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Taxonomic and functional richness of fish in
temperate and tropical reefs of the Mexican
Pacific

Rebeca Torres-Garcia"?, Georgina Ramirez-Ortiz?*, Estefani De Leén-Siller®?

Rodrigo Beas-Luna*”, Julio Lorda®, Luis Malpica-Cruz’, Manuel Velasco—Lozano2

ABSTRACT. Taxonomic and functional diversity patterns of fish in temperate reefs in the
Mexican Pacific have not been analyzed in integrative biodiversity studies. Thus, this study
compared the taxonomic, phylogenetic, and functional diversity of reef fish in 4 biogeographic
provinces: Californian, Cortez, Panamic, and Oceanic Islands. Species checklists were com-
piled from the literature, museum collections, and monitoring data from 21 sites in marine
protected areas (MPAs) and 45 non-protected sites. Based on this data and 6 biological traits
(size, mobility, period of activity, gregariousness, position in the water column, and diet), we
calculated species richness (S), average taxonomic distinctness (A+), number of functional
entities (FE), functional redundancy (RED), functional vulnerability (¥V), and functional
volume (FVol). We registered 1,045 species; the dominant categories were benthic, highly
site-attached, diurnal, solitary, medium-sized, and invertivores. The Cortez province showed
the highest S and FE values, whereas the Californian province presented the lowest values.
Notably, FFol was >70% across the 4 biogeographic provinces, suggesting that the range of
ecological functions and processes was maintained across provinces despite their contrasting
biodiversity levels, environmental conditions, and evolutionary histories. A “regional back-
bone” was identified, consisting of 74 species and 58 FE (the fundamental species and shared
ecological roles across provinces). At the regional level, low RED (<3 species' FE') and high
FV (>55% of FEs represented by a single species) were observed. All provinces presented
high values of A+ (>80%), reflecting the broad range of taxonomic lineages within the region.
The MPAs presented higher S and RED than non-protected sites; however, further research is
needed to elucidate the positive effects of protection.

Key words: marine protected areas, marine ecosystems, ichthyofauna, biogeographic
patterns, biological traits.

INTRODUCTION

Marine and coastal ecosystems worldwide are increas-
ingly threatened by human activities (e.g., fishing, pollu-
tion, and habitat fragmentation), as well as by environmental
factors associated with climate change (e.g., increasing sea
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temperatures and rising sea levels), which could result in
a loss of species and the functions and services they pro-
vide (Halpern et al. 2015, Morzaria-Luna et al. 2018).
Understanding how fish diversity varies across biogeo-
graphic provinces with distinct environmental conditions
and evolutionary histories is crucial for developing effective
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conservation strategies (Stuart-Smith et al. 2013, McLean
et al. 2021). These comparisons can help identify regions
with unique or vulnerable assemblages that require tar-
geted management efforts (Olivier et al. 2018). In the face
of the loss of species, functions, and services, marine pro-
tected areas (MPAs) serve as a primary conservation tool
to safeguard biodiversity and improve ecosystem resilience
(Hernandez-Andreu et al. 2024).

Although taxonomic diversity-based studies are common
for describing spatial and temporal differences (Mora et al.
2008, Lin et al. 2020, Pham et al. 2023), it has been reported
that these studies are not highly sensitive to the effects of dis-
turbances on ecological processes (Mouillot et al. 2013). An
alternative is to use trait-based approaches that consider the
biological information of each species as an approximation
of their role in the ecosystem and assess the loss of species
and their functions (Francisco and De la Cueva 2017). Using
species presence and their biological traits makes it possible
to calculate functional indices and describe spatial patterns
such as biodiversity “hotspots” or functionally vulnerable
areas at the global level (Mouillot et al. 2014). Moreover,
based on a functional diversity analysis, it has been reported
that no-take zones inside MPAs were not sufficiently repre-
sentative to safeguard ecosystem functions in tropical reefs
(Hernandez-Andreu et al. 2024).

Regional descriptions of the functional patterns of reef fish
have been extensively reported given the ample biological
information available, the wide variety of functions they per-
form, and the economic importance of some species (Mouillot
et al. 2014, Olivier et al. 2018). Mouillot et al. (2014) ana-
lyzed the taxonomic and functional richness of 6,316 trop-
ical reef fish species at a global level, evaluating data from
169 locations. The authors found the highest species richness
(8 =3,689 species) in the Central Indo-Pacific region and the
lowest richness in the Eastern Atlantic (S = 403 species) and
Eastern Tropical Pacific (ETP) (S = 570 species). However,
Mouillot et al. (2014) reported that even the later regions with
low species richness could be able to maintain the ecolog-
ical processes necessary to sustain tropical reefs, as they pre-
sented similar functional volume values and shared most of
the key functions with richer faunas, such as those found in
the Central Indo-Pacific. Moreover, these authors reported
that even highly diverse systems, such as tropical reefs, could
be threatened by species loss, as fish species tended to be dis-
proportionately packed into a few specific functional entities,
leaving many functions highly vulnerable.

McLean et al. (2021) analyzed 2,786 fish species. These
authors reported a consistent variety of traits (the dominant
categories were invertivore diets; demersal, diurnal, and sol-
itary behavior; and small-medium size), including a “back-
bone” of 21 functional entities common to the 89 studied
ecoregions, highlighting the existence of shared ecological
roles in shallow reefs worldwide. Even though the authors
found more species in tropical reefs than in temperate
regions, they reported similar trait compositions among fish
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assemblages under similar environmental conditions (even
when thousands of kilometers separated study sites), despite
the assemblages hosting drastically different species from
separate evolutionary lineages. These findings suggest that
similar trait-based management strategies can be applied to
regions with distinct species pools. Therefore, understanding
taxonomic, phylogenetic, and functional biodiversity patterns
in marine regions is needed to unravel the contributions of
species (and their evolutionary lineages and functional enti-
ties) to ecosystem processes and to support the development
of management strategies that enhance reef resilience.

While studies have been conducted in the Mexican
Pacific, a comprehensive comparison of the taxonomic and
functional richness of fish across regions is missing. In the
ETP, Robertson and Cramer (2009) identified a high number
of resident species in the central region of the Panamic prov-
ince (Panama and Costa Rica) and at the tip of the Baja
California Peninsula in the Cortez province. Similarly, Dubuc
et al. (2023) reported the highest values of taxonomic and
functional richness in the central region of the ETP (based
on an analysis of 313 species registered by visual censuses
at 122 sites from Mexico to Ecuador), which was positively
influenced by sea surface temperature and conservation status
and negatively influenced by shelf area and the distance from
the mainland. In contrast, Ramirez-Ortiz et al. (2017) found
a decreasing biogeographic pattern in the functional richness
of fish and macroinvertebrates towards the tropics, with the
highest values in the Cortez and Oceanic Islands provinces
(compared to the Panamic province), which were associated
with habitat heterogeneity and the oceanographic conditions
of those regions.

In the Mexican Pacific, Olivier et al. (2018) identified sim-
ilar fish diversity patterns in the Gulf of California by ana-
lyzing different data sources and reported greater taxonomic
and functional diversity in the southern islands associated
with the oceanographic conditions of this region. Although
their findings revealed low functional redundancy and high
functional vulnerability at the regional level, uneven species
distributions between functional entities and spatial differ-
ences in fish diversity were reported.

Despite an increase in studies of the Mexican Pacific, anal-
yses of the regional patterns in fish diversity in temperate and
tropical reefs, as well as in MPAs and non-protected sites,
remain scarce. Thus, we compiled fish species presence data
from 66 reefs from different sources (the literature, museum
collections, and monitoring programs) to describe the spatial
patterns of taxonomic, phylogenetic, and functional richness
in 4 biogeographic provinces (Californian, Cortez, Panamic,
and Oceanic Islands). We also sought to identify possible eco-
logical factors that influence reef fish fauna, considering the
effects of protection by MPAs on species conservation and
their ecological functions. Overall, the results of this study
help to elucidate common and particular traits and the taxo-
nomic and functional diversity patterns of fish in each biogeo-
graphic province of the Mexican Pacific.
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MATERIALS AND METHODS
Study area

We compiled information on fish presence in 66 sites
(21 MPA sites and 45 non-protected sites) along the
Mexican Pacific (Fig. 1). The study region was divided into
4 biogeographic provinces according to the regional classi-
fication of Robertson and Cramer (2009), which is based on
the geographic distribution of shore fish species (i.e., resident
species whose abundance or distributions indicate they
exhibit self-sustaining populations in the region; Robertson
et al. 2004). The Californian province extends north from
25° N along the Pacific coast of the Baja California Peninsula
(Robertson and Cramer 2009). It is influenced by the California
Current, which imposes its temperate features (average sea
surface temperature [SST] of 16 °C; SAGARPA 2018), and
the North Equatorial Current and its tropical features (SST of
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29.2-25.6 °C; SAGARPA 2018) (Bernal et al. 2001, Valdez
and Diaz 1996).

The Cortez Province covers the Gulf of California and the
southern Pacific coast of Baja California Peninsula, reaching
north to about 25° N near Magdalena Bay (Robertson and
Cramer 2009); the average SST range for the province is
19.8-27.8 °C (Anislado-Tolentino 2008, SAGARPA 2018).
The Cortez province is influenced by the North Equatorial
Current and North Pacific Gyre (Bernal et al. 2001). North-
west winds generate upwelling events that bring nutrient-rich
waters to the euphotic zone and increase primary productivity
(Escalante et al. 2013). These oceanographic conditions sup-
port a high diversity of marine fauna and a great variety of
habitats such as mangroves, coastal lagoons, and rocky and
coral reefs (Cruz-Garcia 2009).

The Panamic province extends from 25° N to 4° S off the
Gulf of Guayaquil in Ecuador (Robertson and Cramer 2009).
The mean SST of this province is 28 °C, and it is influenced
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Figure 1. Map of the Mexican Pacific depicting study sites in the Californian (red), Cortez (blue), Panamic (green), and Oceanic Islands
(orange) biogeographic provinces. Circles indicate non-protected sites; other markers indicate that study sites are located in marine protected
areas (MPAs) (blue dashed line) with distinct protection categories: national parks (triangles), biosphere reserves (squares), and flora and

fauna protected areas (stars).
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by the confluence of 2 marine currents in the central Mexican
Pacific, the Costa Rican Coastal Current and California
Current, which merge to contribute to the formation of the
North Equatorial Current (Lara-Lara 2008). This province is
also influenced by northwest winds, which increase the pres-
ence of gyres and eddies, thus favoring primary productivity
near the coast for most of the year (Pérez-de-Silva 2023).
In addition, the upwelling zone of the Gulf of Tehuantepec,
which is induced by Tehuano winds, is considered one of the
most productive zones in the study region (Lara-Lara 2008).

Finally, the Robertson and Cramer (2009) classifica-
tion considers oceanic islands as an independent biogeo-
graphic province relative to mainland areas, as the Oceanic
Islands province hosts relatively smaller ichthyofauna, dis-
tinct functional groups, and a greater number of transpa-
cific and endemic species. This biogeographic province is
comprised of 5 islands (from north to south): Revillagigedo,
Clipperton, Cocos, Malpelo, and Galapagos. In the present
study, we only considered the islands of Revillagigedo
and Clipperton (CONANP 2004, Ricart et al. 2016). These
islands present the same average SST (28 °C), as they are
mainly influenced by the North Equatorial Current and, in
the case of the Revillagigedo Archipelago, by the California
Current, making the area a transition zone due to the conver-
gence of 2 water masses (CONANP 2004, Velasco-Lozano et
al. 2020).

Species checklist and biological traits

We compiled a species checklist of conspicuous bony fish
(Teleostei) in the Mexican Pacific from 21 sites in MPAs and
45 non-protected sites. Data sources included published lit-
erature (scientific articles [e.g., Olivier et al. 2018], reports
[e.g., Del Moral-Flores et al. 2013], and MPA manage-
ment programs [e.g., CONANP 2004]), museum collections
(e.g., Del Moral-Flores et al. 2016), and diurnal monitoring
efforts (e.g., Mascarenas-Osorio et al. 2018) (Supplementary
Material 1). Using different data sources has the advantage of
including rare, nocturnal, and cryptic species that usually are
not considered in biodiversity analyses (Olivier et al. 2018).
We excluded fish species with maximum sizes of <5 cm and
minimum depths of >70 m, organisms that were not identi-
fied at the species level, and species with particular life cycles
(e.g., Anguilliformes). We did not consider areas with fewer
than 10 registered species; non-protected sites encompassed
reefs on the continental shelf, islands, or archipelagos sepa-
rated by less than 10 km and located outside of the protection
polygon of an MPA, whereas the protected reefs included all
sites within a protection polygon.

We characterized all species using 6 biological traits that
reflected key aspects of fish ecology (Mouillot et al. 2014).
Biological information was compiled from the online reposi-
tory FishBase (Froese and Pauly 2024) and included catego-
ries grouped into traits that have been used in previous studies
at the global (Mouillot et al. 2014) and regional (Olivier et
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al. 2018, Ramirez-Ortiz et al. 2022) levels: (a) maximum
fish size (5-7cm, 7.1-15cm, 15.1-30 cm, 30.1-50 cm,
50.1-80 cm, or >80 cm), (b) mobility (highly site-attached,
mobile within-reef, mobile among reefs, or very mobile with
very large home ranges), (c) period of activity (diurnal or noc-
turnal), (d) gregariousness (solitary, pairing, small group of
3-50 individuals, or large group >50 individuals), (¢) position
in the water column (benthic, bentho-pelagic, or pelagic), and
(f) diet (herbivores-detritivores, invertivores targeting ses-
sile invertebrates, invertivores targeting mobile invertebrates,
planktivorous, piscivores, or omnivores). Based on species
presence and biological trait information, we calculated the
relative frequency of each category in the biogeographic
provinces. We repeated this process for an additional subset of
common species for all provinces, which we considered to be
the regional backbone (McLean et al. 2021). The relative fre-
quency of each category was represented in histograms using
the packages ‘tidyverse’ (Wickham and Wickham 2017),
‘ggplot2’ (Wickham 2016), and ‘gridExtra’ (Auguie 2017) in
R v. 4.3.3 (R Core Team 2024).

Biogeographic patterns in the taxonomic, phylogenetic,
and functional diversity of reef fish

To describe regional patterns in fish diversity in temperate
and tropical reefs, we used various ecological indicators to
assess distinct diversity components. For taxonomic diversity,
we considered species richness (S), which is the number of
species in a community at a given time; high values of this
indicator reflect high diversity (Halffter et al. 2005).

For phylogenetic diversity, we used the average taxo-
nomic distinctness index (A+), which measures the mean
distance (according to the Linnaean classification tree)
between each pair of species within a study site (Clarke and
Warwick 1998). To calculate A+, we used 6 hierarchical
levels (species, genus, family, order, subclass, and class)
and Eq. (1):

£ 5w

+ — i<j

==l )

where w;, is the taxonomic distance between each pair of spe-
cies, and S is the total number of species. Low values of this
index show that the species present in a certain site share a
close evolutionary origin (i.e., low phylogenetic distance
between species; Clarke and Gorley 2001).

To calculate functional indices, we classified each species
into a functional entity (FE) based on a combination of the
categories of the 6 biological traits, which was represented
by an alphanumeric code indicating the possible ecological
role played by each species in the ecosystem (Villéger et al.
2017). Using this information and species presence data, we
calculated 4 indices: number of FEs, functional redundancy
(RED), functional vulnerability (FV), and functional volume
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(FVol). (1) Number of FESs: the number of unique combina-
tions of the categories considered for the biological traits
(Mouillot et al. 2014). High values of FE indicate that a
wide variety of functions are represented within the assem-
blage (Quimbayo et al. 2017). (2) RED: the mean number
of species per FE (Mouillot et al. 2014). Low values of this
index suggest a reduced potential for functional compen-
sation in the event of species loss (Micheli and Halpern
2005). (3) FV: the percentage of FEs represented only by
one species (Mouillot et al. 2014). This index was calcu-
lated with Eq. (2):

FE—2." min(ni—1,1)
Fv= lFE > 2)

where S is the total number of species, and #; is the number
of species represented in the ith FE. High FV values indi-
cate a high risk of losing functions in the event of spe-
cies loss, as most FEs are represented only by one species
(Mouillot et al. 2014). (4) FVol: the volume covered by a set
of species proportional to the functional space defined by
the outermost vertices of the total assemblage. In the pre-
sent study, F'Vol represents the distribution of FESs in a par-
ticular province. High Flol values indicate the presence of
highly extreme functions within the assemblage, similar to
the total registered across the entire study region (Mouillot
et al. 2013, 2014).

To calculate FVol, we employed a principal coordinates
analysis (PCoA) based on a Gower distance dissimilarity
matrix, which allows for comparing different types of vari-
ables while assigning them equal weight (Gower 1971). We
selected the first 5 PCoA axes, which accounted for more than
70% of the total data variance. This created a 5D space for the
biogeographic provinces and regional backbone, where pair-
wise distances between species were congruent with their ini-
tial trait-based Gower distances (Mouillot et al. 2021). These
distances represent coordinates and were used to estimate
FVol according to the convex hull volume model of Cornwell
et al. (2006), in which the outermost vertices (FEs with more
extreme traits) define the convex hull (Villéger et al. 2008).
The amount of space that the provinces and regional backbone
assemblages encompassed in proportion to the total volume of
the Mexican Pacific were calculated to determine FVo/ using
the packages ‘elbow’ (Casajus 2024), ‘mFD’ (Magneville et
al. 2022), ‘geometry’ (Habel et al. 2023), ‘vegan’ (Oksanen et
al. 2022), and ‘tidyverse’ (Wickham and Wickham 2017) in
R v. 4.3.3 (R Core Team 2024).

Finally, S, FE, and FVol of the fish assemblages in
each province and the regional backbone were plotted to
visualize spatial differences using the packages ‘ggplot2’
(Wickham et al. 2016) and ‘gridExtra’ (Auguie 2017). The
ecological indicators for each site were illustrated in maps
with QGIS v. 3.34.0 to describe regional patterns. Classes
or intervals of S, A+, FE, RED, and FV values were deter-
mined using Sturges’ rule.

w<O

REsuLrs
Species checklist and biological traits

We registered 1,045 conspicuous fish species in
66 temperate and tropical reefs in the Mexican Pacific (Sup-
plementary Material 1), representing 450 genera, 148 families,
and 42 orders (Supplementary Material 2). The most repre-
sented family was Serranidae (64 species and 16 genera), fol-
lowed by Gobiidae (47 species and 29 genera) and Carangidae
(47 species and 16 genera).

Despite the presence of distinct species between prov-
inces, all biological trait categories were present (Fig. 2).
Their relative proportions remained similar within the study
region, where the most frequent biological trait categories
were: benthic (Fig. 2a), highly site-attached species (Fig. 2b),
diurnal (Fig. 2c), solitary (Fig. 2d), medium-sized (15-30 cm;
Fig. 2e), invertivores, and piscivores (Fig. 2f). These biolog-
ical trait categories were dominant in the 4 biogeographic
provinces and in the regional backbone.

Biogeographic patterns in the taxonomic, phylogenetic,
and functional diversity of reef fish

The Cortez province presented the highest fish diversity
values (911 species, 382 FEs, and Flol = 96%), followed by
the Panamic (465 species, 265 FEs, and Flol = 80%) and
Oceanic Islands (393 species, 233 FEs, and Flol = 77%)
provinces. The lowest values were observed in the Californian
province (314 species, 196 FEs, and FVol = 73%). In compar-
ison, the regional backbone was comprised of 74 species (30%
of the total species richness registered in the study area) and
58 FEs, covering 38% of the total regional volume (Fig. 3).
These results indicate that the range of “functions” (FVol)
was similar between biogeographic provinces despite the dif-
ferences in S and FE values. Moreover, through the regional
backbone description, we identified the fundamental species
and, thus, the FEs necessary to maintain reef processes in the
Mexican Pacific.

Regarding the protection level, in sites within MPAs,
898 species and 323 FEs were registered, while in
non-protected sites, a total of 829 species were registered and
grouped into 362 FEs (Table 1; Fig. 4a, b); thus, RED was
higher in MPA sites (2.78 species: FE™') than in non-protected
sites (2.29 species' FE™). At the regional scale, for most sites,
we registered low mean RED values (2.4 species' FE™'; Fig. 4c¢)
and high FV values (55% of the FEs were represented only by
one species; Fig. 4d) due to the high percentage of species
concentrated in a relatively small subset of FEs. High RED
values (~1.64—1.96) and medium FV values (~60-80%) were
mainly observed in MPAs (e.g., Revillagigedo National Park
and Islas Marias Biosphere Reserve) than in non-protected
sites, which presented low RED values (~1-1.64) and high
FV values (>80%). Finally, high A+ values (>97%; Fig. 4¢)
were observed in the 4 biogeographic provinces, indicating
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high phylogenetic distance (i.e., distant evolutionary origin)
between the species within the study region.

DiscussioN
Species checklist and biological traits

We reported higher values of species richness
(1,045 species) in the Mexican Pacific compared to the
reports of previous global studies, which have registered
<580 species for the ETP (Mouillot et al. 2014, McLean et al.
2021). Despite the high fish species richness reported in this
study, we found that the Mexican Pacific presented lower rich-
ness than the Central Indo-Pacific (3,689 species) and Central
Pacific (2,911 species), which have been recognized as bio-
diversity hotspots for reef fish fauna (Mouillot et al. 2014).

Regionally, Dubuc et al. (2023) reported a total of
313 species for the Mexican Pacific, which is less than the
value reported in the present study (1,045 species). This dif-
ference could be associated with our compilation of informa-
tion from different sources (scientific articles, reports, MPA
management programs, monitoring data, and museum col-
lections), as well as the incorporation of data from temperate
reefs of the Californian province, which allowed us to gen-
erate a more comprehensive assessment of fish diversity in
the different reef habitats of the Mexican Pacific.

Our analysis revealed that the most frequent biological
trait categories (benthic, highly site-attached, diurnal, solitary,
medium-sized, and invertivores specialized in mobile inverte-
brates or piscivores) across the 4 biogeographic provinces and
regional backbone are among the most common for reef fish,
which aligns with global (McLean et al. 2021) and regional
(islands located in the central Mexican Pacific; Morales-de-
Anda et al. 2020) reports. The high frequency of these cat-
egories could be associated with the dominance of families,
such as Serranidae and Gobiidae, that exhibit these functional
characteristics (Morales-de-Anda et al. 2020, McLean et al.
2021). To evaluate a wider variety of categories within the
considered biological traits, future regional analyses should
focus on describing functional diversity across different
habitats (e.g., pelagic habitats, mangroves, and estuaries).
Regarding diet, invertivores specialized in mobile inverte-
brates were the dominant category. Still, we also found a high
frequency of piscivores, which have been reported to be indi-
cators of good conservation status, as most species are com-
mercially important (Quimbayo et al. 2017, Morales-de-Anda
et al. 2020). However, we found that MPAs hosted a similar
number of piscivores (105 species) as non-protected sites
(116 species). Thus, subsequent analysis should consider
other ecological indicators (abundance, size, and biomass)
to determine if MPA protection positively affects this trophic
group at the regional level. Additionally, the high frequency
of the diurnal biological trait category could be associated
with the period of the day during which most data have been
collected. Even though our data encompass different sources,
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which could help reduce information bias (compared to other
studies based on one data collection method), future sampling
efforts should focus on describing nocturnal assemblages to
provide a more accurate description of this trait.

Biogeographic patterns in the taxonomic, phylogenetic,
and functional diversity of reef fish

By comparing reef fish diversity across 4 biogeographic
provinces, we found the highest values of S, FE, and FVo!
in the Cortez province, followed by the Panamic, Oceanic
Islands, and Californian provinces. The high fish diversity
in the Cortez province could be due to the isolation of the
Gulf of California from the Pacific Ocean since the forma-
tion of Baja California Peninsula, which has favored high
speciation rates (Bernal et al. 2001, Mora and Robertson
2005, Robertson and Cramer 2009). The isolation, along with
habitat heterogeneity in terms of substrate (rocky reefs and
coral communities) and water-column characteristics due to
the influence of Tropical Surface Water, California Current
Water, and Gulf of California Water, have previously been
reported as key factors within the Cortez province (Lavin and
Marinone 2003). These factors influence the transport and
settlement of fish larvae from other areas, contributing to the
high taxonomic and functional diversity due to the conver-
gence of tropical and temperate fish faunas (Ramirez-Ortiz
et al. 2017). Additionally, this province hosts the majority
of the MPAs analyzed in this study (9), which have been
established to conserve biodiversity and ecological func-
tions (SEMARNAT-CONANP 2018, Dubuc et al. 2023). The
management of these MPAs and the high sampling effort in
these areas to evaluate their effectiveness may have posi-
tively influenced the high fish diversity values recorded in
the Cortez province.

Compared to the Cortez province, the Panamic province
exhibited lower values of S, FE, and FVol, possibly due to its
more stable oceanographic conditions throughout the year, as
well as its less diverse habitats, such as sandy beaches and
coral reefs dominated by Pocillopora, which has not been
found to affect fish diversity within the ETP (Glynn 2004,
Ramirez-Ortiz et al. 2017, Olan-Gonzalez et al. 2020). In
contrast, the Oceanic Islands province, which exhibited inter-
mediate fish diversity values, has been considered a transi-
tion zone due to the confluence of the North Equatorial and
California Currents, which favor environmental variability
and, thus, the presence of multiple species with different bio-
geographic affinities (Velasco-Lozano et al. 2020). Nonethe-
less, the distance of these insular territories from the coast
(>1,000 km) introduces bias into the sampling efforts in this
province. The fact that the Revillagigedo National Park and
Islas Marias Biosphere Reserve exhibited some of the highest
fish diversity values within the study region may encourage
the continuation of management efforts in these areas to pro-
mote the protection of key ecological functions in these prov-
inces (CONANP 2004).
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Figure 3. Taxonomic and functional indices calculated for the ichthyofauna across the 4 biogeographic provinces and the regional backbone:
histograms of species richness (5), number of functional entities (FE), and percentage of the occupied functional volume (FVol; values are
displayed at the top of each bar) (a). Functional space occupied by the fish assemblages in each province and the regional backbone (colored
polygon) in comparison with the total FVol of the study region (black-line polygon) for axes 1 and 2 (b). Axes 3 and 4 of the PCoA (¢). Gray

markers indicate species distribution within the functional space.

Most of the sites in the Californian province exhib-
ited low values of S, FE, and FVol, despite being consid-
ered an upwelling zone with high primary productivity
(Castro-Aguirre et al. 1993, Valdez and Diaz 1996) and the
presence of 6 MPAs. Previous studies have reported that reef
fish taxonomic and functional diversity is strongly influenced
by temperature changes, with diversity increasing towards the
equator, as more species coexist in the tropics than in tem-
perate areas (Tittensor et al. 2010, Dubuc et al. 2023). In
this study, we observed this pattern of higher fish diversity
in the tropical provinces, possibly due to limited species dis-
persal into the Californian province in contrast to the others.
However, this condition might change in the near future, as
extreme heat events could promote the colonization of kelp
forests and rocky reefs by widely distributed and generalist
species (Robertson and Cramer 2009, Dubuc et al. 2023).

Despite the differences in S and FE, the fish assemblages in
each biogeographic province occupied similar volumes (>70%)

within the total functional space. This is consistent with the
results of McLean et al. (2021), who reported a range of func-
tions shared between tropical and temperate regions world-
wide, despite differences in species presence, environmental
conditions, and evolutionary history across ecoregions. In this
context, we identified 74 species and 58 FEs as the regional
backbone, which represent the fundamental species and shared
ecological roles across provinces that contribute to maintaining
reef processes in the Mexican Pacific. This consistency across
the study region presents an opportunity to propose trait-based
approaches that could improve management outcomes in reefs
under similar environmental conditions (McLean et al. 2021).
Additionally, it is important to identify specific traits present in
reefs with good conservation status in order to determine local
priorities for trait-based management.

Regarding conservation status, we reported that although
the number of non-protected study sites was higher, the MPAs
exhibited greater total species richness (898 species) but
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Table 1. Number of sites in non-protected zones in marine protected areas
(MPAs) within the 4 biogeographic provinces according to the Robertson and
Cramer (2009) classification. Additional rows show species richness (S) and
functional entities (FEs) in non-protected sites and MPAs.

Non-protected sites
(number of sites)

Biogeographic province

Marine protected areas
(number of sites)

Californian 12 6
Cortez 24 9
Panamic 8 5
Oceanic Islands 1 1
Index

S 829 898
Number of FEs 362 323

lower FE values (323 FEs) compared to the non-protected
sites (829 species; 362 FEs). This result may indicate a pos-
itive effect of protection by MPAs, not only by increasing
taxonomic diversity but also by increasing functional redun-
dancy. However, further analysis is needed to determine
whether this result can be attributed to the positive effect of
reef conservation status, as influenced by the level of pro-
tection and size of the MPA (Dubuc et al. 2023), or whether
MPAs, as reported in a global study (Hernandez-Andreu et
al. 2024), are effective for conserving species despite not
always adequately protecting functions.

At regional level, we reported low average values of RED
(2.48 species- FE ') and high FV values (55% of the FEs were
represented by only one species), which were similar to the
values reported for the ETP (RED = 2.8; FV = 54%; Mouillot
et al. 2014). The observed pattern of low RED and high FV
has been previously registered as a global phenomenon and
associated with the uneven distribution of species among FEs
(Mouillot et al. 2014). In our study, species were dispropor-
tionately concentrated into a small set of FEs (61% of the
species were grouped into 21% of the FESs), leaving most FEs
to be represented by a single species and resulting in limited
potential for functional compensation in the event of species
loss (Micheli and Halpern 2005). This aligns with the results
of Parravicini et al. (2014), who reported that, although RED
is important for maintaining ecosystem processes, functions
dependent on few species are especially sensitive, and their
loss could jeopardize the maintenance of specific processes
over time. It is worth mentioning that the results of indicators
based on the relationship between the number of species and
FEs (e.g., RED and F'V) should be interpreted with caution, as
they can change depending on the number of categories and
biological traits considered (Ladds et al. 2018). Moreover,
trait-based approaches group species based on trait similari-
ties. However, these approaches produce approximations, as

each species contributes uniquely to ecosystems, and its loss
could notably impact ecosystem processes in ways that are
not yet predictable (Eisenhauer et al. 2023).

Finally, we recorded high values of A+ in all study sites,
indicating that the species presented a wide range of taxonomic
lineages while the provinces exhibited high evolutionary diver-
sity. These results could be attributed to the biogeographic
isolation of the ETP due to the formation of the Isthmus of
Panama, which favored the independent evolution of species
within this region (Mora and Robertson 2005, Robertson and
Cramer 2009). Nonetheless, future analyses should focus on
testing the relationship between latitude, species richness, and
speciation rates across marine fish in the ETP.

CONCLUSIONS

We reported higher values of species richness in the
Mexican Pacific (1,045 species) compared to those of pre-
vious studies, likely because the data in the present study
were obtained from diverse sources. The dominant bio-
logical trait categories of the fish species observed in the
present study (benthic, highly site-attached, diurnal, solitary,
medium-sized, and invertivores specialized in mobile inver-
tebrates) align with those reported in global and regional
studies. The Cortez province exhibited the highest values
of species richness, number of FEs, and FVol, which could
be associated with its geographic isolation, habitat het-
erogeneity, and water-column conditions. In contrast, the
Californian province showed lower diversity, possibly due
to limited species dispersal within this region. Despite dif-
ferences in S and the number of FEs, the fish assemblages
in each province occupied more than 70% of the total func-
tional space, which is consistent with global studies that
have reported a range of functions shared between tropical
and temperate regions despite variations in environmental
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Figure 4. Geospatial representation of the ecological indicators calculated with the information of fish species presence and biological traits:
species richness (S: total number of species per site) (a), number of functional entities (FE: number of species groups with unique combina-
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conditions and evolutionary history. This result, in addition to
the identification of the regional backbone, which represents
the fundamental species and common ecological roles shared
across provinces, presents an opportunity to propose trait-
based approaches that could improve management outcomes
in reefs under similar environmental conditions. Marine
protected areas exhibited higher values of S and RED than
non-protected sites, but further analysis is needed to assess the
positive effects of MPA protection. At the regional level, we
reported low RED and high FV, which confirms the uneven
distribution of species among FEs that has been reported
globally. Finally, high A+ values indicated that the provinces
hosted a wide range of taxonomic lineages among the fish
species present, possibly due to the biogeographic isolation
imposed by the formation of the Isthmus of Panama.
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