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Abstract. This paper deals with the discrete-time nonlinear
system identification via Recurrent High Order Neural
Networks, trained with an extended Kalman filter (EKF)
based algorithm. The paper also includes the respective
stability analysis on the basis of the Lyapunov approach for
the whole scheme. Applicability of the scheme is illustrated
via real-time implementation for a three phase induction
motor.
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Resumen. Este articulo trata el problema de identificacion de
sistemas no lineales discretos usando redes neuronales
recurrentes de alto orden entrenadas con un algoritmo basado
en el filtro de Kalman extendido (EKF). El articulo también
incluye el analisis de estabilidad para el sistema completo, en
las bases de la técnica de Lyapunov. La aplicabilidad del
esquema se ilustra a través de la implementacion en tiempo
real para un motor de induccion trifasico.

Palabras clave: Identificacion neuronal, Aprendizaje usando
filtro de Kalman Extendido, Sistemas no lineales discretos,
Motor de induccidn trifasico.

1 Introduction

Since the seminal paper [Narendra and Parthasarathy,
1990], Neural networks (NN) have become a well-
established methodology as exemplified by their
applications to identification and control of general
nonlinear and complex systems. In particular, the use
of recurrent high order neural networks (RHONN) has
increased recently [Sanchez and Ricalde, 2003] due to
their excellent approximation capabilities, requiring
less units, compared to the first order ones; they are
also more flexible and robust when faced with new

and/or noisy data patterns [Ghosh and Shin, 1992].
Furthermore, several authors have demonstrated the
feasibility of using these architectures in applications
such as system identification and control [Ge, et al.,
2004; Haykin, 1999; Kim and Lewis, 1998; Narendra
and Parthasarathy, 1990; Rovithakis and Christodolou,
2000; Sanchez, et al., 2004; and references therein].
There are recent results which illustrate that the NN
technique is highly effective in the identification of a
broad category of complex discrete-time nonlinear
systems without requiring complete model information
[Yuand Li, 2003; Yu and Li, 2004].

The best well-known training approach for
recurrent neural networks (RNN) is the back
propagation through time learning [Singhal and Wu,
1989]. However, it is a first order gradient descent
method and hence its learning speed could be very
slow [Singhal and Wu, 1989]. Recently the Extended
Kalman Filter (EKF) based algorithms has been
introduced to train neural networks, in order to
improve the learning convergence [Singhal and Wu,
1989]. The EKF training of neural networks, both
feedforward and recurrent ones, has proven to be
reliable and practical for many applications over the
past ten years [Singhal and Wu, 1989].

In [Rovithakis and Christodolou, 2000], adaptive
identification and control by means of on-line learning
is analyzed; the stability of the closed loop system is
established based on the Lyapunov function method.
Lyapunov approach can be used directly to obtain
robust training algorithms for continuous-time
recurrent neural networks [Sanchez and Ricalde, 2003;
Rovithakis and Christodolou, 2000]. For discrete-time
systems, the problem is more complex due to the
couplings among subsystems, inputs and outputs. Few
results have been published in comparison with those
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for continuous-time domain [Yu and Li, 2003; Yu and
Li, 2004]. By other hand discrete-time neural networks
are more convenient for real-time applications.

For many nonlinear systems, it is often difficult to
obtain their accurate and faithful mathematical models,
regarding their physically complex structures and
hidden parameters as discussed in [Chui and Chen,
1998]. Therefore, system identification becomes
important and even necessary before control systems
can be considered not only for understanding and
predicting the behavior of the whole system, but also
for obtaining an effective control law.

The identification problem consists of choosing an
appropriate identification model and adjusting its
parameters according to some adaptive law, such that
the response of the model to an input signal (or class of
input signals), approximates the response of the real
system to the same input [Rovithakis and
Christodolou, 2000]. A challenger problem for
nonlinear systems identification is to select a suitable
structure for the identifier, capable of approximating
the unknown nonlinear  dynamics. In this
consideration, it is notable that recurrent neural
networks offer the advantage of well approximating a
nonlinear system to an arbitrarily accurate level
[Cotter, 1990].

In this paper, a recurrent high order neural network
(RHONN) is used to identify the plant model, under
the assumption of all the state is available for
measurement. The online learning algorithm for the
RHONN is implemented using an Extended Kalman
Filter (EKF). The respective stability analysis, on the
basis of the Lyapunov approach, is included for the
proposed scheme. The applicability of this scheme is
illustrated by real-time implementation for an electric
three phase induction motor.

2 Mathematical preliminaries

Through this paper we use k as the step sampling, k € 0
U Z, |+| for the absolute value, ||0||for the Euclidian

norm for vectors and for any adequate norm for
matrices. For more details related to this section see
[Ge, et al., 2004]. Consider a MIMO nonlinear system:

2(k+1) =F(z(k),u(k)) (1)

where y eR",  ueR"and FeR"xR" > R"is

nonlinear function.
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Definition 1. The solution of (1) is semiglobally
uniformly ultimately bounded (SGUUB), if for any Q,

a compact subset of ®" and all y(k,)eQ, there
exists an &>0 and a number N (e, z(k,)) such that

|2 (k)| <& forall k>k,+N .

In other words, the solution of (1) is said to be
SGUUB if, for any apriori given (arbitrarily large)
bounded set Q and any apriori given (arbitrarily
small) set Q,, which contains (0,0) as an interior

point, there exists a control u, such that every
trajectory of the closed loop system starting from Q

enters the set Q, ={;( k)|||;((k)||<g} in a finite time
and remains in it thereafter [Ge, et al., 2004].

Theorem 1 [Ge, et al., 2004]. Let V (z(k)) bea

Lyapunov function for the discrete-time system (1),
which satisfies the following properties:

7 () =V (k) =72 ([ (0)])
V(x(k+2))=V (x (k) =AV (2 (k))

7 ([ ()7 ()

where ¢ is a positive constant, y, () and y, (L) are
strictly increasing functions, and y, (L) is a continuous,
nondecreasing function. Thus if

AV (x)<0 for ||;((k)||>g

then (k) is uniformly ultimately bounded, i.e. there
is a time instant k. , such that ||;((k)|| <g Vk <k,

3 Discrete-time Recurrent Neural
Networks

Let consider the following discrete-time recurrent high
order neural network (RHONN), depicted in Fig.1
which is described as:

X (k+1)=w'z(x(k),u(k)), i=1-.n )

where x; is the state of the i-th neuron, L, is the
respective number of higher-order connections,
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{Il, Iy, ILi} is a collection of non-ordered subsets of

{2,---,n}, n is the state dimension, w;, is the
respective on-line adapted weight vector, and
z;(x(k),u(k)) is given by

3)

Z di(L
iy _HjEIL' yijj( )

with d, (k) being a nonnegative integers, and vy, is

defined as follows:

Yi | [S(x)]
yin S (Xn )
Yi = = 4
V.. " (4)
y| L um .

In (4), u :[ul,uz,--~,um]T is the input vector to the

neural network, and S (e) is defined by

S(x)

1
- 1+exp(—px) ()

Consider the problem to approximate the general
discrete-time nonlinear system (1), by the following
discrete-time RHONN series-parallel representation
[Rovithakis and Christodolou, 2000]:

2 (k1) =02, (x(k),u(k)) v, ©

where y; is the i-th plant state, &, is a bounded

approximation error, which can be reduced by
increasing the number of the adjustable weights
[Rovithakis and Christodolou, 2000]. Assume that

there exists ideal weights vector W such that can

£,
be minimized on a compact set €, c RY . The ideal

weight vector Wi* is an artificial quantity required for
analytical purpose [Rovithakis and Christodolou,

2000]. In general, it is assumed that this vector exists
and is constant but unknown. Let us define its estimate
as w; and the estimation error as

W, (k) =w —w, (k) (7

The estimate w; is used for stability analysis which
will be discussed later.

MsO——— .

Fig. 1. Schematic representation for a discrete-time RHONN

4 The EKF Training Algorithm

Kalman filtering (KF) estimates the state of a linear
system with additive state and output white noises
[Chui and Chen, 1998; Grover and Hwang, 1992]. For
KF-based neural network training, the network weights
become the states to be estimated, with the error
between the neural network output and the desired
output; this error is considered as additive white noise.
For identification, the desired output is information
generated by the plant; in this paper, the respective
state. Due to the fact that the neural network mapping
is nonlinear, an extended Kalman Filtering (EKF)-type
is required.

The training goal is to find the optimal weight
values that minimize the prediction errors (the
differences between the desired outputs and the neural
network outputs). The EKF-based NN training
algorithm is described by

K; (k) =R (k) H; (k)M; (k)
w, (k+1) = w, (K)+7,K, (k)& (k)
P (K+1) =R (k)= ()T ()R, (€)+Q, (K)

i:]_]...,n

(®)

with
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M, (K)=[R (K)+HT (R (OH (O] @)

& (k) =z (k)—x (k) (10)

where e (k) is the respective identification error,
P (k) e "4 is the prediction error covariance matrix
at step k, w, eRY is the weight (state) vector, L is

the respective number of neural network weights, y, is
the i-th plant state, x; is the i-th neural network state,

n is the number of states, K, € R" is the Kalman gain

vector, Q, e R is the NN weight estimation noise
covariance matrix, R, €9 is the measurement noise

covariance; H, e R" is a vector, in which each entry
(v,

U) is the derivative of one of the neural network

state, (x; ), with respect to one neural network weight,

(Wij) , as follows

:
ox; (k)
H.(k)=| —.
u( ) {8Wi, (k):| (11)
1 Jw(0-w )
where i=1,2,---,n and j=1,2,---,L,. Usually P, and

Q, are initialized as diagonal matrices, with entries
P (0) and Q,(0), respectively. It is important to
remark that H; (k), K; (k) and P, (k) for the EKF are

bounded; for a detailed explanation of this fact see
[Song and Grizzle, 1995].

Then the dynamics of the identification error (10)
can be expressed as

o (k+1) =W ()7 (x(K)u(K)+e,  (12)
By the other hand the dynamics of (7) is

W, (k-+1) = w, (K)-7.K, (K)e (k) (19
Now, we establish the main result of this paper in
the following theorem.

Theorem 2: The RHONN (2) trained with the EKF-
based algorithm (8) to identify the nonlinear plant (1),
ensures that the identification error (10) s
semiglobally uniformly ultimately bounded (SGUUB);
moreover, the RHONN weights remain bounded.
Proof: Consider the Lyapunov function candidate
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Vi (k)= (k)R (k) (k)+ef (k)
k k

AV ( ) (k+1)=Vi (k)
W (k+1)P (k+1)w (k +1) (14)
—W; (k)R (k)W (k)
+e7 (k+1)—e’ (k)
Using (12) and (13) in (14)
[W -niK i(k)]T
x[e(k)—A(k)]
x[ W, (k) =K (k)& (k)] (15)

[0 (k)2 (x(k).u (k)]

= (k)P (k) (k)= (K)
with A (k) =K, (k)
can be expressed as

AV, () = W (K)R, (k)% (k

H (k)P (k)+Q (k); then, (15)

Using the inequalities
XTX+YTY >2XTY
XTX+YTY >-2XTY
~Ain (P) X2 2 =XTPX 2 -2

max

(P)X*

which are valid vX,Y eR", YPeR"™, P=P' >0,
then (16), can be rewritten as
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2KT (K)P (K)K, (K)
+2(W|TZ(X(|(),U(k)))2 +2¢2 —¢f (k)
Then
()< (0 | (I 2 (5 ()
e () [ (k || o (P (K))
st [ () 2 ||K.('<)||2
(18)
e (W] k)|| o (P, (K)
=t [e (W[, (k || - A(k)
s (O . <00 2

Then, there exists 7, Q, and R, such that E; >0
and F >0, with

E, (k)= Ay (A (K)) =7 z;ax (A () (K

G, (k)= 26

Therefore, (18) can be expressed as

AVi(k)S_"Wi(k)HZEi(k)_|ei(k)|2Fi(k)+Gi(k)
Then AV, (k)<0 when
I ()] 2 2_(('8;@ OR e (k)| i((gzx

Therefore, according to Theorem 1, the solution of
(12) and (13) is stable, hence the identification error
and the RHONN weights are SGUUB.

The neural identification is performed on-line,
using a series-parallel configuration as illustrated in
Fig. 2.

u(k) | Unknown (k)
Plant
e(k) +
EKF —m— >< )
w(k) / 3
L, Neural x("()
|dentifier

/

Fig. 2. Neural Identifier scheme

5 Application

In this section Real-Time results are presented for the
for neural network identification scheme proposed
above. The experiments are performed using a
benchmark, which includes:

e Computer Station. A PC for supervision, with a
DS1104 stand alone board for data acquisition and
control, and the required software (Fig. 3).

e Sensors. One encoder, current sensors, and TTL to
CMOS coupling (Fig. 4).

e Electronic Power Station. A three-phase driver,
with the required IGBTS (Fig. 5).

e Benchmark. A three-phase squirrel cage induction
motor (Fig. 4). It is important to remark that the
induction motor parameters are unknown.

Fig. 3. View of the PC and the DS1104 board
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Fig. 4. Encoder coupled with the induction motor

Fig. 5. PWM driver

5.1 Motor model

The six-order discrete-time induction motor model in
the stator fixed reference frame(a,/), under the

assumptions of equal mutual inductances and linear
magnetic circuit, is given by [Loukianov, et al., 2002]
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w(k+1)= w(k)+”(1 a)M (i’ (k

(" (
i (K)y” (k) - ]T

(k+1)=cos(n,0(k+1)) g, (k)

p

(
—sm(n o( k+1))p (k)

p

K)y* (k)
.
7

(k+1)=sin(n,0(k+1)) p, (k)
+1)

p
+cos(n,0(k+1)) p, (k
)

T
Su (k
~u”(

iﬂ(k+1)=goﬂ(k)+;uﬂ(k)

i“ (k+1) =" (k)+ (19)

0(k+1)=0(K)+ o (k)T _[TLT(")]TZ
+E[T_@}
xM (i (k)y (k) =i (k) (K))

with

S
B}
—_~~
=
~
|
- +
O
=~ o
~— O
+ 2
R &
3 =
=
S SN—
R -
—_ N
=
~— =~
x |
<
¥ =2
—_
: ©
=~ =~
SN—
Sﬁ =
—
= =~
=

Mn
and u= JLp , besides L., L, and M are the stator,

T

rotor and mutual inductance respectively; R, and R,
are the stator and rotor resistances respectively; n
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the number of pole pairs; i and i” represents the
currents in the o and B phases, respectively; w* and

w” represents the fluxes in the a and A phases,
respectively and & is the rotor angular displacement.

5.2 Neural network identification

The RHONN proposed for this application is as
follows:

%, (k+1) = w, (k)S(@(k))
+w, (K)S (@(k))S (w” (k)i (k)
+Wig (K)S (0(k))S (w* (K))i” (k)
X, (K +1) = w,, (K)S(o(k))S(y” (k)) + Wy,i” (k)
X, (K +1) = Wy, (K)S (@(K)S (™ (K)) + Wi (k) (21)
X, (k+1) =w,, (K)S (" (k) +w,, (K)S (w” (k)
+ W, (K)S ([ (K)) +w,,u” (k)
Xg (K+1) = Wey (K)S (v (K)) + Wi, (K)S (1 (K))
+ W, (K)S(I” (k)) +w,,u” (k)
The training is performed on-line, using a series-
parallel configuration as illustrated in Fig. 2. During

the identification process the plant and the NN operates
in open-loop. Both of them (plant and NN) have the

same input vector [u“,u”]; All the NN states are

initialized in a random way as well as the weights
vectors. It is important remark that the initial
conditions of the plant are completely different from
the initial conditions for the NN. The identification is
performed using (8) with i=12,---,n with n the

dimension of plant state (n=5).

5.3 Real-time results

In this subsection the neural network identification
scheme proposed above for the discrete-time induction
motor model is applied in real-time to the described
benchmark. During the identification process the plant
and the NN operates in open-loop. Both of them (plant

and NN) have the same input vector[u“,uﬂ]; u“ and
u” are chirp functions with 200 volts of amplitude and

incremental frequencies from 0 Hz to 150 Hz and 0 Hz
to 200 Hz, respectively. The implementation is

performed with a sampling time of 0.0005s. The
results of the real-time implementation are presented as
follows: Fig. 6 displays the identification performance
for the speed rotor, plant signal is in solid line and
neural signal is in dashed one, their overlap is due to
the excellent performance of the neural identifier, the
standard deviation for the identification error o—x, is
0.089%6rad /s; Fig. 7 and Fig. 8 present the
identification performance for the fluxes in phase «
and B respectively, plant signal is in solid line and
neural signal is in dashed one, their overlap is due to
the excellent performance of the neural identifier, the
standard deviation for flux identification errors
w“—X, and y” —x, are 0.0442wb? and 0.0263wb?,
respectively;. Fig. 9 and Fig. 10 portray the
identification performance for currents in phase « and
B respectively plant signal is in solid line and neural
signal is in dashed one, their overlap is due to the
excellent performance of the neural identifier, the
standard deviation for current identification errors
i“-x, and i”-x, are 0.0840A and 0.0995A

respectively. Finally the input signals are presented in
Fig. 11.

rotor speed (rad/s)

. . . . . . . . .
0 01 02 03 04 05 06 07 08 08 1
time (s)

Fig. 6. Real time rotor speed identification (plant signal in
solid line and neural signal in dashed line)
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0.3
02r

01t § 1

01k

alpha flux (wh2)

02r IR i
03¢ i \ i

04k

05 I L L L I I L L
0 01 02 03 04 05 06 07 08 09 1

time (s)

Fig. 7. Real time alpha flux identification (plant signal in
solid line and neural signal in dashed line)

beta flux (wh2)

1 I I 1 1
05 06 07 0.8 09 1
time (s)

03 I I L L
0 01 02 03 04

Fig. 8. Real time rotor beta flux identification (plant signal in
solid line and neural signal in dashed line)

alpha current {A)
L L =
T T —T T
—
—

0 U.‘W 0.2 013 Uj:l [].I5 0.6 07 UjEi Ujg 1
time (s)
Fig. 9. Real time rotor alpha current identification (plant
signal in solid line and neural signal in dashed line)
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beta current (A)
=
—

08 09 1

4 L L I I L
0 01 02 03 04 05 06 07

time (s)
Fig. 10. Real time beta current speed identification (plant
signal in solid line and neural signal in dashed line)

200

150

100

50+
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input signals (v}
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-100 1

-150

]
i
1
i
]
L
1
i
|
1
[
]

-200 C 1 1 I I 1
0 001 002 003 004 005
time (s)

Fig. 11. Input signals applied during the identification
process (u” (k) in solid line and u” (k) in dashed line)

1
006 007

I I
008 009 01

6 Conclusions

This paper has presented the application of recurrent
high order neural networks to identification of discrete-
time nonlinear systems. The training of the neural
networks was performed on-line using an extended
Kalman filter. The boundness of the identification error
was established on the basis of the Lyapunov
approach. The RHONN training with the EKF-based
algorithm, presents good performance. Real-time
results show the effectiveness of the proposed
schemes, as applied to an electric three-phase squirrel
cage induction motor. This paper deals only with on-
line identification for a three phase induction motor,
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control synthesis and implementation based on the
proposed approaches is considered as future work.
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