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Abstract. Power systems monitoring is particularly 
challenging due to the presence of dynamic load changes in 
normal operation mode of network nodes, as well as the 
presence of both continuous and discrete variables, noisy 
information and lack or excess of data. This paper proposes a 
fault diagnosis framework that is able to locate the set of 
nodes involved in multiple fault events. It detects the faulty 
nodes, the type of fault in those nodes and the time when it is 
present. The framework is composed of two phases: In the 
first phase a probabilistic neural network is trained with the 
eigenvalues of voltage data collected during normal 
operation, symmetrical and asymmetrical fault disturbances. 
The second phase is a sample magnitude comparison used to 
detect and locate the presence of a fault. A set of simulations 
are carried out over an electrical power system to show the 
performance of the proposed framework and a comparison is 
made against a diagnostic system based on probabilistic 
logic. 
 
Keywords: Fault Diagnosis, Multiple Faults, Probabilistic 
Neural Networks, Correlation Matrix, Eigenvalues, Power 
System, Dynamic Load Changes 
 
Resumen. El monitoreo de sistemas de potencia es 
particularmente retador debido a la presencia de cambios 
dinámicos de carga de los nodos de la red en modo de 
operación normal, así como la presencia de variables 
continuas y discretas, información con ruido y falta o exceso 
de datos. Este artículo propone un método de diagnóstico de 
fallas que es capaz de localizar el conjunto de nodos 
involucrado en eventos de fallas múltiples. El método detecta 
los nodos con falla, el tipo de falla y el tiempo en el cual está 
presente la falla. El método está compuesto de dos fases: En 

la primera fase una red neuronal probabilística es entrenada 
con los eigenvalores de los datos de voltaje obtenidos en 
operación normal así como con fallas simétricas y 
asimétricas. La segunda fase emplea una comparación entre 
las muestras para detectar y localizar la presencia de una 
falla. Se lleva a cabo un conjunto de simulaciones en un 
sistema eléctrico de potencia para mostrar el desempeño del 
método propuesto y se realiza una comparación contra un 
sistema de diagnóstico basado en lógica probabilística. 
 
Palabras clave: Diagnóstico de Fallas, Fallas Múltiples, 
Redes Neuronales Probabilísticas, Matriz de Correlación, 
Eigenvalores, Sistemas de Potencia, Cambios Dinámicos de 
Carga 

1   Introduction 

The reasons behind the increased interest in fault 
diagnosis in power networks are the complexity and 
high degree of interconnection present in electrical 
power networks, which can lead to an overwhelming 
array of alarms and status messages being generated as 
a result of a disturbance. This can have a negative 
impact on the speed with which operators can respond 
to a contingency. Therefore, in order to increase the 
efficiency of diagnosis, it is necessary to use 
automated tools, which could help the operator to 
speed up the process. 

When a fault occurs in a power system, the 
consequences are often not limited to the point where 
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the fault occurs but instead noticeable throughout the 
whole system. A short-circuit fault gives rise to local 
damages due to a high amount of energy deployed 
within a limited geometrical location. The global 
effects of the same short circuit give rise to a voltage 
dip, which can lead to malfunction of other processes.  

Since the amount of damage is related to the time 
during which the fault is applied, the time needed for 
detection and disconnection is essential. The advent of 
current limiting devices, which limit the fault current 
before it reaches dangerous levels, is an application 
where fast and reliable fault detection is of importance. 

There exist a lot of research works related with 
fault detection. Most of the methods used are analytic, 
based on artificial intelligence (AI) or statistical 
methods.  [Venkatasubramanian, et al., 2003], 
classifies fault detection and diagnosis methods in 
three groups. See figure 1. 

 
• Quantitative Model Based 
• Qualitative Model Based and  
• Process History Based 

 

 
 

Fig. 1. Classification of Diagnostic Methods 
 
Quantitative Model Based fault detection methods 

are based on a mathematical model of the system. The 
occurrence of a fault is captured by discrepancies 
between the observed behavior and the one that is 
predicted by the model. These approaches make use of 
state estimation, parameter identification techniques, 
and parity relations to generate residuals. Fault 
localization then, rest on interlining the groups of 
components that are involved in each of the detected 
discrepancies. However, it is often difficult and time-
consuming to develop accurate mathematical models 
that characterize all the physical phenomena occurring 
in industrial processes. 

Qualitative Model Based fault detection methods 
use symbolic reasoning which generally combines 
different kinds of knowledge with graph theory to 
analyze the relationships between variables of a 
system. An advantage of these methods is that an 
explicit model of  the system to be diagnosed is not 
necessary. Knowledge-based approaches such as 
expert systems may be considered as alternative or 
complementary approaches where analytical models 
are not available. 

Process History Based fault detection methods only 
require a big quantity of historical process data. There 
are several ways in which these data can be 
transformed and presented as prior knowledge of a 
system. These transformations are known as feature 
extraction and could be qualitative, as those used by 
expert systems, and qualitative trend analysis methods 
or quantitative, as those used in neural networks, PCA, 
PLS or statistical pattern recognition. 

Very recently, the need to develop more powerful 
approaches has been recognized, and hybrid techniques 
that combine several reasoning methods start to be 
used. [Zhang, et al., 2000] incorporates model based 
diagnosis and signal analysis with neural networks. 
[Bouthiba, 2005] proposed an approach based on four 
independent artificial neural networks (ANN) for real 
time fault detection and classification in power 
transmission lines. The technique uses consecutive 
magnitude current and voltage data at one terminal as 
inputs to the corresponding ANN. The ANN outputs 
are used to indicate simultaneously the presence and 
the type of the fault. [Hartstein, et al., 2007] developed 
a methodology using wavelet transform for phase to 
ground fault detection in primary distribution systems, 
but it is an efficient methodology only for single phase 
fault detection in unbalanced distribution systems. [He 
Q. Peter, et al., 2004] proposed a process monitoring 
which is composed of three parts: preanalysis, 
visualization and diagnosis, where the proposed 
method integrates PCA, FDA and clustering analysis 
taking advantage of each technique for a complete 
solution. [Liang W., et al., 2005] combined the use of 
signed directed graph to make a classification model,  

PCA and fuzzy knowledge to form a qualitative 
and quantitative model and compares the grade of the 
patterns needed to be diagnosed to the given fault 
patterns. [Gentil S., et al., 2004] proposed a method 
based on the interaction between AI and control 
techniques. It uses a causal graph representation of the 
process, enabling decomposition into subsystems and 
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reducing the diagnostic computational complexity. 
After that, at local level, FDI techniques based on 
numerical residual generation and analysis are carried 
out. [Liang J., et al., 2003] showed how PCA and 
statistical control charts are used to detect process 
operating faults on an industrial rolling mill reheating 
furnace. The Q statistic and Hotelling T2 statistic are 
used to calculate the control limits of the statistical 
control chart. [Shi W., et al., 2005] proposed a fault 
diagnosis model based on machine learning which 
extracts multi-dimension features from the detected 
signal to supervise the different features of it 
simultaneously. [Nieto J.P., et al 2007] presented a 
fault detection framework based on history process 
data that uses a combination of PCA, control charts 
and statistic operation limits to make comparisons 
between a suspicious sample against its normal values 
giving in this way the detection of a single or multiple 
faults existing in the system. [Yongli, et al., 2003] 
presented Bayesian networks (BNs) to estimate the 
faulty section of a transmission power system. 
Simplified models of BNs with Noisy-Or and Noisy-
And nodes are proposed to test if any transmission 
line, transformer, or busbar within a blackout area is 
faulty. In [Xu and Chow, 2005] an investigation is 
performed about the use of logistic regression and 
neural networks to classify fault causes. This paper 
also discusses about data insufficiency, imbalanced 
data constitution and threshold setting. [Ren and Mi, 
2006] proposed a procedure for power systems fault 
diagnosis and identification based on Petri Nets and 
coding theory. They tested the approach with 
simulations over the IEEE 118-bus power system and 
highlight the great advantage to handle very easily 
future expansions. In [Peng, et al., 2006] a Fault 
diagnosis system is presented, based on multi-agent 
systems. By using a negotiation mechanism between 
decision-making agent and a cooperative agent, fault 
diagnosis results can be obtained. In general there are a 
lot of techniques and combinations of them used in 
fault detection and diagnosis, but it will depend on the 
problem´s nature to select the technique that has the 
best performance. 

The goal of this work is to use only historical data 
to build a complete diagnostic system, able to detect in 
a simple and easy way simple, multiple, simultaneous 
and non-simultaneous faults, as well as capable to 
diminish the false alarms rate. The main advantages of 
this framework are first, the relatively easy way to 
obtain historical data from systems and processes 

controlled by computers, and second, to have an 
alternative approach when the modeling of the system 
is very difficult or even impossible due to the lack of 
experience of the diagnostic system designer or the 
high degree of complexity of the system itself. In this 
work we selected a probabilistic neural network (PNN) 
as a fault detector, mainly due to the simplicity of its 
learning procedure. The PNN needs just a few data to 
be trained, tackling in this way the problems of time 
consuming when learning and the storage capability of 
the training samples, being these two great advantages 
of the PNN over other networks architectures. In 
addition, when comparing our approach with those 
presented above, it could be seen that ours is easier to 
implement as we only have one neural network to train 
and when the system changes we only have to update 
the information of the new nodes or delete the 
information of those nodes that were taken away from 
the system. 

In this paper we propose a multiple fault diagnosis 
framework composed of two phases. In a previous 
step, eigenvalues are computed from the correlation 
matrix which is built from historical data, and then 
they are used as the inputs of the probabilistic neural 
network. In the first phase, the most likely component 
state of each node is given and in second phase the 
comparison of each sample against a constant value 
gives the real component state and the location of the 
fault.  

The organization of the paper is as follows: section 
2 explains probabilistic neural networks basis and 
gives the correlation matrix and eigenvalues 
definitions. Section 3 gives a general description of the 
framework. Section 4 shows how the framework works 
in a simulation example with single and multiple faults 
as well as a comparison of the general performance of 
it against a diagnostic system based on probabilistic 
logic. Section 5 concludes the paper.  

2  Preliminary 

2.1 Probabilistic neural network basis 

PNNs are conceptually similar to K-Nearest Neighbor 
(KNN) models [Duda, et al., 2001]. The basic idea is 
that a predicted value of an item is likely to be about 
the same as other items that have close values of the 
predictor variables.  
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Fig. 2. PNN are conceptually similar to KNN 

 
From figure 2 it is assumed that each case in the 

training set has two predictor variables, x and y. The 
cases are plotted using their values as coordinates as 
shown in the figure. Also it is assumed that the target 
variable has two categories, positive which is denoted 
by a square and negative which is denoted by a dash. It 
can be noted that the triangle is positioned almost 
exactly on top of a dash representing a negative value. 
But that dash is in a fairly unusual position compared 
to the other dashes which are clustered below the 
squares and left of center. So it could be that the 
underlying negative value is an odd case. The nearest 
neighbor classification will depend on how many 
neighboring points are considered.  

If 1-NN is used and only the closest point is 
considered, then the new point should be classified as 
negative since it is on top of a known negative point. 
On the other hand, if 9-NN classification is used, the 
closest 9 points are considered and then the effect of 
the surrounding 8 positive points may overbalance the 
close negative point. 

A probabilistic neural network builds on this 
foundation and generalizes it to consider all of the 
other points. The distance is computed from the point 
being evaluated to each of the other points, and a radial 
basis function (RBF) (also called a kernel function) is 
applied to the distance to compute the weight 
(influence) for each point. The radial basis function is 
so named because the radius distance is the argument 
to the function: Weight=RBF(distance). The further 
some other point is from the new point, the less 
influence it has. Different types of radial basis 
functions could be used, but the most common is the 
Gaussian function. The RBF is a function whose 

output depends on the distance to a point called center. 
Gaussian RBF are symmetric functions with respect to 
x=0. See figure 3. 

The PNN architecture is shown in figure 4. The 
model has two layers:  

a) Radial Basis Layer and  
b) Competitive Layer 

 

 
Fig. 3. Gaussian RBF are symmetric functions with respect 

to x=0. 
Fig. 4. PNN architecture 

 
There are Q input vector/target vector pairs. Each 

target vector has K elements. One of these elements is 
1 and the rest is 0. Thus, each input vector is associated 
with one of K classes.  

When an input is presented the ||dist|| box produces 
a vector whose elements indicate how close the input is 
to the vectors of the training set. An input vector close 
to a training vector is represented by a number close to 
1 in the output vector a1.  

If an input is close to several training vectors of a 
single class, it is represented by several elements of a1 
that are close to 1. Each vector has a 1 only in the row 
associated with that particular class of input, and 0's 
elsewhere. The multiplication Ta1 sums the elements 
of a1 due to each of the K input classes.  

Finally, the second layer produces a 1 
corresponding to the largest element of n2, and 0's 
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elsewhere. Thus, the network has classified the input 
vector into a specific one of K classes because that 
class had the maximum probability of being correct. 

2.2 Correlation matrix and eigenvalues 
definitions 

Correlation matrix definition. A Correlation matrix 
describes correlation among M variables. It is a square 
symmetrical M x M matrix with the (ik)th element 
equal to the correlation coefficient rik between the (i)th 
and the (k)th variable. The correlation coefficient is 
obtained as  
 

 

 

The diagonal elements (correlations of variables 
with themselves) are always equal to 1 [Johnson and 
Wichern, 2002]. 

Eigenvalue definition. Let A be a k x k square 
matrix and  I  be the k x k identity matrix. Then the 
scalars 
 

 
 

satisfying the polynomial equation 
 

 
 

are called the eigenvalues or characteristic roots of 
a matrix A. The equation |A - λ I| = 0 is called the 
characteristic equation, thus similar matrices to A and 
its transpose matrix have the same eigenvalues 
[Johnson and Wichern, 2002].  

3 Framework description 

The proposed detection framework is shown in figure 
5.  As the framework is a Process History Based fault 
detection method, this only requires a big quantity of 
historical data of the power system's nodes. The 
amount of data that we mean by “a big quantity” will 
depend on the information recorded in the historic 
databases of the system. Thus, in order to know how 
big a data set is considered adequate, it is necessary to 
be sure that these databases must contain information 
about  normal operation data as well as data samples 

from the different types of faults that could be present 
in the system. Then the total amount of data needed 
will depend on the nature of each individual problem 
to be solved.  For instance, in the example shown in 
the next section, we used a 4% of the total amount 
available of faulty data, for each possible different 
fault to train the probabilistic neural network. As we 
said before, it could be noted that we used just a few 
quantity of examples to train the probabilistic neural 
network, being this feature one of the great advantages 
of using the probabilistic neural network over other 
networks architectures. In summary, these historic data 
sets are used as prior knowledge of the power system 
to perform the detection process.  
 

 
Fig. 5. General fault detection framework 

 
The first step of the training phase depicted in 

figure 5 is to obtain historical normal and faulty data 
sets of the voltages of each line of the power system's 
nodes. These data sets are matrices formed by 
windows of m samples and n power system's nodes 
where the voltage of each line of each of the power 
system’s node is monitored, that means three readings 
per each node as shown in table 1. Such matrices are 
built for normal node operation and different node 
faults present in system.  
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Table 1. Matrix containing the three lines of each of the power system´s nodes being monitored 
 

For each node data set, its correlation matrix is 
obtained to see how their three lines are related. As an 
example we took the m samples of the three lines 
(A,B,C) of the node 1. This is shown in table 2. 

Then the correlation matrix is calculated for the 
voltage samples of the three lines of the node 1, 
resulting thus a matrix like the one shown in 
expression 4, where the correlation coefficients are 
obtained as described in equation 1. 
 

 

 

Once we have the correlation matrix, their 
corresponding eigenvalues are computed as shown in 
section 2.2, having in this way a signature for each of 
the different possible component states or fault types 
of the power system's nodes (K in figure 4).  
 

Table 2. Matrix of the voltages monitored from the three 
lines of the power system´s node 1 

 
  Node 1  
  Line 

A 
Line 
B 

Line 
C 

 

 1     
Voltages 2     
Samples      
      
      

 
 

 

Thus for the example being explained, the 
eigenvalues of the matrix in expression 4 are obtained 
as follows: 
 

 

 

where   are the eigenvalues or roots of 
the characteristic equation obtained from expression 5.  

The eigenvalues of the correlation matrix for 
normal operation data as well as for every type of fault, 
then give us the fault signature or operation mode of 
the system, and are going to be used as the training 
vectors of the PNN corresponding to Q as described in 
section 2.1.  This training vector then looks like the 
one shown in expression 6. 
 

 
 

Each node will have then three eigenvalues (R 
components in figure 4) as they are coming from its 
correlation matrix that is a 3 x 3 matrix built as 
depicted in table 2 and expression 4. Up to here it has 
been described the testing process shown on the left of 
figure 5. 

Then the detection process is carried out in two 
phases. The first phase is basically a first filter or 
information discriminator. When a window of m 
samples and n power system's nodes is taken, each 
node is analyzed separately as described above. From 
the data set corresponding to a particular node being 
monitored, its correlation matrix and their 
corresponding eigenvalues are obtained and used as the 

  Power System Nodes’ Lines  

  Node 1 Node 2  Node   

  Li
ne A 

Li
ne B 

Li
ne C 

Li
ne A 

Li
ne B 

Li
ne C  Li

ne A 
Li

ne B 
Li

ne C 
 

 1            

Voltages 2            

Samples             
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input vector to the PNN previously trained. It is 
mentioned "the most probably component state" (see 
figure 5) because unfortunately not all the eigenvalues 
of the node states are so different (see figure 7) such 
that the PNN could classify them easily. But we have 
found instead that, when certain signature faults 
eigenvalues are very similar, there exist here a 
discrimination/classification phase, because it is 
necessary to look for the real state but only comparing 
just a couple of similar signatures instead of the whole 
bunch of node states. The output from the PNN 
automatically discriminates node states that are very 
different and gives the most likely real node state. 

Once the possible node state is obtained, a second 
phase of the framework starts. In the second phase 
each sample of every node is taken and its magnitude 
is obtained, then a comparison against a constant 
magnitude of the probably signature faults are carried 
out. 
 

 
 

The constant magnitude of each type of fault has to 
be calculated in advance, such that for instance, a fault 
of three lines to ground (A-B-C  GND) on a node gives 
a constant magnitude of cero. If there is an assumption 
that node 1 has present this type of fault on it, it is 
calculated the constant magnitude of this fault as 
shown in equation 7. 

If the assumption is that node 1 has present the type 
of fault where two lines, for example A and B go to 
ground, the constant magnitude will be calculated as: 
 

 
 

This simple comparison serves as a second 
classifier that delivers the real node component state 
and can be used to locate the period of time or sample 
number where the fault occurred.  

4 Case Study 

This section shows the performance of the proposed 
framework in multiple fault scenarios simulated in the 
electrical network shown in figure 6.  

In this power system, dynamic load changes were 
simulated, and also 24 different fault scenarios to 
determine the performance of the approach. We 

include in the study symmetrical and asymmetrical 
faults at four random nodes (3,9,10 and 13).  The 
simulations included multiple faults scenarios with 
different node’s states such as: one line to ground (A 
GND), two lines to ground (A-B GND), three lines to 
ground (A-B-C GND), or faults between two lines (A-
B or B-C) and the no fault mode (NO FAULT). 

Each database for the 24 simulations contained 
5000 samples, and every possible fault included 300 
samples. The amount of eigenvalues used in the 
learning process of the probabilistic neural network 
were 12 examples per each node state. As we had 6 
states including the no fault mode, we trained the 
neural network with a total amount of 72 eigenvalues, 
having in this way 12 of them per each state. At the 
same time we divided these 12 eigenvalues examples 
of each possible fault in 3 groups of 4 eigenvalues 
containing 75%, 50% and 25% of faulty data coming 
from windows of 100 samples. This means that the 
quantity of eigenvalues we needed to store for the 
learning process of the probabilistic neural networks 
were only 72 vectors, each of size 1 x 3. 

The methodology proposed is applied as follows: 
1.- Obtain windows of 100 samples from normal and 
faulty operation history process data  (electrical 
voltage in each  node's line). 
2.- Obtain the correlation matrix for each node, which 
gives a 3 x 3 matrix. 
3.- Obtain the eigenvalues from the correlation matrix 
(this gives 3 eigenvalues), and with this 3 eigenvalues 
build an input vector to train a PNN. 
4.-Take a test data set of 100 samples from the 
electrical power system being monitored. 
5.- Obtain the correlation matrix for each node, which 
gives a 3 x 3 matrix. 
6.- Obtain the eigenvalues from the correlation matrix 
(this gives 3 eigenvalues), and with this 3 eigenvalues 
build an input vector for the PNN. 
7.- First Phase: Take the output of the PNN as one of 
the two probably states of the node  monitored. 
8.- Second Phase: Take each sample of each node 
monitored and obtain its magnitude, then compare it 
against the constant magnitude of the two probably 
signature faults and classify  it using this simple 
criteria. Locate the time or sample number where the 
fault occurs. 
9.- Give the diagnosis of each node being monitored. If 
a fault is present in a specific node give also the type 
and location of it, else print NO FAULT. 
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Fig. 6. IEEE reliability test system single line diagram 

 
In the following tables the performance of the 

approach is shown, taking into account three possible 
cases, when the 100 samples windows are selected as 
follows: 

a) Case 1, system is working properly during the 
first 25 samples from a total of 100, that means 
25 samples are ok and 75 samples corresponds 
to a fault present in the system. 

b) Case 2 takes 50 samples of normal operation 
data and 50 samples with a fault present. 

c) Case 3 takes 75 samples of normal operation 
and 25 with a fault present. 

 
Tables 3 and 4 show the performance obtained just 

for case 1. Tables 5 and 6 give a summary of the 

accuracy percentages for each of the three cases 
considered. 

 
Table 3. Performance of detection per node’s component 

state with 25 samples ok and 75 samples with a fault present 
(case 1) 

 

 

Component State Correct False Alarms Accuracy 
A-B-C GND 14 0 100% 
A-B GND 10 0 100% 

A GND 14 0 100% 
A-B 18 0 100% 
B-C 16 0 100% 

NO FAULT 13 11 54.16% 
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Table 4. Performance of detection per node's number with 25 
samples ok and 75 samples with a fault present (case 1) 

 

 

Node Number Correct False Alarms Accuracy 

3 20 4 83.33% 
9 19 5 79.16% 

10 22 2 91.66% 
13 24 0 100% 

 
Table 5. Performance of detection per node’s component 

state for the different cases 
 

 

Component State Case 1 Case 2 Case 3 

A-B-C GND 100% 100% 100% 
A-B GND 100% 100% 100% 
A GND 100% 85.71% 92.85% 

A-B 100% 83.33% 50% 
B-C 100% 68.75% 68.75% 

NO FAULT 54.16% 58.33% 79.16% 

 
Table 6. Performance of detection per node number for the 

different cases 
 

 

Node Number  Case 1 Case 2 Case 3 

3 83.33% 83.33% 83.33% 
9 79.16% 75% 70.83% 

10 91.66% 87.5% 62.5% 
13 100% 95.83% 100% 

 
The difference in performance, shown in tables 5 

and 6 for the same fault scenarios, are explained by 
considering the high similarity of eigenvalues of 
correlation matrices, when there are more normal 
operation data than fault samples, in each data window. 

In this framework, when more normal operation 
data appear in the sample window, more difficult is to 
classify the eigenvalues by the PNN, because they look 
very similar. This can be seen on figure 7, where a 
simulation for case 2 shows the eigenvalues obtained 
for four different power system´s nodes and whose 
operation modes are different between themselves. 

 In this example, the following faults were 
simulated: 

 
1. 3 A GND, that is a fault present in node 3 of 

type line A to ground. 
2. 9 A-B GND, that is a fault present in node 9 of 

type line A and B to ground. 

3. {10,13} NO FAULT, that is nodes 10 and 13 
working properly. 
 

In summary, the similarity of the eigenvalues 
obtained for different types of node’s states, gives rise 
to ambiguous diagnosis, as is shown in table 7. 

Several tests were carried out, when all data came 
from normal operation mode, and it has been found 
that the framework has detected 100% of them as NO 
FAULT node's component state. 

 
Table 7. Similar eigenvalues found for the different 

operation modes for the power system being analyzed 
 

 Eigenvalues for  
Fault type Are similar to Eigenvalues for  

Fault type 
A-B-C GND ≈ NO FAULT 
A-B GND ≈ A GND 

A-B ≈ B-C 
 

Percentages shown in the tables are low because 
criteria used in the second phase of the framework, are 
related to the maximum magnitude value and a 
threshold that needs to be set as the upper limit, to 
make the difference between two very similar 
signatures for the same node. 
 
4.1 Comparison of the general performance 
against several classical methods. 

 
In order to observe the relative general performance of 
our proposal, a comparison against four classical and 
similar Process History Based fault detection methods 
has been carried out. We have chosen diagnostic 
methods that are based on the use of PCA and/or 
Multidimension features extraction of signal based on 
machine learning, due to the large number of 
references in the literature of fault diagnosis that make 
use of them, when dealing with storing and handling 
big quantities of data. 

Table 8 shows this comparison. The first column 
shows the capability to detect single faults, 
simultaneous and non-simultaneous multiple faults, as 
well as detection of measurement and process noise 
presence. The PCA method was apply as depicted in 
[Liang N., et al 2003], the Machine Learning technique 
was the one proposed by [Shi W., et al 2005] the fourth 
column method is the one developed by [Nieto J.P., et 
al 2007], the Probabilistic Logic was the method 
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proposed by [Garza, 2001] and the last column shows 
the capabilities of the present work. 

We can notice that the method of PCA used 
without any other technique, offers a poor data 
analysis, thus as pointed out before, when a 

combination of two or more techniques is done, a 
better performance should be expected. It is observed 
also that the rest of methodologies offer multiple fault 
detection.  

 
 

 
Fig. 7. Example of the results given by a matlab simulation 

 
Table 8. Comparison of the general performance of our 

proposal against several classical methods 
 

 

Detection  
Of 

PCA  
Method 

Machine 
Learning 

PCA+Control 
 Charts + 

Statistic Limits 

Probabilistic 
Logic 

PNN + 
Magnitud 

Comparison 

Single Fault √ √ √ √ √ 
Simultaneous  

Multiple Faults NO √ √ √ √ 

Non-Simultaneous 
Multiple Faults NO √ NO NO √ 

Measurement Noise NO NO √ √ √ 

Process Noise NO NO NO NO √ 

 

Nevertheless, the use of Machine Learning techniques 
needs to be implemented for each measured signal, 
which generates a big quantity of data to be analyzed. 
Meanwhile PCA + Control Charts + Statistic Limits 
and Probabilistic Logic methodologies avoid this data 
explosion, but they could not detect non-simultaneous 
multiple faults. Finally an advantage that is noted 
immediately is that our proposed methodology could 
detect all kinds of faults and also noise presence in the 
system.  
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4.2 Comparison against the diagnostic system 
based on probabilistic logic 

In order to observe the rel In order to test the 
performance of our framework, a challenging complex 
system was chosen in the domain of electrical power 
networks (see figure 6). The system is a highly 
interconnected process with many components and 
dynamic signal variations during normal operation.  
We decided to compare the performance of the 
proposed framework against the diagnostic system 
taken from [Garza, 2001], due to the availability of 
data and the similar general performance of the 
techniques shown in table 8. 

This diagnostic system consists of a modeling step 
followed by a diagnosis step. In the modeling step it is 
used the Dynamic Independent Choice Logic (DICL) 
to represent the diagnosis problem with causal 
probabilistic models that represent both, the 
relationships between the elements of the system, and 
the dynamics of the process.  The diagnosis task 
comprises two phases. In phase one, the diagnostic 
system generates all possible explanations from a set 
of discrete observations, consistent with the process 
model facts. The discrete observations are taken from 
the statuses of protection breakers installed between 
node’s lines. The explanations contain the suspected 
faulted components. Phase one uses heuristics based 
on probabilities, to deal with the combinatorial 
explosion in the number of generated explanations, due 
to the large quantity of available information. In phase 
2, the diagnostic framework models the dynamics of 
the problem by specifying Dynamic Probabilistic 
Models within DICL. The model structure is learned 
from data and the inference is performed with a 
maximum entropy classifier. These models represent 
the steady state behavior of a device or component. 
Faults are detected by analyzing a set of filtered 
residuals, computed from the difference between the 
dynamic model and the observed measurements. Phase 
2 can be considered as a refining stage where non 
faulted components, given by the first phase, are 
discarded by analyzing continuous signals that give 
more insight in the behavior of the component.  

Table 9 and 10 show the performance of this 
diagnostic system based on probabilistic logic. 

Comparing the results of both frameworks, we 
noticed that they have a very similar performance, but 
when comparing case 1 of our  framework against the 

diagnostic system based on probabilistic logic, our 
method has a better performance.  

Another important point is that our framework is 
relatively easier to implement and to update when 
power system scales up. In the probabilistic 
framework, new simulations are required to compute 
the fault detection thresholds and also a dynamic 
model needs to be learned for every added node. 

 
Table 9. Performance of detection per node’s component of 

the diagnostic system based on probabilistic logic 
 

 

Component State Correct False Alarms Accuracy 

A-B-C GND 14 0 100% 
A-B GND 10 0 100% 
A GND 12 2 85.7% 

A-B 15 3 83.3% 
B-C 16 0 100% 

NO FAULT 17 7 70.8% 

 
Table 10. Performance of detection per node number of the 

diagnostic system based on probabilistic logic 
 

 

Node Number Correct False Alarms Accuracy 

3 19 5 79.1% 
9 21 3 87.5% 

10 21 3 87.5% 
13 23 1 95.8% 

Table 11 shows a comparison of the performance 
obtained per node’s component with the framework 
presented in this paper against that of the diagnostic 
system based on probabilistic logic. We can see that 
both frameworks in general have a very similar 
performance, but when comparing case 1 of  our 
proposal against the probabilistic logic diagnostic 
system, it is clearly noticed that the former reach a 
better behavior. Table 12 is a comparison of the 
performance obtained per node number between the 
two frameworks. 
 

Table 11. Comparison of the accuracy of detection per 
node’s component state of the 3 cases considered in the 

framework proposed against the probabilistic logic system 
 

 

Component State Case 1 Case 2 Case 3 Probabilistic 
Logic 

A-B-C GND 100% 100% 100% 100% 
A-B GND 100% 100% 100% 100% 
A GND 100% 85.71% 92.85% 85.7% 

A-B 100% 83.33% 50% 83.3% 
B-C 100% 68.75% 68.75% 100% 

NO FAULT 54.16% 58.33% 79.16% 70.8% 
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Table 12. Comparison of the accuracy of detection per node 
number for the two frameworks 

 

 

Node Number Case 1 Case 2 Case 3 Probabilistic 
Logic 

3 83.33% 83.33% 83.33% 79.1% 
9 79.16% 75% 70.83% 87.5% 
10 91.66% 87.5% 62.5% 87.5% 
13 100% 95.83% 100% 95.8% 

5 Conclusion 
 
This paper has presented a fault detection framework 
for electrical power systems with dynamic load 
changes. This approach uses a PNN and is based on 
history process data as a first classifier to obtain the 
most probably operation mode of the nodes being 
analyzed. An advantage we have over model based 
methods, is that this framework needs only historical 
data of normal system operation as well as faulty data 
sets, to train the PNN, which in practice is relatively 
easy to obtain for computer controlled systems. We use 
a PNN because it is an ideal choice to work on 
classification problems. Its most important advantage 
is that it needs only a little time for its training.  

Thus, the only thing that is needed for the 
framework presented in this paper is a big quantity of 
normal and different faults data sets. 

When a test sample arrives, it is necessary to obtain 
windows of data of m size. Then, in the first phase, the 
eigenvalues of the correlation matrix obtained from the 
samples windows are taken and used them as inputs for 
a PNN to classify the node's component state. It has 
been shown how this classification could be improved 
and carried out when eigenvalues are very similar, with 
the implementation of a second phase. In this phase, a 
simple comparison of each sample magnitude to the 
constant value of a certain signature fault is made, to 
detect the type of fault, and at the same time the 
location of the fault.   

It can be concluded that, when more fault than 
normal data appear in the sample window, our 
proposed framework has a better performance because 
eigenvalues are easily classified by the PNN as they 
have very different values.  

The most important advantage of this proposal is 
that as it diagnoses the status of each node, it could 
detect simple and multiples faults, simultaneous and 
non-simultaneous faults and a combination of different 
faults as well as their corresponding location for each 
node separately. 
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