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Reef health status of the southwestern Gulf of
Mexico and Mexican Caribbean coral reefs

Dariel Correa', Carmen Amelia Villegas-Sénchez!*, Horacio Pérez-Espaia?,

Lorenzo Alvarez-Filip®

ABSTRACT. Coral reefs are highly diverse ecosystems that provide various environmental
services; however, they remain highly threatened. Assessing the health and trends of coral
reefs is vital to establishing management strategies that contribute towards their conservation
and recovery. One way of contributing to this objective is through monitoring indicators of
reef health. In this context, the present study focused on evaluating the health of 4 reef sys-
tems located in 2 extensive regions of Mexico: the southwestern Gulf of Mexico (SGM) and
the Mexican Caribbean (MC), using the Reef Health Index (RHI). Fieldwork was conducted
on 11 reefs in October 2022 in the SGM and in May 2023 in the MC. Data were collected
using 5 to 6, 50 x 2 m transects per site, followed by video transects of 50 x 0.50 m to record
benthic organisms along the transect. An average RHI score of 3.50 (considered “good”) was
obtained for SGM reefs, while for MC reefs, the average RHI score was 2.50 (considered
“poor”). These results suggest that, according to the RHI criteria, SGM reefs present a better
state of health than their MC counterparts. This difference was mainly influenced by the lower
coral cover and higher macroalgae cover associated with the coral-algal phase shift, likely
resulting from the rapid coastal development observed along the MC coasts. Lastly, for the
SGM, this evaluation represents the first reef health assessment for the Lobos-Tuxpan Reef
System Flora and Fauna Protection Area using a rating system coupled to ecologic indicators
such as the RHI.

Key words: Mexican Caribbean, southwestern Gulf of Mexico, reef health, phase shift, reef
monitoring.

INTRODUCTION

pace of global warming (Zeebe et al. 2016) is affecting the
adaptive and resilience capacity of corals.

Over half of the reefs across the world are estimated to
have been lost over the past 30 years, and they are currently
in a state of crisis (Downs et al. 2005, Souter et al. 2021). The
main factors contributing to coral reef degradation include
urban and industrial development in coastal areas, agricul-
tural activity, sedimentation, overfishing, marine pollution,
and climate change, which leads to ocean warming and acid-
ification (Bindoff et al. 2019, Obura et al. 2019, Souter et
al. 2021, Feng et al. 2023). Furthermore, climate change has
increased the incidence of coral diseases (Gil-Agudelo et al.
2009; Alvarez-Filip etal. 2019, 2022), and, unlike past climate
events, such as those of the Paleocene, the current accelerated
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The year 2023 was marked as the warmest year on
record, possibly in the last 100,000 years of the Earth, trig-
gering the most severe coral bleaching and mortality event
reported in the Northern Hemisphere and the Caribbean
region (Goreau and Hayes 2024, Schmidt 2024). Neverthe-
less, 2024 had the highest ocean temperatures recorded in
the Great Barrier Reef in Australia, posing a threat to coral
communities in this region (Henley et al. 2024, Tollefson
2024). As a result, the biodiversity of reefs and associated
communities has changed. Thus, baseline assessments and
ongoing monitoring are needed to determine the health of
these ecosystems, which will facilitate the design of effective
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management and conservation strategies (Downs et al. 2005,
Obura et al. 2019).

In Mexico, reef health assessments have been carried
out over the years, both for the reefs of the southwestern
Gulf of Mexico (SGM; Horta-Puga 2003, Lopez-Padierna
2017, Arguelles et al. 2019, Pérez-Espafia et al. 2021) and
for the reefs of the Mexican Caribbean (MC; Ruiz-Zarate
2003; HRI 2008; Caballero-Aragon et al. 2020a; McField
et al. 2022, 2024), using different methodologies. The Reef
Health Index (RHI) has been widely used in MC reefs. This
index was implemented by the Healthy Reefs Initiative
(HRI) and is one of the first regional efforts to develop reef
health criteria and indicators.

Since 2008, the HRI has produced biennial reports on
reef health in the region (HRI 2008; Kramer et al. 2015;
McField et al. 2022, 2024), which have provided insight
into the status and trends of reefs over time and the prog-
ress of restoration and conservation efforts in the MC and,
on a larger scale, the Mesoamerican Reef System (MAR).
However, the need to apply the RHI at more sites in the MC
has been highlighted (Diaz-Pérez et al. 2016); furthermore,
its expansion to reefs in the SGM has been proposed, as
reef health assessments based on scoring systems are still
limited in this region, with those carried out by Simoes et
al. (2020) and Pérez-Espaiia et al. (2021) being particularly
noteworthy.

In Mexico, the most important reefs, in terms of size
and diversity, are those found in the Gulf of Mexico and
the Caribbean (Horta-Puga et al. 2019). These reefs provide
ecological, environmental, and economic services (SENER
2016); in addition, they serve as the connection with the rest
of the coral ecosystems of the Wider Caribbean (Tunnell et
al. 2007). Veracruz reefs have been considered one of the
most threatened in the Wider Caribbean (Horta-Puga 2003,
Pérez-Espaiia et al. 2015) because they have been exploited
for centuries (Lopez-Padierna 2017). Despite not being
abundant, their uniqueness, isolation, and good state of con-
servation make these reefs highly relevant for research and
preservation (Gil-Agudelo et al. 2020).

On the other hand, the MC hosts the most extensive reef
formation in Mexico, mainly composed of fringing reefs
that extend more than 350 km along the coast of the state
of Quintana Roo (Ruiz-Zarate et al. 2003, Ardisson et al.
2011, Blanchon 2011). These reefs have experienced contin-
uous devastation since the early 1980s due to anthropogenic
activity in the region (Pérez-Cervantes et al. 2017).

Therefore, this study aimed to assess the health status of
11 reef sites in the SGM and MC to elucidate their current
condition and evaluate the effectiveness and applicability
of the RHI in these 2 regions. It also enabled the analysis
of the main factors that could influence their health status,
such as the natural history and demographics of both regions.
Finally, the results for each of the indicators used and the
RHI score will serve as a reference point prior to the severe
bleaching event of 2023.

w<O

MATERIALS AND METHODS
Study area

The sampling sites for this research covered 2 regions
of the Mexican Atlantic: SGM and MC. The reefs of SGM
are located off the coast of the state of Veracruz (Tunnell et
al. 2007). One of the reef systems in this region is the Flora
and Fauna Protection Area Sistema Arrecifal Lobos-Tuxpan
(APSALT, for its acronym in Spanish), located north of
Veracruz. It encompasses 6 emergent and platform-type coral
formations divided into 2 subsystems or polygons: north and
south (Gonzalez-Géndara et al. 2013, Ortiz-Lozano et al.
2013, Cancino-Guzman 2018).

The Sistema Arrecifal Veracruzano National Park (PNSAYV,
for its acronym in Spanish) is the largest reef complex in
the SGM (Chavez et al. 2007), located south of Veracruz
(SEMARNAT 2017). This system encompasses approxi-
mately 50 coral reefs, of which half are emergent (fringing
or platform; Ortiz-Lozano et al. 2013, Robertson et al. 2019)
and the rest are submerged (Ortiz-Lozano et al. 2019), dis-
tributed in 2 groups: north and south (Horta-Puga et al. 2015,
Pérez-Espaia et al. 2015).

The MC region is part of the MAR and extends 400 km
along the coast of the state of Quintana Roo (Rioja-Nieto and
Alvarez-Filip 2019), from Isla Contoy and Cabo Catoche
in the north, to Xcalak and Banco Chinchorro in the south
(Carricart-Ganivet and Horta-Puga 1993, Chavez-Hidalgo
2009). Among others, this region encompasses the systems
Arrecifes de Cozumel National Park (PNAC, for its acronym
in Spanish) in the northern zone and the Arrecifes de Xcalak
National Park (PNAX, for its acronym in Spanish) in the
southern zone.

For the APSALT, we selected the Tuxpan and Enmedio
reefs (Fig. 1), which are both located within the Tuxpan
subsystem in the southern portion and are emergent and
platform-type reefs, respectively (Gonzalez-Gandara et al.
2013, Ortiz-Lozano et al. 2013). In the PNSAYV, we selected
the Blanca, De Enmedio, and Santiaguillo reefs (Fig. 1), all
located in the southern group (Horta-Puga and Tello-Musi
2009); like those in the APSALT, they were all emergent and
platform-type reefs (Ortiz-Lozano et al. 2013).

The reefs selected for the PNAC were Caracolillo, Paraiso
Norte, and Colombia Somero, located both in the northern
and southern extremes of the National Park (Fig. 1). These
reefs are classified as fringing (Fenner 1988, Jordan-Dahlgren
and Rodriguez-Martinez 2003) and insular (Rioja-Nieto and
Alvarez-Filip 2019). For the PNAX, the Rio Huach, La Poza,
and Canal de Zaragoza reefs were chosen as study sites
(Fig. 1) to encompass the extremes of the National Park. Rio
Huach, in the northern zone, is considered a nursery area
for fish and marine invertebrates of ecological and com-
mercial importance, whereas the Canal de Zaragoza, in the
south, is identified as a vessel entry zone (Villegas-Sanchez
et al. 2023). These are all considered fringing reefs (Weidie
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Figure 1. Map illustrating the study area and sampling sites: southwestern Gulf of Mexico (SGM) and Mexican Caribbean (MC). Lobos-Tuxpan
Reef System Flora and Fauna Protection Area (APSALT, for its acronym in Spanish) (a); Sistema Arrecifal Veracruzano National Park
(PNSAV, for its acronym in Spanish) (b); Arrecifes de Cozumel National Park (PNAC, for its acronym in Spanish) (¢); Arrecifes de Xcalak
National Park (PNAX, for its acronym in Spanish) (d); Tuxpan (Tx); Enmedio (EM); Blanca (BL); De Enmedio (DE); Santiaguillo (ST);
Paraiso Norte (PN); Caracolillo (CC); Colombia Somero (CS); Huach River (RH); La Poza (LP); Zaragoza Channel (CZ).

1985, Jordan-Dahlgren and Rodriguez-Martinez 2003, Arias-
Gonzalez et al. 2008).

We chose to sample the leeward zone on all reefs in the
SGM and CM (Jordan-Dahlgren and Rodriguez-Martinez 2003,
Hongo and Kayanne 2009) to ensure similar exposure condi-
tions. This zone has been recorded as having the greatest coral
development in the APSALT and PNSAV (Lara et al. 1992,
Escobar-Vasquez and Chavez 2012, Horta-Puga et al. 2015,
Gonzalez-Gonzalez et al. 2016) and in the PNAC and PNAX
(Fenner 1988). Samplings were carried out at depths between
7 and 12 m to minimize variations in environmental conditions
such as light and temperature, which influence coral cover.

The composition of these reefs on a broad geographic
scale, such as the Mexican Atlantic, is considered similar and
has 3 main structural zones: fore reef, reef crest, and back
reef (Jordan-Dahlgren and Rodriguez-Martinez 2003). This
zonation is primarily determined by wave impact, light, and

depth (Escobar-Vasquez and Chavez 2012, Rioja-Nieto and
Alvarez-Filip 2019).

Fieldwork

Sampling was done in October 2022 in the SGM and in
May 2023 in the MC. At each sampling site, 5 or 6 replicates
were done to assess each indicator of interest (fishes and ben-
thic organisms). Fish sampling was carried out using visual
surveys using scuba equipment and 50 x 2 m transects (Diaz-
Pérez et al. 2016). The species, size, and abundance of all
observed fish were recorded on each transect. To charac-
terize the benthic structure, 50 x 0.50 m video transects were
recorded with the aid of an underwater camera over the same
fish transects (Diaz-Pérez et al. 2016). A GoPro Hero8 camera
(GoPro, San Mateo, USA) was used in standard mode and 4K
4:3 resolution.
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Estimation of health indicators

Coral and algal covers were calculated from field-re-
corded videos, from which 40 photographs per transect were
selected for analysis using 13 fixed points (Villegas-Sanchez
et al. 2015, Barrera-Falcon et al. 2021). Photographs for each
video were automatically captured using VLC Media Player
v. 3.0.18 Vetinari (VLC Media Player, Inc., Paris, France),
setting time intervals according to the length of each video.
Photo analysis was carried out using the AEFEBE v. 1.1 soft-
ware (Lara-Arenas and Villegas-Sanchez 2016) on a Linux
operating system. Under each fixed point, predetermined
by the software, the substrate type was identified, including
coral and fleshy macroalgae cover, following a modification
of the method described by Aronson et al. (1994). The guides
of Humann and Deloach (2013) and Vargas-Hernandez et al.
(2017) were used to identify hard coral species.

The biomasses of herbivorous fishes from the families
Scaridae and Acanthuridae and commercial fishes from the
families Lutjanidae and Serranidae were calculated using the
length—weight relationship equation (Equation 1):

W=ald (1)

where W is the total weight of the fish, L is the total length,
a is the coefficient scale, and b is the parameter determining
fish body shape (Kuriakose 2014). The parameters ¢ and b
were obtained from FishBase (Froese and Pauly 2023).

Reef health index (RHI)

Finally, we estimated the RHI, which considers
4 indicators: live hard coral cover, fleshy macroalgae cover,
herbivorous fish biomass, and commercial fish biomass (HRI
2012; McField et al. 2022, 2024). Reef-building hard corals
were considered for the live coral cover. This is an important
indicator since these corals are responsible for the structural
complexity of reefs, fish abundance, and overall diversity in
reef ecosystems (Graham and Nash 2013).

Large, soft algae, such as species from the genera Dictyota,
Lobophora, Halimeda, and Sargassum, were included for the
macroalgae cover (Delgado-Pech 2016). These fleshy mac-
roalgae are associated with coral reef degradation because
they compete with corals for space, negatively impacting
larval settlement and adult coral survival (Adam et al. 2015,
Ceccarelli et al. 2020, Quezada-Pérez et al. 2023).

The RHI considers the families Scaridae and Acanthuridae
for the herbivorous fish biomass because these reduce the
amount of fleshy macroalgae. For commercial fish biomass,
it considers the families Lutjanidae and Serranidae due to
their commercial importance and their trophic role as car-
nivores (McField and Kramer 2007). Indicator ratings and
scores were based on the criteria and thresholds established
by McField et al. (2024) (Table 1) for the MAR. This stan-
dardized assessment allowed us to evaluate the health status
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of the SGM and MC and understand the performance of these
criteria in the SGM.

The average value of the indicators was converted to an
ordinal scale with values ranging from 1 to 5, resulting in
5 health values: critical (1), poor (2), fair (3), good (4), and
very good (5). The final values of each indicator were aver-
aged to obtain the RHI rating (McField et al. 2022, 2024); the
standard error was then calculated to determine its variation
by region, system, and reef site.

Statistical analysis

To identify interactions or factors with a significant effect
on the community structure of hard corals, a type II permuta-
tional multivariate analysis of variance (PERMANOVA) was
performed with 1,000 permutations (Anderson and Walsh
2013), considering 3 factors: fleshy macroalgae cover, her-
bivorous fish biomass, and commercial fish biomass. Prior
to the analysis, the coral cover matrix was square-root trans-
formed, and the Bray—Curtis similarity index was calculated.
This analysis was performed using the PRIMER statistical
package with PERMANOVA V7 (Clarke and Gorley 2015).

RESuULTS

Southwestern Gulf of Mexico: coral and fleshy macroalgae
cover

Intotal, 26 stony coral species were recorded in the SGM, of
which Siderastrea siderea, Siderastrea radians, Montastraea
cavernosa, Pseudodiploria strigosa, Colpophyllia natans,
Porites colonensis, Orbicella annularis, Orbicella faveolata,
Porites astreoides, and Acropora cervicornis had the highest
cover values. The APSALT had greater coral cover (55.66%)
than the PNSAV (22.14%; Fig. 3). The reefs Tuxpan (68.46%)
and De Enmedio (23.92%) had the highest cover in each
system, respectively (Table 2, Fig. 3).

Fleshy macroalgae cover was higher in the APSALT
(1.68%) than in the PNSAV (1.13%; Fig. 2). The highest
cover was observed in the Enmedio reef (2.73%) in the
APSALT, and Blanca reef (1.86%) in the PNSAV. The lowest
cover was observed in the Tuxpan Reef (0.61%) and Santi-
aguillo Reef (0.42%) for the APSALT and PNSAYV, respec-
tively (Table 2, Fig. 3). It should be noted that macroalgae
cover did not exceed 3% in all SGM reefs.

Southwestern Gulf of Mexico: herbivorous and

commercial fish biomass

In total, 11 herbivorous fish species were recorded in the
SGM. The species Scarus guacamaia, Acanthurus chirurgus,
Scarus iseri, Scarus vetula, and Sparisoma viride had the
highest biomasses, which constituted 91% of the total bio-
mass. The families Acanthuridae and Scaridae had the highest
biomass in the APSALT (3,258.95 g-100 m%; Table 2, Fig. 2).
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Table 1. Criteria and thresholds established for each of the 4 indicators of the reef health index. Values taken
from McField et al. (2024). Coral and fleshy macroalgae cover in percentage and biomass of herbivorous and

commercial fish in grams per 100 m?

Fleshy Herbivorous Commercial
macroalgae fish biomass fish biomass
Score Coral cover (%) cover (%) (g-100 m™) (g:100 m™)
Very good 40 1 3,290 1,620
(5)
Good (4) 20 5 2,740 1,210
Fair (3) 10 12 1,860 800
Poor (2) 5 25 990 390
Critical (1) <5 >25 <990 <390

In this system, the Enmedio Reef (4,916.64 g-100 m2) had
the highest values of this indicator, whereas for the PNSAV
(1,337.62 g-100 m), the Santiaguillo Reef had the highest
values (2,512.18 g-100 m=; Table 2, Fig. 3). It should be
noted that the biomass of scarids exceeded that of acanthurids
in both reefs.

In the SGM, 19 commercially important fish species
were recorded. The species Ocyurus chrysurus, Lutjanus gri-
seus, Epinephelus adscensionis, Cephalopholis cruentata,
Mycteroperca bonaci, Lutjanus cyanopterus, Lutjanus analis,
Lutjanus synagris, and Mycteroperca phenaxhighest had the
highest biomasses, which constituted 90% of the total bio-
mass. The families Lutjanidae and Serranidae had the highest
biomasses in the APSALT (808.59 g-100 m%; Table 2, Fig. 2),
where the Enmedio Reef (944.54 g-100 m™2) had the highest
values for this indicator. For this reef, the biomass of lujanids
was higher than that of serranids. In the case of the PNSAV
(500.66 g-100 m™), the Blanca Reef had the highest values
(666.44 g-100 m=2; Table 2, Fig. 3), with higher biomass of
serranids than of lujanids

Mexican Caribbean: coral and fleshy macroalgae cover

In the MC, 24 species of hard corals were recorded, of
which S. siderea, O. faveolata, P. astreoides, Agaricia
tenuifolia, Agaricia agaricites, Porites porites, Porites
furcata, and Porites divaricata had the highest cover values.
The PNAC showed greater coral cover values (14.96%) com-
pared to the PNAX (6.02%; Fig. 2); the Caracolillo (24.27%)
and Rio Huach (8.85%) reefs had the highest cover values
within these systems, respectively (Table 2, Fig. 3).

Fleshy macroalgae cover was similar in PNAC (37.13%)
and PNAX (37.20%; Fig. 2). The highest cover values were
recorded in the Colombia Somero Reef (55.35%) and in Canal
de Zaragoza (46.03%) for the PNAC and PNAX, respectively

(Table 2, Fig. 3). The lowest cover values were observed in
the Paraiso Norte (24.33%) and Rio Huach (29.76%) reefs for
the PNAC and PNAX, respectively (Table 2, Fig. 3).

of herbivorous and

Mexican Caribbean: biomass

commercial fish

In the MC, 10 herbivorous fish species were recorded.
Sparisoma viride, Sparisoma aurofrenatum, Acanthurus
coeruleus, Sparisoma chrysopterum, S. iseri, and S. vetula
contributed the highest biomasses, which represented
90% of the total biomass. The families Acanthuridae and
Scaridae had the highest biomass values in the PNAC
(1,073.85 g-100 m%; Table 2, Fig. 2). At PNAC, Paraiso Norte
Reef had the highest biomass value (1,123.00 g-100 m?); at
PNAX (851.41 g-100 m2), La Poza Reef had the highest
values (1,134.54 g-100 m2; Table 2, Fig. 3). In both reefs, the
biomass of scarids exceeded that of acanthurids.

In the MC, 13 commercially important fish species were
recorded. Lutjanus griseus, Lutjanus apodus, O. chrysurus,
Lutjanus mahogoni, L. synagris, and Lutjanus jocu contrib-
uted the highest biomasses, which represented 90% of the
total biomass. The families Lutjanidae and Serranidae had
the highest biomass values in the PNAC (2,709.45 g-100 m™;
Table 2, Fig. 2). The Colombia Somero Reef in the PNAC
had the highest biomass (4,507.27 g-100 m2); in the PNAX
(1,108.91 g-100 m2), La Poza Reef had the highest values
(2,340.58 g- 100 m2; Table 2, Fig. 3). The biomass of lujanids
exceeded that of serranids in both reefs.

Reef health index (RHI)

Overall, the SGM obtained a health rating of good (3.50).
The APSALT had a RHI rating of 4.25, which classified its
condition as good, as observed for the Tuxpan Reef (3.50).
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Figure 2. Values obtained for each indicator and reef health index (RHI) score for each system. Average cover of hard corals (a); average cover
of fleshy macroalgae (b); average biomass of herbivorous fish (¢); average biomass of commercial fish (d); RHI score (e). Lobos-Tuxpan
Reef System Flora and Fauna Protection Area (APSALT, for its acronym in Spanish); Sistema Arrecifal Veracruzano National Park (PNSAYV,
for its acronym in Spanish); Arrecifes de Cozumel National Park (PNAC, for its acronym in Spanish); Arrecifes de Xcalak National Park
(PNAX, for its acronym in Spanish).The green, yellow, and red colors indicate the RHI qualitative rating: green (good), yellow (fair), and
red (critical). The gray tones represent the reef systems. The error bars correspond to the standard deviation values.
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Table 2. Reef Health Index (RHI) results for each region, system, and reef. The 5 ratings are indicated by the following colors: blue (very good),
green (good), yellow (fair), orange (poor), and red (critical). Southwest Gulf of Mexico (SGM); Lobos-Tuxpan Reef System Flora and Fauna
Protection Area (APSALT, for its acronym in Spanish); Sistema Arrecifal Veracruzano National Park (PNSAYV, for its acronym in Spanish) ;
Mexican Caribbean (MC); Arrecifes de Cozumel National Park (PNAC, for its acronym in Spanish); Arrecifes de Xcalak National Park (PNAX,

for its acronym in Spanish).

Region/System/ Fleshy Herbivorous fish Commercial fish
Reef RHI Corals (%) macroalgae (%) (g'100 m) (g-100 m™2)
SGM 3.50e 38.90e 1.41e 2,298.28 654.62
APSALT 4.25e 55.66¢ 1.68e 3,258.95¢ 808.59
Tuxpan 3.50e 68.46° 0.61e 1,601.25 672.64
Enmedio 4.50° 42.85¢ 2.73¢ 4,916.64° 944.54
PNSAV 3.25 22.14 1.13e 1,337.62 500.66
Blanca 3.25 22.02¢ 1.86° 383.32e 666.44
De Enmedio 3.00 23.92e 1.11e 1,117.36 266.26°
Santiaguillo 3.50e 20.48¢ 0.42¢ 2,512.18 569.28
CM 2.50 10.49 37.16e 962.00e 1,908.50 «
PNAC 2.75 14.96 37.13e 1,073.85 2,709.45
Caracolillo 2.50 24.27e 31.72e 1,023.94 1,043.08
Colombia Somero 2.75 16.00 55.35¢e 1,074.62 4,507.27¢
Paraiso Norte 2.25 4.60e 24.33e 1,123.00 2,578.01¢
PNAX 1.50e 6.02¢ 37.20e 851.41e 1,108.91
La Poza 2.25 443 35.79e 1,134.54 2,340.58 ¢
Rio Huach 1.25¢ 8.85 29.76e 721.32¢ 196.71¢
g:;‘;gloiz 1.25¢ 478+ 46.03e 698.37¢ 789.45

®very good, ®good, “ fair, ®poor, ®critical.

The Enmedio Reef was the only one with a health status clas-
sified as very good (4.50; Table 2). The PNSAYV, with an RHI
rating of 3.25, was classified as having fair health. In this
system, only Santiaguillo Reef (3.50) showed a health status
classified as good, whereas the statuses of the Blanca (3.25)
and De Enmedio reefs (3.00) were classified as fair (Table 2).

In contrast, the MC system had a health status classified
as poor (2.50), lower than the SGM system. The PNAC had
an RHI score of 2.75, a condition classified as fair. In this
system, the conditions of the Caracolillo (2.50) and Paraiso
Norte (2.25) reefs were classified as poor, whereas the con-
dition of Colombia Somero (2.75) was classified as fair. The
PNAX showed a critical health condition (1.50). In addition,
in this system, the Rio Huach (1.25) and Canal de Zaragoza
(1.25) reefs had conditions classified as critical. On the other

hand, La Poza showed a condition classified as poor (2.25;
Table 2).

Regarding RHI indicators, the value of coral cover for
the SGM was good (38.90%). In this context, the very good
cover values of the APSALT and Tuxpan reefs were notable
(55.66% and 68.46%, respectively). In the MC, cover was fair
(10.49%; Fig. 4); however, in this region, Caracolillo Reef was
distinguished by a cover value classified as good (24.27%). It
is worth noting that the cover value for PNAX (6.02%) was
classified as critical, as were the values for La Poza (4.43%)
and Canal de Zaragoza (4.78%) within this system. For all
SGM reefs, macroalgae cover values were very good and did
not exceed 3% in all cases. Conversely, for MC reefs, the mac-
roalgae cover values were critical, with values greater than
24% in all cases. Particularly in this region, on the Colombia
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Somero Reef, macroalgae cover exceeded 50% (Table 2),
which indicated a reef dominated by fleshy macroalgae.

For the SGM, the biomass of herbivorous fish was fair
(2,298.28 g-100 m2), and only the Blanca Reef showed a crit-
ical state (383.32 g-100 m2). For the MC, the biomass of her-
bivorous fish was critical (962 g-100 m2), since all reefs had
poor biomass values, except for Rio Huach (721.32 g- 100 m?)
and Canal de Zaragoza (698.37 g-100 m2), which had critical
biomass values (Table 2).

For the MC, the value of commercial fish biomass was
very good (1,908.50 g-100 m?), with the Colombia Somero,
Paraiso Norte, and La Poza reefs standing out with very
good values. Rio Huach was the only reef with critical bio-
mass values (196.71 g-100 m2). On the other hand, the SGM
had a rating considered poor (654.62 g-100 m?), with the
De Enmedio Reef being the only one with a critical biomass
value (266.26 g-100 m™2).

The type I PERMANOVA showed that only the fleshy
macroalgae cover factor was significantly related to coral
community structure (P < 0.05, P = 0.001; Table 3), indi-
cating that areas with low fleshy macroalgae cover (RHI =
good and very good) differ significantly from those with high
macroalgae cover (RHI = poor and critical) in terms of coral
community structure. Finally, the interactions between the
3 factors (fleshy macroalgae cover, herbivorous fish biomass,
and commercial fish biomass) were not significant (P > 0.05).

Di1ScusSION

The health status of SGM reefs, assessed using the RHI,
showed an average coral cover of 38.90% (Table 2). This
indicator could reflect the interaction of processes that have
occurred for approximately 220 million years (Tunnell et
al. 2007), along with anthropogenic alterations that have
affected the resilience and adaptive capacity of corals in this
region. The importance and coral development of these reefs
has been highlighted in previous studies (Horta-Puga 2003,
Escobar-Vasquez and Chavez 2012), suggesting that, despite
environmental pressures, these ecosystems have maintained a
significant size and cover (Gil-Agudelo et al. 2020).

The SGM reefs are located on a terrigenous continental
shelf (Morelock and Koenig 1967, Tunnell et al. 2007) and
are exposed to turbid conditions (Tunnell 1988, 1992) due
to their proximity to the coast (Horta-Puga et al. 2015). This
turbidity results from the discharge of siliciclastic sediments
transported by numerous hydrological basins during the rainy
season (Carriquiry and Horta-Puga 2010, Mateos-Jasso et al.
2012, CONABIO 2013) and the resuspension of sediments
generated by cold fronts (Avendafio-Alvarez et al. 2017).
Despite these adverse conditions, SGM reefs have demon-
strated a remarkable capacity for adaptation across geological
scales (Roche et al. 2018, Dee et al. 2019).

In Singapore, for example, reefs that persist in disturbed,
urbanized environments and chronic turbidity have been
observed to transition to more tolerant species to withstand
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current and future disturbances (Januchowski-Hartley et al.
2020).

Furthermore, coral reefs in environments with natural tur-
bidity tend to be more resilient than those with anthropogenic
turbidity because the latter have only had short periods to
acclimate and adapt (Roche et al. 2018). For example, in the
Great Barrier Reef in Australia, reefs such as Middle Reef
have been able to survive and maintain high growth rates
over the past 9,000 years, despite experiencing high terrig-
enous sedimentation. The authors suggest that this rapid reef
growth is linked to post-death coral skeleton preservation,
favored by high levels of terrigenous sediment. This terrig-
enous sediment tends to coat the skeletons, protecting them
from bioerosion and wave action for longer, keeping them
intact and, therefore, converting them into stable substrates
for new corals to establish. Over time, this process has con-
tributed to reef growth despite adverse turbidity conditions
(Perry et al. 2012).

However, although some reef systems, such as those in
the SGM, can persist in high turbidity environments, it is
important to understand their tolerance limits to sedimenta-
tion (Browne et al. 2012). This is especially relevant given
that sediments in these reefs come from both natural sources
and anthropogenic activities (Tuttle and Donahue 2022).

The PNSAV is located opposite the city of Veracruz,
one of the oldest cities in the Americas, founded in 1519
(Melgarejo-Vivanco 1960). Since then, these reefs have been
exploited to extract coral to use in construction (Heilprin
1890, Tunnell et al. 2007, Gil-Agudelo et al. 2020) and have
been exposed to the impact of port activities (Horta-Puga
and Tello-Musi 2009, Horta-Puga et al. 2015, Argiielles et al.
2019). These conditions have subjected the corals to a conti-
nuous state of stress for approximately 500 years.

Similarly, APSALT reefs, off the cities of Tuxpan and
Tamiahua, have been subjected to pressure since the cre-
ation of the port of Tuxpan in 1580 and have been affected
by port activities and fuel spills (Ortiz-Lozano et al. 2013,
Lozano-Nathal and Ponce-Jiménez 2018). Thus, the natural
events that characterize this area, along with the impacts
endured by the APSALT and PNSAYV reef systems progres-
sively and throughout history, could be favoring the adaptive
potential of these reef systems.

The upwelling of oceanic water from the Campeche
cyclonic gyre is another natural factor that could be contrib-
uting to the good health of SGM reefs (Salas-Pérez et al. 2012,
Guerrero et al. 2020); this upwelling limits coral bleaching
by bringing in cool waters (<22 °C) and favors coral develop-
ment with the contribution of nitrogen used by zooxanthellae
(Carrasco 2022, Salas-Monreal et al. 2022).

In addition, natural temperature variability in the SGM,
where waters cool in the winter (Escobar-Vésquez and
Chavez 2012), could increase reef resilience, as reef areas
with greater water temperature variability have been shown
to be more resistant to thermal stress and bleaching (Safaie et
al. 2018, Lachs et al. 2023). Furthermore, reefs in the Gulf of
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Figure 3. Values obtained for each indicator and RHI score for each reef. Average cover of hard corals (a); average cover of fleshy macro-
algae (b); average biomass of herbivorous fish (¢); average biomass of commercial fish (d); Reef Health Index (RHI) score (e). Tuxpan (Tx);
Enmedio (EM); Blanca (BL); De Enmedio (DE); Santiaguillo (ST); Caracolillo (CC); Colombia Somero (CS); Paraiso Norte (PN); La Poza
(LP); Rio Huach (RH); Canal de Zaragoza (CZ). The green, yellow, and red colors indicate the qualitative RHI score: green (good), yellow
(fair), and red (critical). The gray tones represent the reef systems. The error bars correspond to the standard deviation values.

Mexico have experienced thermal stress since 1878 (Kuffner
et al. 2015), and the siliciclastic nature of the gulf may make
corals more resilient than those found in carbonate envi-
ronments (Dee et al. 2019). These factors combined could
explain the high resistance and resilience of the reefs in the
region, especially in species such as C. natans, M. cavernosa,
and P. strigosa, which tolerate high sedimentation rates
(Horta-Puga et al. 2015) and, in fact, had some of the highest
cover values in the region.

In the Yucatan Peninsula, MC reefs developed in oligotro-
phic waters on a carbonate platform, with little influence of
fluvial currents due to the karst nature of the region (Weidie
1985, Merino et al. 1990, Merino 1997, Tunnell et al. 2007).

The high permeability of the soil enables water to infiltrate
into aquifers, where soils act as natural filters for contami-
nants (Carballo-Para 2016, Estrada-Medina et al. 2019).
Historically, the region has not shown high sedimentation
rates (Horta-Puga et al. 2019). However, in recent decades,
there has been an increase in nutrients and sediments associ-
ated with human activities (Arias-Gonzalez et al. 2017, Rogers
and Ramos-Scharron 2022), and, recently, the waters have
come to be considered non-oligotrophic (Velazquez-Ochoa
and Enriquez 2023). Thus, it is likely that, due to the lack of
natural sedimentation throughout its history, the hard coral
species of the MC have not had sufficient time to adapt to the
effects of anthropogenic sedimentation (Roche et al. 2018).
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Figure 4. Values obtained for each indicator and RHI score for each region. Average cover of hard corals (a); average cover of fleshy macro-
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(poor). The gray tones represent the regions. The error bars correspond to the standard deviation values.

The state of Quintana Roo is still young (founded in 1974;
State Congress 2001); however, coastal development rates in
the MC over the past 14 years have been very high (Arias-
Gonzalez et al. 2017), increasing from 88,000 inhabitants
in 1975 to 1.5 million in 2015 (Suchley and Alvarez-Filip
2018). This could be associated with a more intense and
abrupt impact on the reefs of the MC compared to those of the
SGM; this impact could have negatively affected the adaptive
capacity of coral species (Roche et al. 2018) and the resilience
of these ecosystems (Sandin et al. 2008, Graham et al. 2013,
Anthony et al. 2015).

In MC reefs, an accelerated phase shift has been doc-
umented, driven by eutrophication and sedimentation as a
result of inadequate wastewater treatment (Martinez-Rendis
et al. 2015, Suchley et al. 2016, Arias-Gonzalez et al. 2017,
Rioja-Nieto and Alvarez-Filip 2019, Randazzo-Eisemann et
al. 2021). These impacts are closely linked to coastal develop-
ment (Arias-Gonzélez et al. 2017, Suchley and Alvarez-Filip
2018, Rioja-Nieto and Alvarez-Filip 2019).

The data generated confirmed that the community struc-
ture of hard corals is determined by the presence of fleshy
macroalgae (Table 3). Although macroalgae are primary
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producers and a fundamental part of food chains (Pereira
2021), high covers can negatively affect reefs by competing
with corals for space, inhibiting larval settlement and hin-
dering their recovery (Diaz-Pulido et al. 2010). This high-
lights the importance of considering this indicator in reef
health assessments in the region.

This could be associated with the shift in reef-building
species in the MC, from dominant genera, such as Orbicella,
Montastraea, and Acropora, to opportunistic and more tol-
erant genera, such as Porites and Agaricia (Fig. 5), which also
contribute very little to calcium carbonate accumulation and
reef structural complexity. Furthermore, this trend has consis-
tently been observed across other Caribbean reefs (Barranco
et al. 2016, Caballero-Aragon et al. 2020b, Dahlgren et al.
2020, Lima et al. 2022, McField et al. 2022, CCMI 2023,
Eagleson et al. 2023).

These results are concerning because it is important
not only to conserve high coral cover but also to main-
tain cover of reef-building corals (e.g., Acropora spp.,
Orbicella spp.; Alvarez-Filip et al. 2013, Gonzalez-Barrios
2019, Guendulain-Garcia et al. 2024). The loss of struc-
tural complexity affects the three-dimensional structure
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Tabla 3. Reef community structure. Result summary of the 3-factor Type Il PERMANOVA.

Factor Pseudo-F P(perm)
Fleshy macroalgae cover 7.1975 0.001
Eiﬁ;vs‘;m“s fish 1.0246 0.455
Commercial fish biomass 1.3092 0.185

"Results that showed a significant relationship (P < 0.05) are indicated in bold.

of reefs and impacts their function as coastal protectors, as
they lose the capacity to reduce wave energy (Carlot et al.
2023). This increases the risk of coastal erosion and affects
nearby ecosystems, such as mangroves and seagrass beds
(Zepeda-Centeno et al. 2018).

Low cover values of fleshy macroalgae (1.41%) indi-
cated that the status for this indicator in the SGM was very
good (Table 2), which positively influenced the RHI score
for the region (3.50). This value contrasts with that of the
MC, where the status for this indicator was critical (Table 2).
In the PNSAYV, the benthic community is dominated by turf
algae, whereas fleshy macroalgae have a lower presence
(Horta-Puga et al. 2020). This suggests that low cover values
of fleshy macroalgae in SGM reefs do not necessarily imply
high herbivore biomasses, but rather a possible association
with the dominance of turf algae, as has been observed in this
region (Dee et al. 2019).

According to Horta-Puga et al. (2020), it is not possible to
establish that the reefs of the PNSAV are in a stable state as in
the MC, but rather in an unstable or intermediate state. This
is because a stable state is characterized by changes in key
elements of the system that result in a dramatic and lasting
impact on species composition and ecosystem functioning
(Simenstad et al. 1978), whereas an unstable or intermediate
state is characterized by high spatial and temporal variability
of the key elements, and not necessarily a dominance of any
of them (Bellwood and Fulton 2008, Goatley et al. 2016). In
coral reefs, there are 2 stable states, one dominated by corals
and the other dominated by fleshy macroalgae (Mumby and
Steneck 2008, Mumby 2009).

A shift from a steady state of a coral reef to a stable state
dominated by fleshy macroalgae has already been reported
in the MC (Randazzo-Eisemann et al. 2021). Likewise, such
events have been reported in other ecosystems, such as the
shift from a steady state of macroalgae forests to rocky, sterile,
and low-biodiversity marine environments, as a consequence
of high urchin abundances (Ling et al. 2015, McPherson et
al. 2021, Eger et al. 2024). Nevertheless, unstable or interme-
diate states have also been recorded in coral reefs, where other
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benthic organisms, in addition to fleshy macroalgae, become
dominant (e.g., sponges, gorgonians, turf algae; Norstrom et
al. 2009, Graham et al. 2014) in response to constant anthro-
pogenic disturbances (Norstrom et al. 2009). These inter-
mediate states tend to become stable when large-scale coral
mortality occurs, creating positive feedback loops, which
amplify and reinforce the process, preventing the reef from
recovering to its original state (Norstrom et al. 2009, Van de
Leemput et al. 2016).

Therefore, PNSAV reefs could likely be heading towards
an unstable or intermediate state dominated by turf algae
(Horta-Puga et al. 2020). This could also be the case for
APSALT reefs, as an increase in turf algae cover has also
been reported in the area (Escobar-Vasques and Chavez 2012,
Cancino-Guzman 2018, Gonzalez-Gandara and Salas-Pérez
2019), which would consequently have implications for the
coral cover of the reefs.

Although not reflected in our reported results, turf algae
had higher cover values than fleshy macroalgae during the
SGM frame analysis (SGM: 17.81%; APSALT: 14.38%;
PNSAV: 20.11%; Enmedio: 14.90%; Tuxpan: 13.85%; Blanca:
27.70%; De Enmedio: 19.50%; Santiaguillo: 13.17%). This
could be encouraging for the reefs of this region, since coral
recruits have been shown to establish and grow, albeit slowly,
in dense mats of turf algae (Birrell et al. 2005, 2008). Con-
versely, this process of coral recruit settlement does not occur
when fleshy macroalgae dominate the seafloor.

Thus, if recruitment continues, corals could surpass turf
algae (Birrell et al. 2005, 2008; Swierts and Vermeij 2016).
However, it is important to note that turf algae can also be
displaced by fleshy macroalgae (Fung et al. 2011), where
herbivory by fish and sea urchins would play an important
role in the competition between these 2 algal groups (Arias-
Gonzalez et al. 2017).

These results suggest that special attention should be paid
to the cover of both algal groups in the SGM and that they
should be monitored because the current state could take
2 paths: (1) an ideal state, with reefs dominated by corals, or
(2) a less desirable scenario, with a dominance of turf algae,


http://www.cienciasmarinas.com.mx/index.php/cmarinas

Ciencias Marinas, Vol. 50(1B), 3501

iliw

25 ]

20

Coral cover (%)

—
=)
|

W<O

SGM
MC

Oom

L.

Colpophyllia Orbicella Pseudodiploria

Porites

Agaricia Montastraea Siderastrea Acropora

Genus
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which would imply a phase shift, similar to that experienced
in the MC with fleshy macroalgae. This is especially relevant
considering that some authors, such as Harris et al. (2015),
have pointed out that an increase in the abundance of turf
algae is expected in the future, given that they can survive in
conditions unfavorable to corals.

The better health status of the APSALT (good) compared
to the PNSAV (fair) (Table 2) coincides with the idea that the
reefs in northern Veracruz (APSALT) are in better condition
than those in the south (PNSAV; Chavez et al. 2007). None-
theless, attention should be directed toward fish communities,
especially in PNSAV and the Tuxpan reef of APSALT, whose
ratings ranged from critical to fair (Table 2).

This could reflect the pressure of artisanal fishing on the
coast of Veracruz (Ortiz-Lozano et al. 2019). Another factor
to consider is that only reefs from the southern group were
sampled in both systems, which could have influenced the
results, as the conservation status of reefs of the southern
group of the PNSAV has been reported to be better than that
of the northern group (Chavez et al. 2007).

Regarding the scores obtained, the work by Simoes et al.
(2020) classifies the health status of the SGM, APSALT, and
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PNSAV as fair, using different indicators and criteria than
those used for the RHI. Nevertheless, we can compare these
results with those obtained in the present study (Table 2),
where the scores were good for the SGM and APSALT, and
fair for the PNSAV.

On the other hand, Pérez-Espaiia et al. (2021) used the RHI
to assess the health status of 15 reefs in the PNSAV. Although
the individual scores for each indicator differed from those
obtained in this study, probably due to an adjustment made by
these authors to the RHI criteria based on recent studies in the
PNSAV (last 10 years), the average score obtained (fair) coin-
cides with that of this study. In the present study, we did not
use the adjusted criteria of Pérez-Espafia et al. (2021) because
we selected the RHI criteria established by the HRI for a stan-
dardized assessment. It is important to note that there are no
previous studies for the APSALT based on the RHI, which
limits the comparison with the results presented here.

The PNAC showed the best health status within the MC
(fair), which coincides with that reported by McField et al.
(2022), where the PNAC was identified as one of the best
conserved sites in the MC and MAR, with 35% of its reefs
under full protection, higher than anywhere else in the region.
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Previous studies in the PNAC that use the RHI also indicate
that the biomasses of herbivorous and commercial fish are in
good health (Pérez-Cervantes et al. 2017); these values are the
highest in the MAR (McField et al. 2022).

The improved health status of the PNAC could be the result
of the conservation strategy implemented by the Comision
Nacional de Areas Naturales Protegidas (CONANP) in 2019,
which included the temporary suspension of tourist activi-
ties in certain areas of the National Park to promote recovery
from the impact of the white syndrome (CONANP 2019).
Furthermore, the circulation of currents in the area could
mitigate the effects of sedimentation and continental debris
(Contreras-Silva et al. 2020).

The corals of the PNAC are considered among the most
resilient in the MC, with high coral cover (Barranco et al.
2016, Contreras-Silva et al. 2020), where the leeward reefs
show greater development because they are protected from
winds and storms (Fenner 1988). In addition, the critical state
for the PNAX is consistent with that observed by the HRI
(2012) and, more recently, by Diaz-Pérez et al. (2016), who
reported highly deteriorated and critical conditions for the
PNAX.

This is likely due to local anthropogenic pressure, derived
from tourism and agriculture, and inadequate reef manage-
ment in the southern part of the MC (Contreras-Silva et al.
2020). Therefore, our results reflect the intensity and pres-
sure exerted by the rapid coastal development of the last
14 years in the MC, where PNAC reefs still present the best
conditions.

The SGM and PNAC reefs are the most resilient in the
MC (Contreras-Silva et al. 2020) and could act as resilience
hotspots, that is, areas where corals have demonstrated a
greater capacity to resist and recover from environmental
and anthropogenic disturbances, such as climate change and
human activity (Nystrom et al. 2008; McClanahan et al. 2012;
McLeod et al. 2019, 2021). These areas are characterized by
their ecological stability and their potential to serve as natural
sanctuary areas, making them key sites for reef conservation
in the region (McClanahan et al. 2014, McLeod et al. 2019,
Bang et al. 2021, Moritsch and Foley 2023). However, the
speed of climate change is likely to exceed the speed at which
corals can adapt (Frieler et al. 2013).

Therefore, further studies are needed for SGM reefs to
help expand on and understand the ecological and environ-
mental processes that make the persistence of these reefs
possible in an environment of high sedimentation and tur-
bidity, as suggested by Salas-Pérez and Granados-Barba
(2008) for the PNSAV. In addition, their tolerance thresholds
need to be determined because the future trend is towards
greater deposition of anthropogenic sediments and thermal
stress, which will also be catastrophic for the less resilient
reefs of the MC.

Finally, the biomass results should be interpreted with
caution because samplings were conducted during different
periods in the 2 regions, and fish abundance may fluctuate
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seasonally. In addition, it is important to consider that com-
mercial fish species tend to be highly mobile, traveling
long distances, so sampling for this indicator should be
conducted more frequently to obtain results representative
of the current status of this indicator (McField and Kramer
2007).

The RHI has proven to be key to understanding reef condi-
tions at the regional level, such as the MAR. However, to gain
more detailed knowledge of other regions, it is essential to
consider other local indicators, such as water quality, as sug-
gested by Horta-Puga and Tello Musi (2009) and Simoes et al.
(2020) for the Gulf of Mexico, because environmental condi-
tions, such as water quality, have been observed to influence
the cover of algal groups (Horta-Puga et al. 2020).

It is essential to implement an ongoing reef health assess-
ment program for reefs in the SGM and MC. Periodic assess-
ments facilitate comparing trends over time to provide a true
measure of reef health. These assessments, along with resil-
ience-based management strategies (McLeod et al. 2019, Obura
et al. 2019, Vardi 2021, Moritsch and Foley 2023), will be key
to reef management and conservation in the Mexican Atlantic.

CONCLUSIONS

The results obtained using the RHI led to the following
key conclusions: (a) reefs in the SGM had greater coral cover
than those in the MC; (b) a phase shift is already evident in
the MC, whereas in the SGM, the low cover of fleshy mac-
roalgae would indicate that it is still in an intermediate stage;
(c) the high cover of fleshy macroalgae in the MC negatively
affected its health status; (d) the lower biomasses of herbivo-
rous fish reported in the MC could corroborate their relation-
ship with the high macroalgae cover observed; (e) the higher
biomasses of commercial fish recorded in the MC, particu-
larly in the PNAC, suggest the effectiveness and importance
of conservation strategies; and finally, (f) reefs in the SGM
had better health conditions than those in the MC, which
could be related to the natural and anthropogenic history of
both regions.

English translation by Claudia Michel-Villalobos.
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