se propone
la adicion de ruido Gaussiano a las variables de estado de
la planta, con el objetivo de asegurar una exploracion
amplia de los estados, facilitando la convergencia del
algoritmo de aprendizaje, cuando se aplica a sistemas no
lineales. En particular, se muestra la efectividad de la
propuesta en el control del sistema dinamico de la “pelota
y el balancin” (Ball and Beam)

Palabras clave: Sistemas de control adaptativos, sistemas de
control por aprendizaje, control inteligente, control no
lineal.

Abstract. The design of algorithms that operate on un-
modeled dynamics plants still represents a challenge in
automatic control area. A solution could be the use of
algorithms able to learn in real time by direct interaction
with the plant. NEFCON, allows to build a Mamdani fuzzy
controller able to learn rules and adapt the fuzzy sets. The
main advantage of NEFCON compared with other
learning approaches, is that its design express the current
error state of the plant to be controlled. However, a
disadvantage of NEFCON is its poor exploration of the
states of the plant during the learning; disable its

application on nonlinear dynamic systems. In this work the
addition of Gaussian noise to the states of the plant is
proposed with the objective to assure a wide exploration
of the states, simplifying the convergence, when it is
applied to nonlinear systems. In particular, the
effectiveness of our proposal is shown in the control of the
“ball and beam” dynamic system.

Keywords: Adaptive control systems, learning control
systems, intelligent control, nonlinear control.

1 Introduccion

La teoria de control tradicional ha sido
extensamente aplicada, sin embargo, cuando se
carece del modelo de la planta o bien es impreciso,
es necesario establecer la estrategia de control con
un enfoque diferente. El control inteligente, ha
demostrado buenos resultados, incluso aun sin
contar con un modelo del sistema a controlar [Brown
y Harris, 1994; Jang et al., 1997; Gupta y Sinha,
1999; Haykin, 1999)]. Diferentes esquemas de
control inteligente han sido propuestos [Hangos et
al., 2004], entre los que se encuentran: la logica
difusa, las redes neuronales, los algoritmos
genéticos, etc. La logica difusa se puede utilizar
para generar controladores basados en reglas y
observaciones cualitativas de los procesos. Sin
embargo, los controladores “difusos” carecen de la
capacidad de optimizacioén y aprendizaje. Existen en
la literatura trabajos que podrian compensar alguna
de estas carencias, como el de Moon y Jin [Moon y
Jin, 2002], que propone un controlador organizado
de manera jerarquica, compuesto de varios
sistemas difusos del tipo Sugeno y donde dicho

Computacion y Sistemas Vol. 14 No. 2, 2010, pp 117-131
ISSN 1405-5546



118 Erik V. Cuevas Jiménez, Daniel Zaldivar Navarro, Marco Pérez Cisneros y Ernesto Tapia Rodriguez

controlador restringe el numero de reglas que cada
sistema difuso puede generar. Otro trabajo
relacionado es el de Shi-Yuan et al. [Shi-Yuan et al.,
2002], donde se propone un controlador basado de
por lo menos dos sistemas difusos del tipo Sugeno,
cada uno compuesto de 5 reglas. Aunque su
propuesta garantiza convergencia, para el célculo y
calibracion de los parametros de los consecuentes
de sus reglas, es necesario conocer diferentes
caracteristicas dinamicas del modelo de la planta, lo
cual lo hace poco ventajoso en comparaciéon a uno
clasico. Lon-Chen y Huang-Yuan [Lon-Chen vy
Huang-Yuan, 2007], propusieron un controlador
neuronal adaptativo de modos deslizantes. Dicho
controlador se compone de dos sistemas
desacoplados: una red neuronal y un controlador
por compensacion. La idea consiste en asegurar
estabilidad mediante el uso del compensador,
mientras que la salida deseada es aproximada por
la actuacién de la red neuronal. Mediante el uso de
este enfoque, es posible obtener la actuacién
deseada en términos del factor de sobretiro y tiempo
de estabilizaciéon. No obstante, los algoritmos
usados en la calibracion del compensador y en la
modificacion de los pesos de la red neuronal,
complican la estructura y el tiempo de computo
necesario; por lo que su aplicacién se reduce a nivel
de simulacién, haciéndolo restrictivo para su uso en
tiempo real.

La mayoria de estos trabajos proponen sistemas
que adaptan y modifican sus parametros,
suponiendo que tanto los datos del proceso y la
estrategia de control para la planta son conocidos.
Lo anterior en la practica, normalmente no se
cumple. Una solucion a este problema, es que el
controlador aprenda durante su funcionamiento la
estrategia de control mediante la interaccién directa
con la planta [Dominguez et al., 2004].

Los sistemas neurodifusos resultan de la
combinacion de redes neuronales con la logica
difusa [Harris et al.,, 2002]. Estos sistemas
conservan la estructura difusa e incluyen una
conveniente capacidad de aprendizaje y adaptacion.
Los diferentes tipos de sistemas neurodifusos
resultan de la utilizacion de algoritmos de
aprendizaje en estructuras difusas [Jang, 1993], de
operadores difusos en redes neuronales y mas
recientemente, de redes neuronales con polinomios
difusos [Sung-Kwun et al., 2007]. Las capacidades
de los sistemas neurodifusos para la prediccion,
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estimacion e identificacion son bien conocidas
[Gonzalez y Tang, 2007].

El modelo NEFCON [Nauck et al., 1997], permite
construir un controlador difuso del tipo Mamdani
[Yen, et al., 1999]. El controlador se basa en el uso
de una senal de refuerzo, la cual se usa para medir
el desempefo, para configurar las reglas y también
para modificar los conjuntos difusos del controlador.
En este articulo se describe el modelo NEFCON y
como puede utilizarse en el control de sistemas
dinamicos no lineales. Una parte muy importante de
este enfoque, consiste en la definicion de la senal
de refuerzo, que en este articulo se considera como
la calidad del error actual de la planta a controlar. A
manera de ejemplo, se utiliza el sistema dinamico
no lineal de la "pelota y el balancin" (Ball and
Beam).

El modelo NEFCON, presenta otras ventajas en
comparacion a los enfoques anteriormente citados.
Al obtener, como resultado del aprendizaje, un
controlador basado en un sistema difuso del tipo
Mamdani, es posible obtener la estrategia de control
a partir del andlisis del conjunto de reglas Sl-
ENTONCES tipicas del tipo de inferencia Mamdani
[Yen y Langari, 1999]. En contraposicion, para otros
enfoques tales como [Moon y Jin, 2002] y [Shi-Yuan
et al.,, 2002], no es posible obtener ningun tipo de
informacién adicional, ya que la informacion
obtenida del aprendizaje se encuentra codificada
(caja negra) en los coeficientes de las funciones del
consecuente del sistema de inferencia Sugeno [Yen
y Langari, 1999]. La principal ventaja del modelo
NEFCON, en comparacién con otras propuestas de
aprendizaje, es que su disefio se reduce a plantear
cualitativamente el error actual de la planta a
controlar (sefial de refuerzo), por lo que no es
necesario contar con un modelo de la planta tal y
como se requiere en [Shi-Yuan et al, 2002].
Ademas, a diferencia de [Lon-Chen y Huang-Yuan,
2007], su estructura sencilla permite su empleo en
tiempo real.

El modelo NEFCON fue concebido originalmente
para el control de sistemas lineales. En sistemas no
lineales, NEFCON no asegura la convergencia
durante el disefio del controlador, dada la pobre
exploracién de los estados de la planta durante el
aprendizaje, limitando en consecuencia la
construccion de reglas.

La propuesta planteada en este articulo se
inspira en el trabajo de Chapeau-Blondeau y
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Rousseau [Chapeau-Blondeau y Rousseau, 2005],
en donde se demuestra que la adicién de ruido
Gaussiano permite detectar de forma Optima
sefales de modelos no lineales. La idea es explorar
rapidamente el espacio de estados para crear un
mayor numero de reglas durante el proceso de
aprendizaje, lo cual permitira regular una planta no
lineal.

Este trabajo estd organizado como sigue: la
seccion 2 describe el modelo NEFCON vy presenta
la nomenclatura utilizada en secciones posteriores.
La seccién 3 define el error difuso extendido. La
seccion 4 describe los algoritmos de aprendizaje,
tanto para los conjuntos difusos como para las
reglas. La secciéon 5 discute el problema de
exploraciéon de los estados de la planta y como el
ruido Gaussiano contribuye a la convergencia del
algoritmo de aprendizaje. La seccion 6 muestra el
modelo matematico y la definicién del error para la
planta no lineal de la “pelota y el balancin”.
Posteriormente, la seccion 7 presenta el controlador
difuso obtenido como resultado del aprendizaje. Por
ultimo, en la seccion 8 se mencionan las
conclusiones de este trabajo.

2 El modelo NEFCON

El NEFCON (del inglés NEuro-Fuzzy CONtroller), es
un modelo que combina las técnicas de ldégica
difusa con la arquitectura neuronal del Perceptrén.
De esta manera, NEFCON utiliza los principios de
aprendizaje neuronal para la construccion y
optimizaciéon de un sistema difuso. NEFCON utiliza
una sefal de error E (error difuso extendido) que
informa al modelo acerca del desempeno del
controlador sobre la planta (aprendizaje por
refuerzo), proporcionando asi la magnitud y el
sentido de los cambios en la estructura. La sefial de
error depende del sistema a controlar y representa
el punto critico en la generacion del controlador
difuso.

La figura 1, muestra un sistema NEFCON con
dos variables de entrada, una variable de salida y
cinco reglas. Las variables de entrada &1y &2, son
las variables de estado del sistema a controlar S. La
salida del sistema NEFCON 7, es la acciéon de
control aplicada a S. Las unidades de la capa oculta
representan las reglas difusas. La unidad Rs
representa la regla:

Si EiesA" y E2es AX® entoncesn es B, (1)

donde A:", A:® y Be son términos linguisticos
representados por los conjuntos difusos p2" , u2? y
Vva.

En lugar de valores reales, como los usados en
redes neuronales, los pesos de las conexiones en
NEFCON son conjuntos difusos. En donde algunas
conexiones pueden compartir pesos, como se ilustra
en la figura 1. Por ejemplo, las conexiones de la
unidad de entrada a Ri y R. comparten el mismo
peso ui" (conjunto difuso) y las conexiones de Ry
Rs a la unidad de salida n, comparten el mismo peso
vs. El algoritmo de aprendizaje debe realizar
cambios idénticos en los pesos compartidos, ya que
de lo contrario se perderia la integridad de la
estructura Mamdani. También, las normas-T, las
conormas-T y el procedimiento de defusificacion, se
eligen de tal forma que correspondan al sistema de
inferencia tipo Mamdani [Yen, et al., 1999].

(2)
13

Fig. 1. Arquitectura del modelo NEFCON. Las elipses
dibujadas alrededor de las conexiones indican los
pesos compartidos
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3 Conceptos Preliminares

Como se mencioné anteriormente, el modelo
NEFCON utiliza para la construccion y optimizacion
del controlador difuso, una senal de error que
informa al modelo la calidad del desempefo del
controlador sobre la planta, proporcionando de esta
manera, la magnitud y sentido de los cambios en la
estructura. Esta sefal de error es llamada error
difuso extendido (E), y es usada como sefal de
recompensa durante el proceso de aprendizaje por
refuerzo.

Se considera al sistema como controlado, si las
variables de estado de una planta S alcanzan y
permanecen en sus valores ideales (punto de
consigna), definidos por el vector x . De esta

manera, se pueden distinguir dos casos en la
evaluacion del estado de la planta. En el primer
caso, las variables de estado de la planta S se
encuentran préximas al estado optimo

Xy = (™, x\™), donde n representa el nimero

de variables de estado que representan a la planta.
Por lo tanto, cada variable de estado podria modelar
su estado Optimo, mediante la definicion de
funciones de membresia que  describan
linglisticamente su aproximacion a él. En el
segundo caso, las variables de estado pueden tener
valores lejanos a su valor ideal. Sin embargo, el
cambio en su magnitud indica si el sistema
evolucionara o no, hacia un estado 6ptimo. A esto
se le llama estado compensatorio.

Definicion 1. Sea S un proceso con n variables
de estado &, e€X,,.,E € X,, para el cual se

conocen s estados compensatorios. De acuerdo al
nuamero de variables de estado existiran n conjuntos
difusos que modelen el estado ptimo:

wop”: X, > 10,11, (i € {1,..,n}) 2
y s relaciones difusas n-arias:

DX x..x X, —>[0,1], (eil,...,s}) 3)

2 comp
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que representan el estado compensatorio. El estado
actual estd dado por (x,,...,x,) .

La bondad difusa G de la planta S esta dada por:
G: X, x..xX, »[0]] (4)

G('xl ""’xn) = g(Gopt ('xl EARE xn )’ Gcomp (xl ""7'xn )) (5)

donde g es una funcién apropiada que permite
combinar los valores de bondad G,y G,,,, Y due

depende de la planta S. La bondad difusa G
depende de la bondad difusa acumulativa G, :

Gop,:Xlx...xXn—>[O,1] (6)

G, (x,,...,x, ) = norma- T{ﬂ(l)opr (6 e eor ™o (xn)} (7)

y de la bondad difusa compensatoria G omp

G Xlx...xXﬂ—>[0,l] ®

comp *

Gcomp (xl,...,xn) =norma—T {M(l)cump (xl,...,xn)r l.u(S)mmp (xl,...,xn)}

©)

La bondad difusa acumulativa G, esta basada
en las descripciones del estado optimo deseado y
es calculada como la norma-T de las funciones de
membresia, que modelan la proximidad de cada
variable de estado. Las funciones de membresia
u?.mp » que describen el estado compensatorio de
la bondad difusa Gcomp, NO estan necesariamente
definidas sobre todas las variables de estado, asi
que es posible que ésta dependa de sélo dos 0 mas
de ellas. La funcién g, que determina la bondad
difusa (acumulativa) a partir de los valores de
bondad G,,: ¥ Geomp, debe ser seleccionada de tal
forma que combine de manera adecuada ambos
estados. Una funciéon generalmente utilizada para
combinar g es la operacion minimo.

Definicion 2. Sea S un proceso con n variables
de estado & € X,,.,§ e X, con una bondad

difusa G. Si S es controlada por un sistema
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NEFCON y (x,,...,x,) es el estado actual de S,

entonces el error difuso f del sistema NEFCON se
define como:

fiX, x.xX, —>[0,1] (10)

f(x,e0x,)=1-G(x,....X,) (11)

Para implementar el aprendizaje se debe
calcular coémo <cada regla es modificada,
dependiendo de su desempefo en funcién del
estado actual de la planta S. Una regla se “premia”
aumentando su influencia en la salida del control,
siempre y cuando la sefial por refuerzo muestre un
resultado positivo. Por el contrario, una regla se
“castiga” disminuyendo su influencia, de manera
que contribuya menos a la salida de control.

Para decidir si la contribucion de una regla tiene
una influencia positiva o negativa en el control de la
planta, es necesario conocer el signo de la salida
del controlador. Si se asume que para un estado
optimo (todas las variables de estado tienen sus
valores ideales), la salida del controlador es cero,
como a menudo sucede, entonces se puede saber
si es necesario que el controlador aplique una senal
positiva 0 negativa al proceso, dependiendo de su
desviacién con respecto al estado éptimo.

Definicion 3. El error difuso extendido E, de un
sistema NEFCON se define por:

E(%,5.,X,) = g0 Mop) -/ (X5 X,) (12)

donde (x,,...,x,) es el estado actual, fes el error

difuso, y sgn(nept) €s el signo de la sefal de control
optima.

En lugar de calcular el error difuso como en la
definicién 3, es posible usar reglas difusas. Para
hacer esto, el espacio de estados y el intervalo del
error [-1,1] deben ser divididos en funciones de
membresia [Nauck y Kruse, 1992].

4 Algoritmos de aprendizaje

Los algoritmos de aprendizaje se basan en el valor
de E, que se describe en la definicion 3. También
son conocidos como algoritmos de retropropagacion
del error difuso (“fuzzy error backpropagation”).
Estos algoritmos pueden ser considerados como
una clase de aprendizaje reforzado sin critico

adaptativo [Sutton y Barto, 1998]. En donde el error
es usado como una sefial negativa de refuerzo. El
proceso de aprendizaje, es similar al utilizado en el
algoritmo de retroprogacion del error
(backpropagation) para perceptrones multicapa en
donde, el valor del error se propaga hacia atras en
toda la red, tomando como inicio la capa de salida.
De esta manera, cada unidad toma una funcion de
la senal de error y la utiliza para modificar
localmente sus pesos (funciones de membresia).
Los algoritmos de aprendizaje de NEFCON se
dividen en dos tipos: aprendizaje de conjuntos
difusos (aprendizaje de parametros) y aprendizaje
de reglas (aprendizaje de estructura).

41 Algoritmo de aprendizaje de conjuntos
difusos

El algoritmo de aprendizaje de conjuntos difusos
modifica las funciones de membresia de NEFCON,
a fin de mejorar el desempefio del controlador. Se
asume la existencia de una base de reglas
adecuada y que el inadecuado desempefio del
controlador, se deba a una representacion no
o6ptima de los conjuntos difusos usados en las
reglas. De este modo, s6lo se cambian aquellas
funciones de membresia que pertenezcan a reglas
cuyo grado de activacion haya sido mayor que cero
(reglas disparadas).

Para premiar (incrementar) la contribucién de
una regla en la respuesta del controlador, se debe
aumentar el grado de membresia en el estado
actual & =(x,,...,x,) y el valor numérico t. aportado

por la regla a la salida n. El grado de satisfaccion

de la regla aumenta, si se incrementa el soporte
(intervalo de valores de la variable) de las funciones
de membresia ,"” del antecedente de dicha regla.
Por otro lado, también el valor numérico de t se
incrementa, si el soporte del conjunto difuso vj- del
consecuente se reduce. Para castigar (disminuir) la
contribucion de una regla, debe hacerse
exactamente lo contrario al caso anterior; esto es,
disminuir el soporte de los conjuntos difusos del
antecedente y aumentar los del consecuente. La
figura 2 muestra las configuraciones de las
funciones de membresia antes y después del
proceso de premiar o castigar a la regla R-.. En esta
figura, es posible observar que el aumento y
reduccion de los soportes en el antecedente y en el
consecuente respectivamente, corresponden a un
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incremento en el valor numérico t-de la salida n. En

otras palabras, se fortalece la influencia de la regla
R-en la sefial de control.

Considerando que se pretende controlar un
sistema S de n variables de estado, con una
variable de control n, a partir de k unidades de regla
Ri,...,Rx, entonces es posible utilizar iterativamente
el algoritmo de aprendizaje que adaptara las
funciones de membresia. El ciclo de adaptacién se
repite hasta que E alcance un valor minimo deseado
o bien, se haya aplicado un numero de ciclos fijo. A
continuacion, se muestran los pasos que se siguen
durante una iteracion:

1. Se calcula la salida o, del sistema NEFCON
usando el estado actual, se aplica o, a Sy se
determina el nuevo estado.

2. Se determina E del nuevo estado producido por
S.

1 A Antecedente 1 4 Consecuente
(O]
H J, v/}
1 7/
7N 4
[ / /
,’ \ ’
I \ ’ - - = Antes
\\ ,' )
) S S —— Después
1 \\ ’/ "
0 — >0 >

o)

(1) (i)
Jr bj,- ¢

Jr

Fig. 2. Modificacion del soporte de las funciones de
membresia

3. Se determina para cada unidad de regla Rr su
contribucion t- al valor de salida o, y se calcula
el error difuso de cada regla Ekrr, definido por:

E, =o0,, -E-sgn(t,) (13)

para cada unidad de regla R-con r € {1,...,k}.

4. Se modifican los parametros de las funciones
de membresia en los consecuentes vy, je
{1,...qty re {1,...,k}, utilizando:
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Adj=c - Err - (elr—djr) (14)

donde g representa el numero de funciones de
membresia en los que se dividié el universo de
discurso de la salida o,, mientras que dy e, son los
puntos que definen la funcion de membresia para el
consecuente, como se muestra en la figura 2. El
intervalo 0>0 <1, representa los valores posibles
para o (indice de aprendizaje) y determina la
rapidez con la que el algoritmo realiza las
modificaciones.

5. Se determinan los cambios en los parametros
de las funciones de membresia i i € {1,...,n},
je {1,...,p}y r € {1,...,k} de los antecedentes de
las reglas:

Aal'= c - Ear- (b/r(o - (lr(’)) (15)

Aer('>= -0 - Egr - (Cj(’) - bjr(,)) (16)

donde p representa el nimero de funciones de
membresia en los que se dividid el universo de
discurso para cada una de las n variables de
estado, mientras que a b y ¢ son los puntos que
definen la funcion de membresia para el
antecedente, como se muestra en la figura 2.

4.2 Aprendizaje de reglas

El modelo NEFCON permite aprender en dos partes
la estrategia de control. La primera parte, tiene por
objetivo aprender la base de reglas. La segunda
parte, optimiza las reglas ya aprendidas (véase la
seccion 4.1). Ambas partes, se basan en E para
lograr sus objetivos.

Los algoritmos utilizados para aprender una
base de reglas se pueden dividir en tres clases:
aleatorios, vacios o completos. NEFCON posee
algoritmos sélo para las dos ultimas clases. En este
trabajo, se considera un algoritmo vacio llamado
incremental, el cual, se inicia sin ninguna regla y
estas se van agregando o incrementando. Este
algoritmo resulta conveniente por ser menos
costoso en términos de carga computacional.
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4.3 Algoritmo incremental

El problema en el aprendizaje de reglas se origina
dado que se desconoce la salida correcta del
controlador para cada estado. En consecuencia, no
es posible generar reglas a partir de la observacion
de los estados. Sin embargo, se puede tratar de
inferir una salida conveniente mediante E.

El algoritmo se divide en tres fases. En la
primera fase, se construye el antecedente de las
reglas y se infiere el valor de salida a partir de E. En
la segunda fase, se optimiza la base de reglas
segun E. Por ultimo, en la tercera fase se contempla
la adaptacion de las funciones de membresia
aprendidas.

Si se considera ahora una planta S, con n
variables de estado & =(x,,...,x,), las cuales estan

divididas por p conjuntos difusos cada una y una
variable de control n € [ymin, ¥mad, dividida en q
conjuntos difusos. Supdngase ademas, que se tiene
un sistema NEFCON con k’ unidades de reglas
predefinidas, donde k’ puede ser cero. El algoritmo
de aprendizaje de reglas incremental estaria dado
por los siguientes pasos:

1. Para un numero fijo de repeticiones mi, se llevan
a cabo los siguientes pasos:

a) Para el vector de entrada actual (x,,...,x,),
encontrar aquellos conjuntos difusos p®,...,
p™ para los cuales se cumpla que:

(VN (x) 2 n ()

J

(17)

donde ie {1,...,.n}yje {1,....p}.

b) Si no se tiene ninguna
antecedente de la forma:

Sigies pVy..yé&es

regla con el

(18)

Entonces, encontrar el conjunto difuso,v tal
que se cumpla que:

(VK) (v(n) 2 v, ()

tal que k € {1,...,g}, donde el valor heuristico
de salida n, estd determinado por

(19)

M ]E] (yp —m) SLE 20
B m_|E|.(m_ymin) SiE<0

(20)
c) Seincorpora la regla:
Sities v y..yénes u» entoncesnes v (1)

al controlador.

Planta

Si€ es M“) y..y&es
ut™ entonces nes v

Se forma la regla

E 1

2 v,

Fig. 3. Ciclo de aprendizaje de la estructura del controlador
realizada por NEFCON

2. Para un numero fijo de repeticiones m,, se
llevan a cabo los siguientes pasos:

a) Se propaga el vector de entrada actual a
través del controlador. Se calcula la
contribucién t de cada regla R, al valor de
salidan. A partir de f, se estima la

contribucién ideal de cada regla mediante:
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t =t +onE (22)

donde o, representa el indice de aprendizaje.
La contribucion ideal t: , representa un ajuste
de la contribucion ¢, de la regla. El ajuste se

realiza mediante una estimaciéon del error,
producido durante la asignacion de funciones
de membresia.

b) Para cada unidad de regla R, se determina la
nueva funcion de membresia v, del

consecuente, de manera que se cumpla:

(VR (v, (1) = v, (1)), (23)

donde k € {1,...,g}. Lo anterior, puede ser
considerado como un reajuste de las
funciones de membresia.

3. Se eliminan todas las reglas que no han sido
utilizadas, en mas de un porcentaje predefinido
durante el aprendizaje. En otras palabras, seran
eliminadas aquellas reglas que soélo fueron
usadas ocasionalmente. Este fendmeno,
sucede normalmente al inicio del aprendizaje.

4, Se utiliza el algoritmo de aprendizaje de
conjuntos difusos que se discutié en la seccion
41,

La figura 3 muestra el proceso en que NEFCON
construye la base de reglas del controlador. De esta
figura pueden distinguirse 2 tipos de flujos de
informacion: uno exterior que denota el proceso de
creaciéon de reglas desempefiado durante las
primeras repeticiones m1 y otro interior ejecutado en
las siguientes repeticiones mz, que representan la
correccién de los consecuentes a partir de la
evaluacion de E.

5 Exploracion de los estados de la planta

NEFCON permite construir un controlador difuso a
partir de los estados explorados durante el
aprendizaje. Es muy importante considerar que para
obtener una adecuada base de reglas, debe
asegurarse que el espacio de estados sea
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explorado ampliamente durante el proceso de
aprendizaje. En el caso de plantas lineales, es
posible lograrlo aumentando deliberadamente el
numero de ciclos de aprendizaje y/o alargando la
duracién de los mismos.

Como se menciond en la seccién 4, durante la
construccion del controlador, se afiaden reglas en
funcion de la relacion entre el estado actual de la
planta y la salida inferida mediante E. El proceso de
afiadir reglas en el instante k y usarlas en el ciclo
siguiente k+1, depende de la cantidad de estados
que puedan ser explorados.

El modelo NEFCON fue concebido originalmente
para el control de sistemas lineales. En sistemas no
lineales, NEFCON podria no converger durante el
aprendizaje. Lo anterior, se debe a la pobre
exploracién de los estados de la planta y que en
consecuencia limitaria la construccion de reglas. Por
esta razoén, para un sistema no lineal, el aumentar
los ciclos de aprendizaje no seria suficiente.

La solucién propuesta en este articulo, se inspira
en el trabajo de Chapeau-Blondeau y Rousseau
[Chapeau-Blondeau y Rousseau, 2005], en donde
se demuestra que al anadir ruido Gaussiano, es
posible detectar de forma Optima sefales en
modelos no lineales. La idea consiste en explorar
mas ampliamente el espacio de estados, con el
objetivo de crear un mayor numero de reglas
durante el proceso de aprendizaje, permitiendo
regular una planta no lineal. Un analisis riguroso de
las pruebas de convergencia obtenidas al afadir
ruido Gaussiano puede ser consultado en
[Chapeau-Blondeau y Rousseau, 2005].

6 Modelo matematico y definicion del
error para el sistema de la "pelota y el
balancin"

El sistema dinamico no lineal de la "pelota y el
balancin®, es frecuentemente utilizado como planta
de referencia para evaluar el rendimiento de un
controlador. Ejemplos de ello, se encuentran en
[Perez-Cisneros, et al., 2004]; en donde se presenta
la aplicacion de diferentes controladores clasicos a
esta planta y en [Shi-Yuan et al., 2002], donde se
utiliza la misma planta para probar enfoques de
control inteligente. A continuacién, se describe el
modelo matematico del sistema de la "pelota y el
balancin" y el uso de E, implementado como sefal
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de refuerzo para el aprendizaje de reglas y
adaptacion de funciones de membresia.

6.1 El modelo matematico

La figura 4 muestra al sistema dinamico de la
"pelota y el balancin". La posicién r de la pelota, la
cual se desplaza libremente sobre el balancin B, es
controlada mediante el giro 6 del servomotor M, el
cual al encontrarse acoplado al balancin B mediante
la barra C, permite modificar la inclinacion a del
balancin. El comportamiento dinamico del sistema
es modelado mediante la ecuacién Lagrangiana de
movimiento definida como:

2
(é+m)iﬂ'+m- gr~sin(%9)—m-r%(9)2 (24)

donde J el momento de inercia de la pelota, m es la
masa de la pelota, Rb el radio de la pelota, 7 es la
aceleracién de la pelota, gr es la gravedad, d la
posicion de la barra y 6 es el éangulo de
compensacion (salida del controlador). Los
parametros del sistema utilizados en este trabajo se
resumen en la Tabla 1.

Fig. 4. Descripcién del sistema de la "pelota y el balancin”

Tabla 1. Parametros del sistema de la "pelota y el

balancin”
Parametro Valor
m 0.11Kg
Rb 0.015m
d 0.03m
ar 9.8m/s?
L im
9.99e-6 Kgm?

6.2 Definicion del error extendido E

El problema de control para este sistema, consiste
en mantener la posicion de la pelota en un punto de
referencia del balancin B. Para esto, es necesario
calcular el error e, que se define como:

e = referencia —r (25)

En donde referencia, es el punto a seguir por el
controlador y r la posicion real de la pelota.
Considerando lo anterior, el sistema tendra dos
variables de estado: el error ¢ y el cambio del error
¢, este ultimo definido como:

e=e—e_ant (26)

donde e_ant, representa el error anterior.

Para el caso en que las variables e y ¢, alcanzan
aproximadamente su valor ideal (estado 6ptimo), se
definen las funciones de membresia que modelan
su proximidad:

e
-1, sile<0.2
wa@=4" 02 g 27)
0, en otro caso
2 1—ﬂ si [¢]<0.5
wE)=1" 05 28)

0

en otro caso
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Si e no es cero, pero el valor de ¢ indica que en el
estado siguiente se reduciréa el valor de e, entonces
se tendra un estado compensatorio, el cual puede
ser definido por:

1-[10-e+¢

, si[l0-e+el<1

(29)
0, en otro caso

Heomp(€,€) = {

A partir de las ecuaciones 7 y 8, se calcula la
bondad difusa acumulativa G,

G, (e.¢) =min{ 1) (), 1) (¢} (30)

y la bondad difusa compensatoria Geomp
GL‘{)mp (e’ e) = /’[mmp (e’ e) (31 )

Considerando la ecuacién 5, se obtiene la expresion
para la bondad difusa, tal que:

G,,(e,@), si sgn(e)=sgn(é)

. (32)
Gy (€:6),

en otro caso

G(e,é) :{

De esta manera puede calcularse a partir de las
ecuaciones 11y 12, el error difuso y E, tal que:

f(e,6)=1-G(e,¢) (33)

E(e,e)=sgn(e)- f(e,€) (34)

7 Resultados del aprendizaje

El aprendizaje se realizd en seis ciclos de 20
segundos. Cuatro de ellos correspondieron al
aprendizaje de reglas, mientras que los dos
restantes a la optimizacion de los conjuntos difusos.
Un ciclo consiste de 3000 iteraciones, considerando
m;=1500 y m,=1500. La optimizacion de
parametros también us6 1500 iteraciones. Durante
el aprendizaje de reglas, se agrego ruido aditivo
Gaussiano de media cero y desviacion estandar 0.1
a los estados. Se eliminaron aquellas reglas que no
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fueron utilizadas en més de un 2%. Como condicion
inicial fue seleccionada r=0.3. El punto de referencia
fue 0.5 y la simulacién de todo el sistema utiliza un
intervalo de muestreo de 0.5 segundos. Para
realizar la simulacion de este trabajo, se utilizé la
implementacién en MatLAB del sistema NEFCON
sugerida en [NUrnberger, et al., 1999].

Para el aprendizaje de reglas, se dividié a cada
variable de entrada ¢ y ¢é en tres conjuntos difusos,
etiquetados como: ne, ce y po, mientras que para la
variable de salida 6, se dividi6 en 5 conjuntos
difusos, etiquetados como: ne, nm, ce, pm y po.
Como resultado del aprendizaje, se obtuvieron las
siguientes seis reglas:

1. Si(e esce)y (e esce)entonces (0 es ce)
2. Si(e esce)y (e esne)entonces (6 es ce)
3. Si(e esce)y(é espo)entonces (6 es pm)
4. Si(e esne)y(é esne)entonces (0 es ne)
5. Si(e esne)y (e esce)entonces (0 es ne)
6. Si(e esne)y (e espo)entonces (6 es nm)

La figura 5 muestra la evolucion del proceso de
aprendizaje obtenido al aplicar el algoritmo
NEFCON. Como puede verse en esta figura, en los
dos primeros ciclos el efecto de afadir ruido se
traduce en una mejor exploracién del espacio de
estados, asi se puede formar una regla para cada
combinacion de variables de entrada. En los dos
siguientes ciclos de aprendizaje (3 y 4), resulta
evidente como el proceso de depuracion de reglas
trae consigo una mejora en la respuesta dinamica
del sistema, disminuyendo la magnitud de los
sobretiros. En la figura 6, se muestra la superficie de
control obtenida con la base de reglas aprendidas
por el sistema NEFCON.

Por ultimo, en los ciclos 5 y 6, la base de reglas
aprendidas es optimizada mediante la modificacién
de las funciones de membresia (véase 4.1), de tal
manera que su efecto se percibe al atenuar el
sobretiro. Las figuras 7a, 8a y 9a muestran las
funciones de membresia iniciales utilizadas para e
é y 0 respectivamente. Estas fueron modificadas
durante el proceso de aprendizaje, quedando
finalmente como muestran las figuras 7b, 8b y 9b.
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Ciclo 1 Ciclo 2
T

21 T T T T

Posicion de la pelota (1)

Angulo de giro (6)

—os} 1 05 4
-1F 4
b 4

RIS 1 15 4

. . . . . . . . . -2 L L - : L L L L L
2 > n 5 A 0 2 " s .y 2 0 2 4 6 8 10 12 14 16 18 20

Ciclo 5 Ciclo 6

2 . . . : : : : . . T T T T T T T T T

150 4 151 4

b 4

ok |
_os}- 4

—ost 4
-1F 4

e 4
_15h 4

_isf 4
o 2 4 6 8 10 12 14 16 18 20

2 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Fig. 5. Proceso de 6 ciclos de aprendizaje. La sefial continua corresponde a la posicion de la pelota r, mientras que la sefial
punteada corresponde al angulo de compensacion 6 del servomotor (salida del controlador)
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Fig. 7. (a) Funciones de membresia iniciales y (b) funciones de membresia modificadas por el aprendizaje para e
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Fig. 8. (a) Funciones de membresia iniciales y (b) funciones de membresia modificadas por el aprendizaje para ¢
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Grado de Membresia ()

ool

Fig. 9. (a) Funciones de membresia iniciales, (b) funciones de membresia modificadas por el aprendizaje, para 6

NEFCON permite a partir de un algoritmo de
aprendizaje, construir las reglas y optimizar los
parametros del controlador, al utilizar una sefal de
refuerzo obtenida por interacciéon directa con el
sistema. En este articulo se presenta la aplicacion
del modelo NEFCON en el control de sistemas
dinamicos no lineales. Lo anterior se hizo posible

8 Conclusiones

En este trabajo se propone el uso del modelo
NEFCON para generar y optimizar un controlador
difuso capaz de controlar una planta no lineal.
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mediante la adicién de ruido Gaussiano a las
variables de estado de la planta. El ruido afnadido, al
permitir una rapida exploracion de los estados,
asegura una mejor convergencia del aprendizaje
durante el disefio del controlador. Con el objetivo de
probar los alcances de esta propuesta, se utilizd
como planta el sistema de la "pelota y el balancin”.
Se comprobd que de no afadirse ruido Gaussiano
durante el aprendizaje, el modelo NEFCON es
incapaz de construir un controlador, que regule la
planta.

Para el control del sistema de la "pelota y el
balancin”, se definieron particiones iniciales de los
conjuntos difusos para describir tanto las variables
de entrada como las de salida. Después, se aplicé
el algoritmo de aprendizaje incremental para el
aprendizaje de reglas. Por ultimo, se mejord el
desempefio  del controlador  mediante la
optimizacion de los conjuntos difusos. El resultado
comprende un controlador difuso compuesto por
seis reglas y por conjuntos difusos optimizados, los
cuales fueron modificados respecto a sus
particiones iniciales.

El controlador generado automaticamente a
partir del aprendizaje, fue capaz de controlar al
sistema de la "pelota y el balancin" sin experimentar
sobretiro y con un tiempo de establecimiento dentro
del intervalo de 2 a 3 segundos. Los experimentos
sugieren que es posible generar controladores para
el sistema de la "pelota y el balancin" con la
utilizacion de tan solo 3 ciclos de aprendizaje. Sin
embargo, aunque estos controladores permiten
someter a la variable de control después de 16
segundos, muestran una respuesta dinamica
inadecuada (sobretiros de mas del 40%). Por lo que,
para este sistema es recomendable la utilizacion de
mas de 5 ciclos de aprendizaje, si se desea atenuar
el sobretiro y obtener tiempos de establecimiento
menores.

La principal ventaja del modelo NEFCON, en
comparacion con otras propuestas, es que su
disefo se reduce a plantear cualitativamente el error
actual de la planta a controlar (sefal de refuerzo),
por lo que no es necesario contar con un modelo de
la planta tal y como se requiere en otros enfoques
difusos [Shi-Yuan et al., 2002]. Ademas, a diferencia
de gran parte de los enfoques inteligentes [Lon-
Chen y Huang-Yuan, 2007], su estructura sencilla
permite su empleo en tiempo real. Como
desventaja, NEFCON no permite explicitamente
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definir indices de desempefio del controlador,
debido a sus caracteristicas heuristicas, al contrario
de otros modelos de control no lineal [Perez-
Cisneros, et al., 2004] u otras técnicas inteligentes
[Lon-Chen y Huang-Yuan, 2007]. Por lo que,
NEFCON no se recomienda para aquellos casos, en
donde se deban satisfacer parametros de respuesta
del controlador predefinidos, como lo son, por
ejemplo, tiempos de establecimiento y valores de
sobretiro maximo.
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