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Abstract. This paper deals with the discrete-time nonlinear 
system identification via Recurrent High Order Neural 
Networks, trained with an extended Kalman filter (EKF) 
based algorithm. The paper also includes the respective 
stability analysis on the basis of the Lyapunov approach for 
the whole scheme. Applicability of the scheme is illustrated 
via real-time implementation for a three phase induction 
motor. 
 
Keywords: Neural identification, Extended Kalman filtering 
learning, Discrete-time nonlinear systems, Three phase 
induction motor. 
 
Resumen. Este artículo trata el problema de identificación de 
sistemas no lineales discretos usando redes neuronales 
recurrentes de alto orden entrenadas con un algoritmo basado 
en el filtro de Kalman extendido (EKF). El artículo también 
incluye el análisis de estabilidad para el sistema completo, en 
las bases de la técnica de Lyapunov. La aplicabilidad del 
esquema se ilustra a través de la implementación en tiempo 
real para un motor de inducción trifásico. 
 
Palabras clave: Identificación neuronal, Aprendizaje usando 
filtro de Kalman Extendido, Sistemas no lineales discretos, 
Motor de inducción trifásico. 

1   Introduction 

Since the seminal paper [Narendra and Parthasarathy, 
1990], Neural networks (NN) have become a well-
established methodology as exemplified by their 
applications to identification and control of general 
nonlinear and complex systems. In particular, the use 
of recurrent high order neural networks (RHONN) has 
increased recently [Sanchez and Ricalde, 2003] due to 
their excellent approximation capabilities, requiring 
less units, compared to the first order ones; they are 
also more flexible and robust when faced with new 

and/or noisy data patterns [Ghosh and Shin, 1992]. 
Furthermore, several authors have demonstrated the 
feasibility of using these architectures in applications 
such as system identification and control [Ge, et al., 
2004; Haykin, 1999; Kim and Lewis, 1998; Narendra 
and Parthasarathy, 1990; Rovithakis and Christodolou, 
2000; Sanchez, et al., 2004; and references therein]. 
There are recent results which illustrate that the NN 
technique is highly effective in the identification of a 
broad category of complex discrete-time nonlinear 
systems without requiring complete model information 
[Yu and Li, 2003; Yu and Li, 2004].  

The best well-known training approach for 
recurrent neural networks (RNN) is the back 
propagation through time learning [Singhal and Wu, 
1989]. However, it is a first order gradient descent 
method and hence its learning speed could be very 
slow [Singhal and Wu, 1989]. Recently the Extended 
Kalman Filter (EKF) based algorithms has been 
introduced to train neural networks, in order to 
improve the learning convergence [Singhal and Wu, 
1989]. The EKF training of neural networks, both 
feedforward and recurrent ones, has proven to be 
reliable and practical for many applications over the 
past ten years [Singhal and Wu, 1989]. 

In [Rovithakis and Christodolou, 2000], adaptive 
identification and control by means of on-line learning 
is analyzed; the stability of the closed loop system is 
established based on the Lyapunov function method. 
Lyapunov approach can be used directly to obtain 
robust training algorithms for continuous-time 
recurrent neural networks [Sanchez and Ricalde, 2003; 
Rovithakis and Christodolou, 2000]. For discrete-time 
systems, the problem is more complex due to the 
couplings among subsystems, inputs and outputs. Few 
results have been published in comparison with those 
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for continuous-time domain [Yu and Li, 2003; Yu and 
Li, 2004]. By other hand discrete-time neural networks 
are more convenient for real-time applications. 

For many nonlinear systems, it is often difficult to 
obtain their accurate and faithful mathematical models, 
regarding their physically complex structures and 
hidden parameters as discussed in [Chui and Chen, 
1998]. Therefore, system identification becomes 
important and even necessary before control systems 
can be considered not only for understanding and 
predicting the behavior of the whole system, but also 
for obtaining an effective control law.  

The identification problem consists of choosing an 
appropriate identification model and adjusting its 
parameters according to some adaptive law, such that 
the response of the model to an input signal (or class of 
input signals), approximates the response of the real 
system to the same input [Rovithakis and 
Christodolou, 2000]. A challenger problem for 
nonlinear systems identification is to select a suitable 
structure for the identifier, capable of approximating 
the unknown nonlinear dynamics. In this 
consideration, it is notable that recurrent neural 
networks offer the advantage of well approximating a 
nonlinear system to an arbitrarily accurate level 
[Cotter, 1990]. 

In this paper, a recurrent high order neural network 
(RHONN) is used to identify the plant model, under 
the assumption of all the state is available for 
measurement. The online learning algorithm for the 
RHONN is implemented using an Extended Kalman 
Filter (EKF). The respective stability analysis, on the 
basis of the Lyapunov approach, is included for the 
proposed scheme. The applicability of this scheme is 
illustrated by real-time implementation for an electric 
three phase induction motor. 

2   Mathematical preliminaries 

Through this paper we use k as the step sampling, k ∈ 0 
∪ Z+ •, |•| for the absolute value, for the Euclidian 
norm for vectors and for any adequate norm for 
matrices. For more details related to this section see 
[Ge, et al., 2004]. Consider a MIMO nonlinear system: 

( 1) ( ( ), ( ))k F k u kχ χ+ =  (1) 

where nχ ∈ℜ , mu∈ℜ and n m nF ∈ℜ ×ℜ →ℜ is 
nonlinear function. 

Definition 1. The solution of (1) is semiglobally 
uniformly ultimately bounded (SGUUB), if for anyΩ , 
a compact subset of nℜ  and all ( )0kχ ∈Ω , there 

exists an 0ε >  and a number ( )( )0,N kχ∈  such that 

( )kχ ε<  for all 0k k N> + . 
In other words, the solution of (1) is said to be 

SGUUB if, for any apriori given (arbitrarily large) 
bounded set Ω  and any apriori given (arbitrarily 
small) set 0Ω , which contains (0,0) as an interior 
point, there exists a control u, such that every 
trajectory of the closed loop system starting from Ω  
enters the set ( ) ( ){ }0 k kχ χ εΩ = <  in a finite time 

and remains in it thereafter [Ge, et al., 2004]. 
 
Theorem 1 [Ge, et al., 2004]. Let ( )( )V kχ  be a 
Lyapunov function for the discrete-time system (1), 
which satisfies the following properties: 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )

1 2

3 3

1

                                        

k V k k

V k V k V k

k

γ χ χ γ χ

χ χ χ

γ χ γ ς

≤ ≤

+ − = ∆

≤ − +  

where ς  is a positive constant, ( )1γ   and ( )2γ   are 

strictly increasing functions, and ( )3γ   is a continuous, 
nondecreasing function. Thus if 

( ) ( )0   for   V kχ χ ς∆ < >  

then ( )kχ  is uniformly ultimately bounded, i.e. there 

is a time instant Tk , such that ( )  Tk k kχ ς< ∀ <
  

3   Discrete-time Recurrent Neural 
Networks 

Let consider the following discrete-time recurrent high 
order neural network (RHONN), depicted in Fig.1 
which is described as: 

( ) ( ) ( )( )1 , ,    1, ,T
i ix k w z x k u k i n+ = =   (2) 

where ix  is the state of the i-th neuron, iL  is the 
respective number of higher-order connections, 
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{ }1 2, , ,
iLI I I  is a collection of non-ordered subsets of 

{ }1,2, ,n , n  is the state dimension, iw  is the 
respective on-line adapted weight vector, and 

( ) ( )( ),iz x k u k  is given by 

( ) ( )( )

( )

( )

( )

11

2 2

1

2

,

j

j

j

j

j i
Li

jLi

d
ij Ii
d

i ij I
i

d Li
ij I

yz

z y
z x k u k

z y

∈

∈

∈

 
   
   
   = =   
   
    

 

∏
∏

∏
 

 (3) 

with ( )
ij

d k  being a nonnegative integers, and iy  is 
defined as follows: 

( )

( )

1

1

1

1

n

n

n m

i

i n
i

i

mi

y S x

y S x
y

y u

uy

+

+

   
   
   
   
 = =  
   
   
   
     

 



 (4) 

In (4), [ ]1 2, , , T
mu u u u=   is the input vector to the 

neural network, and ( )S •  is defined by 

( ) ( )
1

1 exp
S x

xβ
=

+ −  (5) 

Consider the problem to approximate the general 
discrete-time nonlinear system (1), by the following 
discrete-time RHONN series-parallel representation 
[Rovithakis and Christodolou, 2000]: 

( ) ( ) ( )( )*1 ,
T

ii i i zk w z x k u kχ ε+ = +  (6) 

where iχ  is the i-th plant state, 
izε  is a bounded 

approximation error, which can be reduced by 
increasing the number of the adjustable weights 
[Rovithakis and Christodolou, 2000]. Assume that 
there exists ideal weights vector *

iw  such that 
izε  can 

be minimized on a compact set i

i

L
zΩ ⊂ℜ . The ideal 

weight vector *
iw  is an artificial quantity required for 

analytical purpose [Rovithakis and Christodolou, 

2000]. In general, it is assumed that this vector exists 
and is constant but unknown. Let us define its estimate 
as iw  and the estimation error as 

( ) ( )*
i i iw k w w k= −  (7) 

The estimate iw  is used for stability analysis which 
will be discussed later.  

 
Fig. 1. Schematic representation for a discrete-time RHONN 

4   The EKF Training Algorithm 

Kalman filtering (KF) estimates the state of a linear 
system with additive state and output white noises 
[Chui and Chen, 1998; Grover and Hwang, 1992]. For 
KF-based neural network training, the network weights 
become the states to be estimated, with the error 
between the neural network output and the desired 
output; this error is considered as additive white noise. 
For identification, the desired output is information 
generated by the plant; in this paper, the respective 
state. Due to the fact that the neural network mapping 
is nonlinear, an extended Kalman Filtering (EKF)-type 
is required.  

The training goal is to find the optimal weight 
values that minimize the prediction errors (the 
differences between the desired outputs and the neural 
network outputs). The EKF-based NN training 
algorithm is described by 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1

1
1, ,

i i i i

i i i i i

T
i i i i i i

K k P k H k M k

w k w k K k e k

P k P k K k H k P k Q k
i n

η

=

+ = +

+ = − +

= 

 (8) 

with 
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( ) ( ) ( ) ( ) ( ) 1T
i i i i iM k R k H k P k H k

−
 = +   (9) 

( ) ( ) ( )i i ie k k x kχ= −  (10) 

where ( )ie k  is the respective identification error, 

( ) i iL L
iP k ×∈ℜ  is the prediction error covariance matrix 

at step k , iL
iw ∈ℜ  is the weight (state) vector, iL  is 

the respective number of neural network weights, iχ  is 
the i-th plant state, ix is the i-th neural network state, 

n  is the number of states, iL
iK ∈ℜ  is the Kalman gain 

vector, i iL L
iQ ×∈ℜ  is the NN weight estimation noise 

covariance matrix, iR ∈ℜ  is the measurement noise 

covariance; iL
iH ∈ℜ  is a vector, in which each entry 

( )ijH  is the derivative of one of the neural network 

state, ( )ix , with respect to one neural network weight, 

( )ijw , as follows 

( ) ( )
( )

( ) ( )1j
i i

T

i
ij

i w k w k

x k
H k

w k
= +

 ∂
=  

∂  
 (11)

 

where 1,2, ,i n=   and 1,2, , ij L=  . Usually iP  and 

iQ  are initialized as diagonal matrices, with entries 

( )0iP  and ( )0iQ , respectively. It is important to 

remark that ( )iH k , ( )iK k  and ( )iP k  for the EKF are 
bounded; for a detailed explanation of this fact see 
[Song and Grizzle, 1995]. 

Then the dynamics of the identification error (10) 
can be expressed as 

( ) ( ) ( ) ( )( )1 ,
i

T
i i i ze k w k z x k u k ε+ = +  (12) 

By the other hand the dynamics of (7) is 

( ) ( ) ( ) ( )1i i i iw k w k K k e kη+ = −  (13) 
Now, we establish the main result of this paper in 

the following theorem.  
 
Theorem 2: The RHONN (2) trained with the EKF-
based algorithm (8) to identify the nonlinear plant (1), 
ensures that the identification error (10) is 
semiglobally uniformly ultimately bounded (SGUUB); 
moreover, the RHONN weights remain bounded. 

Proof: Consider the Lyapunov function candidate 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2

2 2

1

           1 1 1

           

           1

T
i i i i i

i i i

T
i i i

T
i i i

i i

V k w k P k w k e k

V k V k V k

w k P k w k

w k P k w k

e k e k

= +

∆ = + −

= + + +

−

+ + −

 

 

 
 

(14) 
 

Using (12) and (13) in (14) 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

2

2

            

            

            ,

             

T
i i i i i

i i

i i i i

T
i

T
i i i i

V k w k K k e k

P k A k

w k K k e k

w k z x k u k

w k P k w k e k

η

η

∆ = −  
× −  
× −  

 +  
− −







 

 (15) 

with ( ) ( ) ( ) ( ) ( )T
i i i i iA k K k H k P k Q k= + ; then, (15) 

can be expressed as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

              

              

              

              

              

              

T
i i i i

T
i i i i i

T
i i i

T
i i i i i

T
i i i i i

T
i i i i i

T
i i i i i

V k w k P k w k

e k K k P k w k

w k A k w k

e k K k A k w k

e k w k P k K k

e k K k P k K k

e k w k A k K k

η

η

η

η

η

∆ =

−

−

+

−

+

+

 



 







( ) ( ) ( ) ( )

( ) ( ) ( )( )( )
( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 2

2

2

2

              

              ,

              2 ,

              
i i

T
i i i i i

T
i i

T
i i z z

T
i i i i

e k K k A k K k

w k z x k u k

w k z x k u k

w k P k w k e k

η

ε ε

−

+

+ +

− −





 

 (16) 

Using the inequalities 

( ) ( )2 2
min max

2
2

T T T

T T T

T

X X Y Y X Y
X X Y Y X Y

P X X PX P Xλ λ

+ ≥

+ ≥ −

− ≥ − ≥ −

 

which are valid , ,   ,   0n n n TX Y P P P×∀ ∈ℜ ∀ ∈ℜ = > , 
then (16), can be rewritten as 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

2

2 2
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2 2

             

             

             

             

             

             2
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T
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i
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w k w k e k

e k K k P k P k K k

w A k K k K k A k w

e K k P k K k

w z

η

η

η

η
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−

+ +

+

+

+

+

 

 

 

 ( ) ( )( )( ) ( )
2 2 2, 2

iz ix k u k e kε+ −

 (17) 

Then 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

2 2
min

2 22 2
max

2 22 2
max

2 22
max

2 22
min

22 2

              

              

              

              

              2 , 2
i

i i i i

i i i i

i i i i

i i i i

i i i i

i i z

V k w k w k A k

e k K k P k

w k A k K k

e k K k P k

e k K k A k

w k z x k u k

λ

η λ

η λ

η λ

η λ

ε

∆ ≤ −

+

+

+

−

+ +

 





 (18) 

Then, there exists iη , iQ  and iR  such that 0iE >  
and 0iF > , with 

( ) ( )( ) ( )( ) ( )

( ) ( )( )
( ) ( ) ( )( )

( ) ( )( )
( )

22 2
min max

2

22
min

22 2
max

2

          2 , 1

          

2
i

i i i i i

i

i i i i

i i i

i z

E k A k A k K k

z x k u k

F k K k A k

K k P k

G k

λ η λ

η λ

η λ

ε

= −

− −

=

−

=
 

Therefore, (18) can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )2 2
i i i i i iV k w k E k e k F k G k∆ ≤ − − +  

Then ( ) 0iV k∆ <  when 

( ) ( )
( ) ( ) ( )

( )1 2   OR   i i
i i

i i

G k G k
w k e k

E k F k
κ κ≥ ≡ ≥ ≡  

Therefore, according to Theorem 1, the solution of 
(12) and (13) is stable, hence the identification error 
and the RHONN weights are SGUUB.  

The neural identification is performed on-line, 
using a series-parallel configuration as illustrated in 
Fig. 2. 

 
Fig. 2. Neural Identifier scheme 

5   Application 

In this section Real-Time results are presented for the 
for neural network identification scheme proposed 
above. The experiments are performed using a 
benchmark, which includes:  
• Computer Station. A PC for supervision, with a 
DS1104 stand alone board for data acquisition and 
control, and the required software (Fig. 3). 
• Sensors. One encoder, current sensors, and TTL to 
CMOS coupling (Fig. 4). 
• Electronic Power Station. A three-phase driver, 
with the required IGBTs (Fig. 5). 
• Benchmark. A three-phase squirrel cage induction 
motor (Fig. 4). It is important to remark that the 
induction motor parameters are unknown. 
 

 
Fig. 3. View of the PC and the DS1104 board 
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Fig. 4. Encoder coupled with the induction motor 

 

 
Fig. 5. PWM driver 

5.1 Motor model 

The six-order discrete-time induction motor model in 
the stator fixed reference frame ( ),α β , under the 
assumptions of equal mutual inductances and linear 
magnetic circuit, is given by [Loukianov, et al., 2002] 

( ) ( ) ( ) ( ) ( )(

( ) ( )) ( )

( ) ( )( ) ( )
( )( ) ( )

( ) ( )( ) ( )
( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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Ti k k T k
J

k n k k
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 − −  
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+ = +

− +

+ = +
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+ = +

+ = +
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
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1
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T
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µ
α α

ψ ψ




− 
+ − 

 

× −
 

(19) 

with 

( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
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2
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γ

= Φ + Φ
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−

 (20) 

with ( )1b a M= − , r

r

R
L

α = , 
2

2
sr

r

RM R
L

γ
σ σ

= + , 

( ) ( )pk n kθΦ = , 
2

s
r

ML
L

σ = − , 
r

M
L

β
σ

= , Ta e α−=  

and p

r

Mn
JL

µ = , besides sL , rL  and M  are the stator, 

rotor and mutual inductance respectively; sR  and rR  
are the stator and rotor resistances respectively; pn  is 
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the number of pole pairs; iα  and iβ  represents the 
currents in the α  and β  phases, respectively; αψ  and 

βψ  represents the fluxes in the α  and β  phases, 
respectively and θ  is the rotor angular displacement. 

5.2 Neural network identification 

The RHONN proposed for this application is as 
follows: 
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 (21) 

The training is performed on-line, using a series-
parallel configuration as illustrated in Fig. 2. During 
the identification process the plant and the NN operates 
in open-loop. Both of them (plant and NN) have the 
same input vector ,u uα β   ; All the NN states are 
initialized in a random way as well as the weights 
vectors. It is important remark that the initial 
conditions of the plant are completely different from 
the initial conditions for the NN. The identification is 
performed using (8) with 1,2, ,i n=   with n  the 
dimension of plant state ( )5n = . 

5.3 Real-time results 

In this subsection the neural network identification 
scheme proposed above for the discrete-time induction 
motor model is applied in real-time to the described 
benchmark. During the identification process the plant 
and the NN operates in open-loop. Both of them (plant 
and NN) have the same input vector ,u uα β   ; uα  and 

uβ  are chirp functions with 200 volts of amplitude and 
incremental frequencies from 0 Hz to 150 Hz and 0 Hz 
to 200 Hz, respectively. The implementation is 

performed with a sampling time of 0.0005s. The 
results of the real-time implementation are presented as 
follows: Fig. 6 displays the identification performance 
for the speed rotor, plant signal is in solid line and 
neural signal is in dashed one, their overlap is due to 
the excellent performance of the neural identifier, the 
standard deviation for the identification error 1xω −  is 
0.0896 /rad s ; Fig. 7 and Fig. 8 present the 
identification performance for the fluxes in phase α  
and β  respectively, plant signal is in solid line and 
neural signal is in dashed one, their overlap is due to 
the excellent performance of the neural identifier, the 
standard deviation for flux identification errors 

2xαψ −  and 3xβψ −  are 20.0442wb  and 20.0263wb , 
respectively;. Fig. 9 and Fig. 10 portray the 
identification performance for currents in phase α  and 
β  respectively plant signal is in solid line and neural 
signal is in dashed one, their overlap is due to the 
excellent performance of the neural identifier, the 
standard deviation for current identification errors 

4i xα −  and 5i xβ −  are 0.0840A  and 0.0995A
respectively. Finally the input signals are presented in 
Fig. 11. 

 
Fig. 6. Real time rotor speed identification (plant signal in 

solid line and neural signal in dashed line) 
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Fig. 7. Real time alpha flux identification (plant signal in 

solid line and neural signal in dashed line) 

 
Fig. 8. Real time rotor beta flux identification (plant signal in 

solid line and neural signal in dashed line) 

 
Fig. 9. Real time rotor alpha current identification (plant 

signal in solid line and neural signal in dashed line) 

 
Fig. 10. Real time beta current speed identification (plant 

signal in solid line and neural signal in dashed line) 

 
Fig. 11. Input signals applied during the identification 

process ( ( )u kα  in solid line and ( )u kβ  in dashed line) 

6   Conclusions 

This paper has presented the application of recurrent 
high order neural networks to identification of discrete-
time nonlinear systems. The training of the neural 
networks was performed on-line using an extended 
Kalman filter. The boundness of the identification error 
was established on the basis of the Lyapunov 
approach. The RHONN training with the EKF-based 
algorithm, presents good performance. Real-time 
results show the effectiveness of the proposed 
schemes, as applied to an electric three-phase squirrel 
cage induction motor. This paper deals only with on-
line identification for a three phase induction motor, 
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control synthesis and implementation based on the 
proposed approaches is considered as future work. 
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