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Past exploitation of California sea lions did not lead to a genetic bottleneck in
the Gulf of California

La explotacion histérica del lobo marino de California no causé un cuello de
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ABSTRACT. Human exploitation can lead to genetic bottlenecks associated with reduced genetic variability and lower fitness. The population
of California sea lions (Zalophus californianus) in the Gulf of California, Mexico, was hunted during the 19th and 20th centuries, potentially
leading to a genetic bottleneck; however, even exploitation that leads to low population sizes does not always cause genetic bottlenecks.
Understanding the genetic consequences of past sea lion hunts is critical to the conservation of the Gulf of California sea lion population, which
is currently declining and is genetically distinct from other populations. We used available data from 10 amplified polymorphic microsatellite
loci in 355 individuals from six Mexican colonies. Microsatellite data were analyzed using diverse approaches (BOTTLENECK and M-ratio)
to determine if a genetic bottleneck had occurred. Our results indicate that human exploitation did not cause a genetic bottleneck in the sea lion
population of the Gulf of California. Simulation analyses revealed that a reduction in genetic variability would have been detected if fewer than
100 individuals had remained after exploitation. We conclude that past exploitation was not as severe as previously thought and did not cause a
genetic bottleneck in the Gulf of California sea lion population. Nevertheless, historical hunts specifically targeted adult males and this sex-
biased exploitation may have influenced the population dynamics and overall fitness.
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RESUMEN. La explotacion humana puede causar cuellos de botella genéticos asociados con una variabilidad genética reducida y menor
aptitud. La poblacion del lobo marino de California (Zalophus californianus) en el Golfo de California, México, fue objeto de una explotacion
prolongada durante los siglos XIX y XX que pudo haber causado un cuello de botella genético. Sin embargo, la explotacion que deriva tamaiios
poblacionales bajos no siempre causa cuellos de botella genéticos. El conocimiento de las consecuencias genéticas de la caza del lobo marino
de California es critico para la conservacion de la poblacion del Golfo de California, que estd en declive y es genéticamente distinta de otras
poblaciones. En este estudio usamos una base de datos de 10 marcadores polimodrficos de microsatélite amplificados en 355 individuos
pertenecientes a seis colonias mexicanas. Estos datos fueron analizados con diversos métodos (BOTTLENECK y razéon M) para determinar si
ocurrié un cuello de botella genético. Nuestros resultados indican que la explotacion historica del lobo marino no causé un cuello de botella
genético en la poblacion del Golfo de California; sin embargo, las simulaciones sugieren que si la poblacion hubiese sido reducida a menos de
100 individuos si hubiésemos detectado una reduccion de la variabilidad genética. Con base en estos resultados concluimos que la explotacion
histdrica de esta poblacion no fue tan intensa como se pensaba previamente y, por tanto, no causé un cuello de botella genético. No obstante, la
explotacion se concentrd en machos adultos y este sesgo podria haber afectado la dinamica poblacional de estas colonias y su aptitud general.

Palabras clave: variabilidad genética, explotacion sesgada hacia machos, Pinnipedia, Golfo de California.

INTRODUCTION INTRODUCCION

Populations often experience fluctuations in size due to Algunas poblaciones experimentan fluctuaciones en su
natural or human-induced factors that can lead to bottlenecks, tamafio debido a factores naturales o antropogénicos que
periods in which only a few individuals survive. Bottlenecks pueden causar cuellos de botella, periodos en los cuales solo
that reduce the effective population size can have important unos pocos individuos sobreviven. Los cuellos de botella que
demographic and genetic consequences, including an reducen el tamafio efectivo de la poblacion pueden tener
increase in demographic stochasticity and inbreeding rates, importantes consecuencias demograficas y genéticas,
as well as a reduction in genetic variation and individual incluyendo un incremento en la estocasticidad demografica
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fitness (Hedrick 1995, Weber et al. 2004). For example, the
bottlenecked population of the Florida panther, Puma
concolor coryi, exhibits reduced fitness caused by chryp-
torchidism (undescended testicles), poor sperm quality, and
tail deformities (Roelke et al. 1993). Similarly, laboratory
studies on mosquitofish, Gambusia affinis, have shown that
bottlenecks reduce population growth and increase the risk of
extinction (Leberg and Firmin 2008). Even populations that
have recovered from a bottleneck and are seemingly viable
can manifest traits that affect individual fitness, such as skull
asymmetry, which could increase vulnerability to extinction
(Hoelzel 1999).

The California sea lion, Zalophus californianus, is an
abundant and widespread otariid that ranges from the Gulf of
California to Alaskan waters (Maniscalco et al. 2004, Szteren
et al. 2006). Although precise data are not available, the
historical records indicate that this species was hunted in
the Gulf of California (hereafter GC) from the 19th to the
mid-20th century (Lluch-Belda 1969, Zavala-Gonzalez and
Mellink 2000, Bahre and Bourillén 2002). Hunting of this
historically small population (<40,000 individuals, Szteren
et al. 2006) could have resulted in a loss of genetic diversity,
leading to a bottleneck. Although concerns regarding this
potential negative effect of past exploitation were already
raised four decades ago by Lluch-Belda (1969), to date no
studies have analyzed whether past human exploitation did in
fact lead to a genetic bottleneck. Understanding if past
exploitation reduced genetic variability in the GC sea lion
population is important because it is genetically distinct from
other populations (Gonzalez-Suarez et al. 2009) and is
declining (Gonzalez-Suarez et al. 2006, Szteren et al. 2006,
Ward et al. 2010).

While sea lion populations have shown a steady increase
in California waters in recent years (Carretta et al. 2007), the
population in the GC has declined by >20% in the last decade
(Szteren et al. 2006). In particular, colonies in the Midriff
area, which were more heavily hunted in the past, have the
faster rates of decline (Szteren et al. 2006, Ward et al. 2010).
Understanding the genetic effects of past exploitation may
help explain the contrasting population trends exhibited
by California sea lions in the GC and along the coast of
California. Furthermore, human exploitation in the GC
focused on adult males because of their higher fat content and
the demand for “trimmings” or sexual organs by the Chinese
market (Lluch-Belda 1969). Because California sea lion
populations are naturally female-biased, with males exhibi-
ting higher mortality rates at almost any age (Hernandez-
Camacho et al. 2008b), the available number of breeding
males is generally small compared with breeding females.
Therefore, a reduction in male abundance due to hunting
could have significantly affected the genetic variability and
population dynamics as observed in other species (Harris
et al. 2002, Milner-Gulland et al. 2003). In light of these
concerns, it is important to study whether past exploitation
led to a genetic bottleneck in the GC sea lion population.
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y las tasas de endogamia, asi como una reduccion en la
variacion genética y la aptitud (fitness) individual (Hedrick
1995, Weber et al. 2004). Por ejemplo, la poblacion de la
pantera de Florida (Puma concolor coryi), sometida a un
cuello de botella, muestra una menor aptitud causada por el
criptorquidismo (testiculos no descendidos), la baja calidad
del esperma y deformidades de la cola (Roelke et al. 1993).
Asimismo, estudios de laboratorio del pez mosquito,
Gambusia affinis, han indicado que los cuellos de botella
reducen el crecimiento de la poblacion y aumentan el peligro
de extincion (Leberg y Firmin 2008). Aun las poblaciones
que se han recuperado de un cuello de botella y que aparente-
mente son viables pueden manifestar caracteristicas que
afectan la aptitud individual, tal como la asimetria craneal,
que podria incrementar la vulnerabilidad a la extincion
(Hoelzel 1999).

El lobo marino de California, Zalophus californianus, es
un otarido abundante con amplia distribucion desde el Golfo
de California hasta Alaska (Maniscalco et al. 2004, Szteren
et al. 2006). Aunque se carecen de datos precisos, los regis-
tros historicos indican que esta especie fue objeto de caza en
el Golfo de California (de aqui en adelante GC) desde el siglo
XIX y hasta mediados del siglo XX (Lluch-Belda 1969,
Zavala-Gonzalez y Mellink 2000, Bahre y Bourillon 2002).
La explotacion de esta poblacion, histéricamente pequefia
(<40,000 individuos, Szteren et al. 2006), podria haber resul-
tado en una pérdida de diversidad genética, causando un
cuello de botella. Hace cuatro décadas Lluch-Belda (1969)
expreso inquietudes sobre el efecto potencialmente negativo
de esta caceria, pero a la fecha no se han realizado estudios
para determinar si la explotacion humana en realidad caus6
un cuello de botella genético. Es importante determinar si la
explotacion historica redujo la variabilidad en la poblacion
de lobos marinos del GC ya que es genéticamente distinta a
otras poblaciones (Gonzalez-Suarez et al. 2009) y se encuen-
tra en declive (Gonzalez-Suarez et al. 2006, Szteren et al.
2006, Ward et al. 2010).

A pesar de que en afios recientes las poblaciones de lobos
marinos han mostrado un incremento constante en aguas
californianas (Carretta et al. 2007), la poblacion del GC ha
disminuido en >20% en la ultima década (Szteren et al.
2006). En particular, las colonias de la zona de las islas
grandes, que fueron sujetas a una mayor explotacion en el
pasado, presentan las tasas mas rapidas de declive (Szteren
et al. 2006, Ward et al. 2010). El conocimiento de las conse-
cuencias genéticas de la explotacion histdrica podria explicar
las diferentes tendencias poblacionales del lobo marino de
California en el GC y en la costa de California. Ademas, la
explotacion humana en el GC se enfoc6 en machos adultos
debido a su mayor contenido de grasa y a la demanda por
los organos sexuales del mercado chino (Lluch-Belda 1969).
Ya que las poblaciones del lobo marino de California
estan sesgadas hacia las hembras, con los machos mostrando
mayores tasas de mortalidad en casi todas las edades
(Hernandez-Camacho et al. 2008b), el nimero de machos
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Genetic bottlenecks can be detected directly comparing
genetic variability from samples obtained before and after the
population reduction (e.g., Weber et al. 2004), but this
requires historical and contemporary DNA samples that are
rarely available. Alternatively, a genetic bottleneck may be
inferred from observed reduction of allelic diversity and
statistical analysis of selectively neutral genetic markers such
as microsatellites. A group of these statistical analyses,
implemented by the BOTTLENECK program (Cornuet
and Luikart 1996), compares observed heterozygosity with
the expected heterozygosity under a mutation-genetic drift
equilibrium. During population reductions (i.e., bottlenecks)
rare alleles are often lost quickly through genetic drift
because only a few individuals in the population carry them
(Hedrick 2005); however, rare alleles contribute relatively
little to the expected heterozygosity calculated assuming
mutation-genetic drift equilibrium. Therefore, in bottle-
necked populations, expected heterozygosity calculated from
the observed number of alleles is lower than the actual
observed heterozygosity (Cornuet and Luikart 1996). An
excess in observed heterozygosity can be used to identify
populations that have suffered a genetic bottleneck.

A second approach to infer a past bottleneck from genetic
data is based on the M-ratio, k/r, where K is the total number
of alleles and r is the overall range in allele size (Garza and
Williamson 2001). When a population is reduced, alleles are
lost via genetic drift, but this loss of alleles affects k and r
differently: k is reduced with each lost allele, whereas only
the loss of the largest or the smallest allele reduces r.
Therefore, recently reduced populations are expected to have
lower M-ratios than populations at equilibrium (Garza and
Williamson 2001).

The objective of this study was to determine whether past
exploitation of the California sea lion reduced genetic varia-
bility in the GC population leading to a genetic bottleneck.
We used genetic data available from five colonies in the GC
and one colony from the Pacific coast of Baja California
(data published by Gonzalez-Suarez et al. 2009). To achieve
our goal we employed four methods: comparison of allelic
diversity between colonies located in the GC (exploited) and
along the Pacific coast (presumably unexploited), the mode-
shift and Wilcoxon tests implemented by BOTTLENECK,
and the M-ratio test. In addition, bottleneck scenarios were
simulated to explore the conditions under which population
reductions are likely to result in a detectable genetic bottle-
neck. These simulations allow us to determine the magnitude
at which past exploitation would have resulted in loss of
genetic variability for the California sea lion.

MATERIAL AND METHODS
Data collection and analysis

We used available data from 10 polymorphic micro-
satellite loci that had been amplified from tissue samples
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reproductores disponibles en general es bajo en comparacion
con el de las hembras reproductoras. Consecuentemente, al
igual que en otras especies (Harris et al. 2002, Milner-
Gulland et al. 2003), una reducciéon en la abundancia de
machos debido a la caza podria haber afectado significativa-
mente la variabilidad genética y la dindmica poblacional. Por
tanto, es importante estudiar si la explotacion histdrica causéd
un cuello de botella genético en la poblacion de lobo marino
del GC.

Los cuellos de botella genéticos se pueden detectar direc-
tamente comparando la variabilidad genética de muestras
obtenidas antes y después de la reduccion poblacional (e.g.,
Weber et al. 2004), pero esto requiere de muestras historicas
y contemporaneas de ADN que raramente se tienen. Alterna-
tivamente, se puede inferir un cuello de botella genético a
partir de la reduccion observada en la diversidad alélica y de
analisis estadisticos de marcadores genéticos selectivamente
neutrales, como los microsatélites. Un grupo de estos analisis
estadisticos, implementados en el programa BOTTLENECK
(Cornuet y Luikart 1996), compara la heterocigosidad obser-
vada con la esperada bajo un equilibrio mutacion-deriva
genética. Durante las reducciones poblacionales (i.e., cuellos
de botella) es comun que los alelos raros se pierdan rapida-
mente por deriva genética ya que so6lo unos cuantos
individuos de la poblacion los tienen (Hedrick 2005); sin
embargo, tales alelos contribuyen relativamente poco a la
heterocigosidad esperada calculada bajo el supuesto de un
equilibrio mutacién-deriva genética. Por tanto, en las pobla-
ciones sujetas a un cuello de botella, la heterocigosidad espe-
rada calculada a partir del nimero de alelos observados es
menor que la heterocigosidad observada actual (Cornuet y
Luikart 1996). Se puede usar un exceso de heterocigosidad
observada para identificar las poblaciones que han sufrido un
cuello de botella.

Un segundo método para inferir un cuello de botella en el
pasado, a partir de datos genéticos, consiste en utilizar la
razon M, k/r, donde k es el niimero total de alelos y r es el
intervalo total del tamaifio alélico (Garza y Williamson 2001).
Cuando disminuye una poblacion, los alelos se pierden por
deriva genética, pero esta pérdida de alelos afecta estos dos
parametros de forma diferente: k se reduce con cada alelo
perdido, mientras que r se reduce sélo con la pérdida del
alelo mas grande o mas pequefio. De esta forma, se espera
que las poblaciones recientemente reducidas presenten
razones M mas bajas que las poblaciones en equilibrio (Garza
y Williamson 2001).

El objetivo de este trabajo fue determinar si la explota-
cion historica del lobo marino de California redujo la variabi-
lidad genética de la poblacion del GC y caus6 un cuello de
botella genético. Se utilizaron datos genéticos disponibles de
cinco colonias del GC y una colonia de la costa del Océano
Pacifico de Baja California (datos publicados por Gonzalez-
Suarez et al. 2009). Para lograr nuestro objetivo se emplearon
cuatro métodos: la comparacion de la diversidad alélica entre
las colonias del GC (explotadas) y la colonia de la costa del
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collected from California sea lion pups (young of the year)
at six Mexican breeding colonies (fig. 1, table 1). This dataset
is deposited in the Dryad Digital Repository (http://
hdl.handle.net/10255/dryad.1454) and will become freely
available on April 2011. Details of the data collection, DNA
extraction, and microsatellite amplification are provided by
Gonzalez-Suarez et al. (2009). All loci were in Hardy-
Weinberg equilibrium and linkage equilibrium (see results in
Gonzalez-Suarez et al. 2009).

To test for indications of a genetic bottleneck, we first
used the BOTTLENECK 1.2.02 program (Cornuet and
Luikart 1996) considering two mutation models for micro-
satellites. The infinite allele mutation model and the stepwise
mutation model represent the extremes of a continuum of
possible mutation models, with microsatellite loci generally
following an intermediate two-phase mutation model (TPM)
with a high proportion of single-step mutations (DiRienzo et
al. 1994). We considered two versions of the TPM as the
most likely for microsatellites: default TPM and Piry et al.
TPM. The default TPM assumes 70% single-step and 30%
multi-step mutations, with a variance of 30 in the multi-step
mutations. The Piry et al. TPM assumes 95% single-step and
5% multi-step mutations, with a variance of 12 (Piry et al.
1999). For each mutation model, we performed tests for
heterozygote excess and deficit using the one-tailed
Wilcoxon test (with 10,000 replications) and the mode-shift
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Figure 1. Location of the California sea lion colonies
sampled along the Gulf of California and the Pacific coast of
the Baja California Peninsula, Mexico.

Figura 1. Localizacion de las colonias de lobo marino de
California estudiadas en el Golfo de California y la costa del
Pacifico de la peninsula de Baja California, México.

1. San Jorge, 2. Los Lobos, 3. Granito, 4. San Esteban,
5. Los Islotes, 6. San Benito.
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Pacifico (presumiblemente no explotada), las pruebas de
cambio modal y Wilcoxon implementadas en el programa
BOTTLENECK, vy la prueba de la razén M. Ademas, se
simularon escenarios de cuellos de botella para explorar las
condiciones bajo las cuales las reducciones poblacionales
posiblemente ocasionen un cuello de botella genético detec-
table. Estas simulaciones permiten determinar la magnitud a
la cual la explotacion histdrica hubiese causado una pérdida
de la variabilidad genética del lobo marino de California.

MATERIALES Y METODOS
Recoleccion y analisis de datos

Se usaron datos disponibles de 10 marcadores microsate-
litales polimorficos que fueron amplificados de muestras de
tejido tomadas de crias de lobo marino de California de seis
colonias reproductoras de México (fig. 1, tabla 1). Este
conjunto de datos se encuentra en el Repositorio Digital de
Dryad (http://hdl.handle.net/10255/dryad.1454) y estara
libremente disponible a partir de abril de 2011. Los detalles
de la recoleccion de datos, la extraccion del ADN y la ampli-
ficacién de los microsatélites se encuentran en Gonzalez-
Suarez et al. (2009). Todos los marcadores estuvieron en
equilibrio de Hardy-Weinberg y de ligamiento (ver resultados
en Gonzalez-Suarez et al. 2009).

Para probar si existian indicaciones de un cuello de bote-
lla genético, primero se utilizo el programa BOTTLENECK
1.2.02 (Cornuet y Luikart 1996) considerando dos modelos
mutacionales para los microsatélites. El modelo de alelos
infinitos y el modelo mutacional por pasos representan los
extremos de un continuo de posibles modelos de mutacion,
con los marcadores microsatelitales generalmente siguiendo
un modelo intermedio de mutacién de dos fases (TPM por
sus siglas en inglés) con una alta proporcion de mutaciones
unipaso (DiRienzo et al. 1994). Se consideraron dos versio-
nes del TPM como las més probables para microsatélites: el
TPM por defecto y el de Piry et al. El primero asume 70% de
mutaciones unipaso y 30% de mutaciones multipaso, con una
varianza de 30 en las mutaciones multipaso. El segundo
asume 95% de mutaciones unipaso y 5% de mutaciones
multipaso, con una varianza de 12 (Piry et al. 1999). Para
cada modelo de mutacion se determind el exceso y déficit de
heterocigotos usando la prueba de Wilcoxon de una cola (con
10,000 réplicas) y la prueba de cambio modal (Piry et al.
1999). Estas dos pruebas se realizaron independientemente
para cada colonia y también para tres unidades de manejo
recientemente definidas (Gonzalez-Suarez et al. 2009): Alto
Golfo, representada por las islas San Jorge, Los Lobos,
Granito y San Esteban; Baja Sur, representada por la Isla Los
Islotes; y Pacifico, representada por la Isla San Benito.

También se utilizaron los programas M _P VAL vy
CRITICAL M para determinar el valor de la razon M obser-
vada y la razén M critica (M,). Estos programas requieren tres
parametros que son dificiles de estimar empiricamente: A,
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Table 1. Observed (Hp) and expected (Hg) heterozygosity calculated with the Wilcoxon test results using BOTTLENECK for six
colonies of the California sea lion in Mexico; n is the sample size. The Wilcoxon test provides the probabilities of heterozygosity excess
and deficit under two versions of the two-phase mutation model (TPM).

Tabla 1. Heterocigosidad observada (Hg) y esperada (Hg) calculadas con los resultados de la prueba de Wilcoxon usando el programa
BOTTLENECK para seis colonias de lobo marino de California en México; n es el tamafio de la muestra. La prueba de Wilcoxon
proporciona la probabilidad de exceso y déficit de heterocigosidad bajo dos versiones del modelo de mutacion de dos fases (TPM).

Colony or group n Ho He Probability
Piry et al. TPM Default TPM

Excess Deficit Excess Deficit
San Jorge 63 0.687 0.663 0.984 0.042 0.065 0.947
Los Lobos 59 0.675 0.681 0.812 0.216 0.187 0.839
Granito 63 0.683 0.703 0.784 0.246 0.278 0.754
San Esteban 60 0.698 0.689 0.884 0.138 0.065 0.947
Los Islotes 60 0.616 0.645 0.947 0.065 0.539 0.500
San Benito 50 0.688 0.682 0.722 0.312 0.042 0.984
Upper Gulf* 245 0.686 0.690 0.754 0.278 0.053 0.958

* Upper Gulf colonies (San Jorge, Los Lobos, Granito, and San Esteban) grouped together.

test (Piry et al. 1999). These two tests were performed on
each colony independently, and also considering three
recently defined management units (Gonzalez-Suarez et al.
2009): Upper Gulf, represented by the islands of San Jorge,
Los Lobos, Granito, and San Esteban; southern Baja, repre-
sented by Los Islotes Island; and Pacific, represented by San
Benito Island.

We also used the M _P VAL and CRITICAL M
programs to determine the value of the observed M-ratio and
the critical M-ratio (M,). These programs require three
parameters that are difficult to estimate empirically: A,
(average size of multi-step mutations), p (proportion of one-
step mutations), and 6 (= 4N.u, where N, is the effective
population size and p is the mutation rate). For A; we used a
value of 3.5 as recommended by Garza and Williamson
(2001). For comparison with the analysis in BOTTLENECK
we used two values for ps: 0.95 (default TPM) and 0.7 (Piry
et al. TPM). For analysis of each colony independently we
considered two likely values for 8: 0.1 and 1 (Guinand and
Scribner 2003); assuming a typical mutation rate, p = 5 X
104, these values represent effective population sizes of 50
and 500, respectively. These are realistic values considering
that the total population sizes, which are larger than effective
sizes, at these colonies range from ~400 to ~5700 (Szteren
et al. 2006). The Upper Gulf group comprises a larger popu-
lation, thus we considered 6 = 1 and 10, equivalent to N, =
500 and 5000, respectively.

Simulation analyses

The BOTTLESIM 2.6 program is designed to simulate
the genetic consequences of bottlenecks and post-bottleneck
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(tamafio promedio de mutaciones multipaso), ps (proporcion
de mutaciones unipaso) y 0 (= 4N.u, donde N, es el tamafio
efectivo de la poblacion y p es la tasa de mutacion). Para A,
se utilizé un valor de 3.5 segun lo recomendado por Garza y
Williamson (2001). Para su comparacién con el analisis en
BOTTLENECK se emplearon dos valores para p,: 0.95
(TPM por defecto) y 0.7 (TPM de Piry et al.). Para el analisis
independiente de cada colonia se consideraron dos valores
probables para 0: 0.1 y 1 (Guinand y Scribner 2003); supo-
niendo una tasa de mutacion tipica, p =5 x 10, estos valores
representan tamarfios poblacionales efectivos de 50 y 500,
respectivamente. Estos son valores realistas considerando
que los tamafios poblacionales totales, que son mayores que
los efectivos, de estas colonias varian de ~400 a ~5700
(Szteren et al. 2006). El grupo del Alto Golfo comprende una
poblacion mas grande; por tanto, se consi-der6 6 = 1 y 10,
equivalente a N, = 500 y 5000, respectivamente.

Anadlisis de simulacion

El programa BOTTLESIM 2.6 esta disefiado para simular
las consecuencias genéticas de los cuellos de botella y el
crecimiento de la poblacion después de un cuello de botella
en especies longevas (Kuo y Janzen 2003). Se usd este
programa para explorar las condiciones bajo las cuales la
explotacion historica probablememente hubiese causado un
cuello de botella genético detectable en la poblacion de lobo
marino del GC. Se defini6 una poblacién inicial con frecuen-
cias alélicas iguales a las frecuencias combinadas de todas las
muestras (combinando todas las colonias) para reflejar la
variacion total en las colonias de lobo marino. También se
estudio una poblacion inicial con frecuencias alélicas iguales
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population growth in long-lived species (Kuo and Janzen
2003). We used this program to explore the conditions under
which past exploitation would have likely resulted in a
detectable genetic bottleneck in the GC sea lion population.
We defined a founder population with allele frequencies
equal to the combined frequencies of all samples (combining
all colonies) to reflect overall variability in sea lion colonies.
We also explored a founder population with allele frequen-
cies equal to those of the San Benito colony, for which there
is no historical record of past exploitation. Results (not
shown) were qualitatively the same.

The founder population was started at 20,000 individuals,
which is an average value for the entire GC population
(Szteren et al. 2006). We assumed that 80% of the population
are females, to reflect lower survival rates of males
(Hernandez-Camacho et al. 2008b) and a polygynous mating
system in which not all adult males reproduce. We defined a
20-year lifespan, sexual maturity at age 5, and fully over-
lapping generations (Hernandez-Camacho et al. 2008a,
2008b). Although these assumptions regarding the species
biology were realistic, we explored the effect of using diffe-
rent parameter values. Results were qualitatively the same
assuming less female bias (e.g., 60% of the population are
females) and weaker polygyny (results not shown).

Exploitation was simulated by reducing the founder
population to 500, 250, 100, 75, or 50 individuals for 100
years. After the bottleneck, the population was allowed to
recover for another 100 years with an annual population
growth rate () equal to 1.067 or 1.009. These A values
correspond to the highest and lowest increasing annual
growth rates observed in sea lion colonies in the GC
(Gonzalez-Suarez et al. 2006). For each scenario, we ran
1000 iterations to calculate the mean and 95% confidence
interval of the observed heterozygosity and observed number
of alleles. We report results for two time periods: the last year
of the bottleneck and 100 years after the bottleneck.

RESULTS

Levels of observed heterozygosity (Hg) were similar
among all studied colonies, with no apparent differences
between the five GC colonies and the Pacific colony
(table 1). Similarly, the number of alleles at each locus and
allelic richness were not lower for the GC colonies compared
with the Pacific colony (table 2).

BOTTLENECK results

In general, there was no evidence of heterozygosity
excess in the studied sea lion colonies or the Upper Gulf
group, except for San Benito, under the default TPM
(table 1). Under the Piry et al. TPM, we detected heterozy-
gosity deficiency (indicative of migration or population
expansion) at San Jorge (table 1). However, neither of these
results remained significant after a Bonferroni correction
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a las de la colonia de San Benito, para la cual no existen
registros historicos de explotaciéon. Los resultados (no
mostrados) fueron cualitativamente iguales.

La poblacion inicial se establecié con 20,000 individuos,
un valor promedio para toda la poblacion del GC (Szteren
etal. 2006). Se supuso que 80% de la poblacion eran
hembras para reflejar las menores tasas de supervivencia de
los machos (Hernandez-Camacho et al. 2008b) y un sistema
poligamo en donde no todos los machos se reproducen. Se
definié un ciclo de vida de 20 afios, maduracién sexual a
los 5 afnos de edad y generaciones solapadas (Hernandez-
Camacho et al. 2008a, 2008b). A pesar de que estas suposi-
ciones en cuanto a la biologia de la especie son realistas, se
probo el efecto de usar diferentes valores de los parametros.
Los resultados fueron cualitativamente similares suponiendo
un menor sesgo hacia las hembras (e.g., 60% de la poblacion
conformado por hembras) y un menor nivel de poliginia
(resultados no mostrados).

La explotacion se simuld reduciendo la poblacion inicial
a 500, 250, 100, 75 6 50 individuos durante 100 afios.
Después del cuello de botella, se dejo recuperar la poblacion
por otros 100 afios con una tasa de crecimiento anual de la
poblacion (A) igual a 1.067 6 1.009. Estos valores de A
corresponden a la mayor y menor tasa de crecimiento anual
observada en las colonias de lobos marinos en el GC
(Gonzalez-Suarez et al. 2006). Para cada escenario se
corrieron 1000 iteraciones a fin de calcular la media y el
intervalo de confianza de 95% de la heterocigosidad obser-
vada y del nimero de alelos observados. Los resultados se
presentan para dos periodos de tiempo: el ultimo afio del
cuello de botella y 100 afios después del cuello de botella.

RESULTADOS

Los niveles de heterocigosidad observada (Hp) fueron
similares entre todas las colonias estudiadas, sin ninguna
diferencia aparente entre las cinco colonias del GC y la
colonia del Pacifico (tabla 1). Asimismo, el nimero de alelos
en cada marcador polimérfico y la riqueza alélica no fueron
menores para las colonias del GC en comparacion con la
colonia del Pacifico (tabla 2).

Resultados del programa BOTTLENECK

En general, no hubo evidencia de un exceso de heteroci-
gosidad en las colonias estudiadas del Alto Golfo, excepto
para la de San Benito bajo el TPM por defecto (tabla 1). Bajo
el TPM de Piry et al., se detectd deficiencia heterocigotica
(un patrén indicativo de migracion o expansion de la
poblacion) en la colonia de San Jorge (tabla 1). No obstante,
estos dos resultados no permanecieron significativos después
de una correccion de Bonferroni para pruebas multiples.
Ademas, la prueba de cambio modal (fig. 2) no arrojo
evidencia de un cuello de botella reciente en ninguna colonia.
La distribucion de las frecuencias alélicas no mostr6 una
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Table 2. Number of alleles and allelic richness (in parentheses) per locus detected in six California sea lion colonies in Mexico.

Calculated with FSTAT.

Tabla 2. Numero de alelos y riqueza alélica (en paréntesis) por marcador polimoérfico en seis colonias de lobo marino de California en

México. Calculado con FSTAT.

Locus San Jorge Los Lobos Granito San Esteban Los Islotes San Benito
SGPv9 5(4.99) 6(5.69) 6 (5.75) 6 (6.00) 5(4.97) 7 (7.00)
SGPvl1l 4 (4.00) 5(4.85) 4 (4.00) 5(4.83) 6(5.83) 5(5.00)
Pvc29 12 (11.54) 15 (14.62) 17 (15.67) 13 (12.80) 14 (13.77) 10 (10.00)
OrrFCB24 11 (10.92) 11 (10.82) 10 (9.98) 9(8.99) 10 (9.99) 9 (9.00)
ZcCgDhl.8 6(5.79) 6 (6.00) 6(5.79) 6(5.83) 6 (6.00) 6 (6.00)
ZcCgDh3.6 6 (6.00) 6 (6.00) 7 (6.96) 7 (7.00) 7 (7.00) 7 (7.00)
ZcCgDh4.7 3 (3.00) 4(3.97) 3 (3.00) 3 (3.00) 3(3.00) 3(3.00)
ZcCgDh5.16 7 (6.75) 6 (6.00) 9(8.58) 8(7.78) 6(5.82) 5(5.00)
ZcCgDh5.8 10 (9.36) 9 (8.69) 11 (10.75) 12 (11.53) 10 (9.95) 11 (11.00)
ZcCgDh48 4 (3.79) 3(3.00) 5(4.75) 5(5.00) 5(4.83) 5(5.00)
Mean 6.8 (6.62) 7.1 (6.96) 7.8 (7.52) 7.4 (7.28) 7.2(7.12) 6.8 (6.80)

for multiple tests. In addition, the mode-shift test (fig. 2)
provided no evidence of a recent bottleneck in any colony.
The distribution of allele frequencies did not show a signifi-
cant departure from a normal L-shape (i.e., more alleles at
low frequencies).

M-ratio results

Analyses of the M-ratio provided little support for a past
bottleneck (fig. 3). Only under the Piry et al. TPM with 6 =
0.1 (N, = 50) was the observed M-ratio significantly lower
than M, for three colonies (San Jorge, Los Islotes, and San
Benito; fig. 3), but was not lower for the other three. Under
all other scenarios, the observed M-ratios were larger or not
different from the calculated M, (fig. 3), providing no support
for a historical bottleneck. The observed M-ratio for the
Upper Gulf group was 0.884 (95% confidence interval:
0.871-0.898), which is larger than the M under the Piry et al.
TPM (0.796 for N, = 5000, and 0.843 for N, = 500) and the
default TPM (0.682 for N, = 5000, and 0.638 for N, = 500).
In addition, all observed M-ratios were higher than the
suggested threshold of 0.68, which identifies bottlenecked
populations (Garza and Williamson 2001).

Simulation results

Simulation results from BOTTLESIM revealed that
reductions in the observed number of alleles were detectable
100 years after a bottleneck that reduced the population to
100 individuals or less (fig. 4). Observed heterozygosity was
reduced at a lower rate than the observed number of alleles
(as expected by the loss of rare alleles), and reductions
were only detectable when populations had been reduced to
75-50 individuals (fig. 4). For explored the parameter range,
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desviacion significativa de la curva normal en forma de L
(i.e., mas alelos a frecuencias bajas).

Resultados de la razon M

El andlisis de la razén M proporciond poco apoyo a la
ocurrencia de un cuello de botella en el pasado (fig. 3). Bajo
el TPM de Piry et al. con 8 = 0.1 (N, = 50), la razén M obser-
vada fue significativamente menor que la M, para tres de las
seis colonias (San Jorge, Los Islotes y San Benito; fig. 3).
Bajo todos los otros escenarios, las razones M observadas
fueron mayores o similares que las M, calculadas (fig. 3), lo
cual no sustenta un cuello de botella histérico. La razéon M
observada para el grupo del Alto Golfo fue 0.884 (intervalo
de confianza de 95%: 0.871-0.898), que es mayor que la M,
bajo el TPM de Piry et al. (0.796 para N, = 5000 y 0.843 para
Ne = 500) y el TPM por defecto (0.682 para N, = 5000 y
0.638 para N, = 500). Ademas, todas las razones M obser-
vadas fueron mayores que el umbral sugerido de 0.68, el cual
identifica poblaciones que han sufrido un cuello de botella
(Garza y Williamson 2001).

Resultados del analisis de simulacién

Los resultados del programa BOTTLESIM mostraron que
las reducciones en el nimero de alelos observados podrian
ser detectables 100 afios después de un cuello de botella que
redujese la poblacion a 100 individuos o menos (fig. 4). La
heterocigosidad observada disminuy6 a una menor tasa que
el nimero de alelos observados (como era de esperarse por la
pérdida de alelos raros) y las reducciones sélo fueron detecta-
bles cuando las poblaciones habian disminuido a 75-50
individuos (fig. 4). Para el intervalo de parametros probado,
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BOTTLESIM could not simulate bottlenecks of fewer than
50 individuals (populations went extinct).

DiscussION

Overall, our results suggest that the California sea lion
population in the GC did not experience a genetic bottleneck
as a result of human exploitation in the 19th and 20th
centuries. Bottlenecked populations are expected to exhibit
reduced genetic variability compared with unexploited popu-
lations (Hedrick 1995). Here, the levels of observed
heterozygosity (table 1) and allelic richness (table 2) were
similar among all studied colonies, with no apparent differ-
ences between the five GC colonies and the Pacific colony.
Similarly, the results from BOTTLENECK provided no
support for a past bottleneck in the GC after a Bonferroni
correction for multiple tests. Even without this correction,
which may be overly conservative (Narum 2006), there
was no consistent evidence of heterozygosity excess across
mutation scenarios (table 1) and no departure from the
normal L-shape curve in the mode-shift test (fig. 2).

Results from the M-ratio test also suggested that no bot-
tleneck had occurred, except in three colonies when we
assumed the Piry et al. TPM and an effective population size
of 50 (fig. 3). The M-ratio is expected to retain information
about the demographic history for longer periods than

Proportion of alleles

Cy ClaSSeS

Figure 2. Frequency distributions of alleles at 10 amplified
microsatellite loci in California sea lions as obtained from the
mode-shift test in the BOTTLENECK program. Each bar
represents the proportion of alleles found in each frequency
category in each population.

Figura 2. Distribucion de frecuencias de los alelos en 10
marcadores polimorficos microsatelitales amplificados en
lobos marinos de California segun la prueba de cambio modal
en el programa BOTTLENECK. Cada barra representa la
proporcion de alelos encontrados en cada categoria de
frecuencia en cada poblacion.
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el programa BOTTLESIM no pudo simular cuellos de botella
con menos de 50 individuos (las poblaciones se extinguian).

DiscusioN

Nuestros resultados sugieren que la poblacion del lobo
marino de California en el GC no suftié un cuello de botella
genético como consecuencia de la explotacion humana
durante los siglos XIX y XX. Las poblaciones que atraviesan
por un cuello de botella deberian mostrar una variabilidad
genética reducida en comparacion con las poblaciones no
explotadas (Hedrick 1995). Los niveles de heterocigosidad
observada (tabla 1) y de riqueza alélica (tabla 2) fueron
similares entre todas las colonias estudiadas, sin diferencias
aparentes entre las cinco colonias del GC y la colonia del
Pacifico. Asimismo, los resultados del programa BOTTLE-
NECK no sustentaron la ocurrencia de un cuello de botella
en el GC después de una correccion de Bonferroni para
pruebas multiples. Aun sin esta correccion, la cual podria ser
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Figure 3. Observed and critical M-ratios for six colonies of the
California sea lion in Mexico. Symbols are observed M-ratios,
with 95% confidence intervals, estimated over all loci. Critical
M-ratios (M.) are represented by lines and were calculated
under several assumed scenarios: the black solid and dashed
lines represent the Piry et al. two-phase model (TPM; 6 = 0.1
and 1, respectively), and the dark grey solid and dashed lines
represent the default TPM (0 = 0.1 and 1, respectively); Aq =
3.5 in all scenarios.

Figura 3. Razones M observadas y criticas para seis colonias
del lobo marino de California en México. Los simbolos
representan las razones M observadas, con intervalos de
confianza de 95%, estimadas para todos los marcadores. Las
razones M criticas (M) estan representadas por lineas y se
calcularon bajo varios escenarios: las lineas negra sdlida y
negra discontinua representan el modelo de dos fases (TPM)
de Piry et al. (6 = 0.1 y 1, respectivamente), y las lineas gris
solida y gris discontinua representan el TPM por defecto (6 =
0.1y 1, respectivamente); Ag = 3.5 en todos los escenarios.
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methods based on changes in rare alleles and heterozygosity
such as those implemented by BOTTLENECK (Garza and
Williamson 2001). Therefore, these M-ratio results could
reflect an older genetic bottleneck that occurred only in the
colonies from San Jorge, Los Islotes, and San Benito;
however, historical records suggest that these three colonies
were not heavily exploited (Lluch-Belda 1969) and our
analysis did not consistently reveal a bottleneck for these
colonies (for other mutation models or effective population
sizes). We therefore find that overall our results are more
consistent with the conclusion that past exploitation of
California sea lions in the GC did not cause a genetic bottle-
neck.

Reductions in population size are not always accompa-
nied by genetic bottlenecks (Busch et al. 2007, Heller et al.
2008), particularly if historical effective population sizes
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demasiado conservadora (Narum 2006), no se encontrd
evidencia consistente de un exceso de heterocigosidad en los
escenarios de mutacion (tabla 1), ni se observo desviacion de
la curva normal en forma de L en la prueba de cambio modal
(fig. 2).

Los resultados de la prueba de la razén M también
indicaron que no habia ocurrido un cuello de botella, excepto
en tres colonias cuando se usé el TPM de Piry et al. y un
tamafio efectivo de la poblacion de 50 (fig. 3). Se supone que
la razon M retiene informacién de la historia demografica
durante un periodo mas largo que los métodos basados en
cambios de los alelos raros y la heterocigosidad, tales como
los implementados en BOTTLENECK (Garza y Williamson
2001). Por tanto, estos resultados podrian reflejar un cuello
de botella genético mas antiguo que ocurrié so6lo en las colo-
nias de San Jorge, Los Islotes y San Benito; sin embargo, los
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Figure 4. Simulation results based on the BOTTLESIM program. Bars represent mean values and error bars are 95% confidence
intervals. (a) Observed number of alleles with an annual growth rate after the bottleneck (1) of 1.009. (b) Observed number of alleles
with A = 1.067. (c) Observed heterozygosity with L = 1.009. (d) Observed heterozygosity with A = 1.067. The dashed line provides a
reference for the lower 95% confidence interval of the founder population.

Figura 4. Resultados del analisis de simulacion con base en el programa BOTTLESIM. Las barras representan los valores medios y las
barras de error indican los intervalos de confianza de 95%. (a) Numero de alelos observados con una tasa de crecimiento anual después
del cuello de botella () de 1.009. (b) Namero de alelos observados con A = 1.067. (c) Heterocigosidad observada con A = 1.009.
(d) Heterocigosidad observada con A = 1.067. La linea discontinua proporciona una referencia para el intervalo de confianza de 95%

inferior de la poblacion inicial.
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have always been low due to fluctuations in population size
or a polygynous mating system (Pimm et al. 1989). As
California sea lions are polygynous and have historically
experienced low population sizes in the GC, even substantial
human exploitation may not have had noticeable genetic
consequences. Our simulation analyses indicate that if the
GC population had been reduced to fewer than 100-75 indi-
viduals, a loss of genetic variability would have occurred
(fig. 4). Other studies have also suggested that heterozygosity
excess is likely to be noticeable only when effective popula-
tion size (N,) falls below approximately 20—-50 (Cornuet and
Luikart 1996, Luikart et al. 1998). Therefore, fairly severe
population declines (e.g., only 400 individuals remaining)
may have occurred without resulting in a detectable genetic
bottleneck (see also Bickham et al. 1998).

Although data on the actual number of individuals killed
during these hunts or the size of the remaining population are
not available, the Mexican Fisheries Agency (Direccion
General de Pesca) estimates that an average of 400 adult
males were killed annually in the GC during the mid-20th
century (Zavala-Gonzéalez and Mellink 2000). Hunters most
likely targeted territorial males because these animals are less
likely to flee and are thus an easier target (Lluch-Belda
1969), and exploitation concentrated on sea lion colonies in
the Midriff area. We estimate that these colonies included
~676 territorial adult males (assuming that 6.9% of the
population are territorial males; Zavala-Gonzalez 1993,
Aurioles-Gamboa and Zavala-Gonzalez 1994). Therefore, an
estimated annual removal of 400 males likely represented a
considerable proportion of territorial males, yet our results
show no negative effect on nuclear genetic variability.
Genetic variability may have been maintained by bachelor
males who previously had no territories and gained reproduc-
tive opportunities. Alternatively, the estimated number of
males hunted per year may have been overestimated. Future
studies could consider variation in the Y chromosome and
could test these hypotheses, and may reveal yet unnoticed
consequences of this male-biased exploitation.

While our results indicate that past exploitation did not
reduce genetic variability, an alternative explanation is that
the implemented approaches failed to detect an existing
past genetic bottleneck. Bottlenecks that occurred more than
40-80 generations ago are unlikely to be detected by the
approaches implemented in BOTTLENECK because genetic
drift and new mutations are likely to re-establish mutation-
genetic drift equilibrium within that time frame (Luikart
etal. 1998). However, sea lion exploitation in the GC is
much more recent (<200 years or approximately 16 sea lion
generations). Furthermore, the M-ratio is expected to retain
the signal of a bottleneck for longer periods (Garza and
Williamson 2001). Therefore, we should have detected the
signal of a bottleneck caused by human exploitation during
the 19th and 20th centuries.
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registros historicos de estas tres colonias indican que no
fueron explotadas intensamente (Lluch-Belda 1969) y nues-
tro analisis no mostré de forma consistente un cuello de
botella para ellas (para otros modelos de mutacioén o tamafios
efectivos de la poblacidn). Es por esto que consideramos que,
en general, nuestros resultados son mas consistentes con la
conclusion de que la explotacion historica del lobo marino de
California en el GC no caus6 un cuello de botella genético.

Las reducciones en el tamafio de la poblaciéon no siempre
van acompafiadas por cuellos de botella genéticos (Busch
et al. 2007, Heller et al. 2008), especialmente si los tamafios
efectivos historicos siempre han sido bajos debido a sus
fluctuaciones o a un sistema poligamo de reproduccion
(Pimm et al. 1989). Ya que los lobos marinos de California
son poligamos e histéricamente han presentado tamafios
poblacionales pequefios en el GC, es posible que aun una
explotacion humana considerable no hubiera tenido conse-
cuencias genéticas notables. Los analisis de simulacion indi-
caron que si la poblacion del GC hubiese disminuido hasta
quedar 100-75 individuos, se hubiera detectado una
reduccion de la variabilidad genética (fig. 4). Otros estudios
también han sugerido la posibilidad de que un exceso de
heterocigosidad solo sea notable cuando el tamaiio efectivo
de la poblacion (N,) es menor de 20-50 individuos (Cornuet
y Luikart 1996, Luikart et al. 1998). Por tanto, podrian haber
ocurrido reducciones bastante severas de la poblacion (e.g.,
quedando sélo 400 individuos) sin que se haya presentado un
cuello de botella genético detectable (ver Bickham et al.
1998).

A pesar de que no existen datos sobre el nimero actual de
individuos cazados o del tamafio de la poblacion restante, la
Direccion General de Pesca de México estima que un
promedio de 400 machos adultos fueron matados anualmente
en el GC a mediados del siglo XX (Zavala-Gonzalez y
Mellink 2000). Los cazadores probablemente se enfocaron en
los machos territoriales ya que hay menos probabilidad de
que estos animales huyan y consecuentemente son presa
mas facil (Lluch-Belda 1969); asimismo, la explotacion se
concentro sobre las colonias en el area de las grandes islas.
Estimamos que estas colonias incluian ~676 machos adultos
territoriales (suponiendo que 6.9% de la poblacion son
machos territoriales; Zavala-Gonzalez 1993, Aurioles-
Gamboa y Zavala-Gonzalez 1994). La caza estimada de 400
machos representaria una gran proporcion de machos territo-
riales, pero nuestros resultados no muestran un efecto
negativo en la variabilidad genética nuclear. Es posible que la
variabilidad genética se haya mantenido gracias a los machos
solteros que no tenian territorios propios y ganaron oportuni-
dades reproductivas. Por otro lado, es posible que se haya
sobreestimado el nimero de machos cazados por afio.
Estudios futuros podrian considerar la variacién en el cromo-
soma Y para probar estas hipétesis, y quiza podrian mostrar
consecuencias aun no contempladas de esta explotacion
sesgada hacia los machos.
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It is also important to consider that the power to detect a
genetic bottleneck increases with the number of loci analyzed
(Cornuet and Luikart 1996, Garza and Williamson 2001), and
studies based on low numbers of loci may not detect even
recent past bottlenecks. We analyzed data from 10 micro-
satellite loci, which is within the range of the recommended
number of loci for BOTTLENECK (Luikart and Cornuet
1998), although close to the lower limit. Recent studies
suggest that the approaches we used allow detection of
bottlenecks with as few as 6-7 loci (e.g., Spear et al. 2006,
Charlier et al. 2008). Moreover, our simulation analysis
revealed that a genetic bottleneck could have been detected if
population reductions had been diminished to fewer than 100
individuals (fig. 4), which is within the range of the observed
size of bottlenecked populations in pinnipeds (Hoelzel et al.
1993). Therefore, our results are unlikely to be due to a
failure of the approaches used.

In conclusion, our results show that recent human exploi-
tation did not result in a genetic bottleneck in California sea
lion colonies in the GC. Past exploitation was likely not
severe enough to reduce genetic variability in these colonies.
Nevertheless, past exploitation may have affected the social
structure, fitness, and population dynamics in this area. The
removal of adult males was concentrated on a few sea lion
colonies. In these colonies, a high proportion of the adult
males was likely killed (Lluch-Belda 1969) despite a regula-
tion limiting the take to <50% of the adult males (Zavala-
Gonzalez and Mellink 2000). In addition, sea lion males were
removed during the hunting season (15 May to 15 July),
which coincided with the sea lion breeding season, a time
when males aggregate in colonies and defend territories.

Hunters often killed the largest and more aggressive
males (Lluch-Belda 1969). Therefore, hunts may have
targeted more fit animals with potential social and demo-
graphic consequences (Coltman et al. 2003). For example, if
less fit males sired most offspring after the removal of
stronger males, the fitness of the future generations could be
compromised. Similarly, hunts may have disrupted the struc-
ture of the colony by reducing male tenure in the territories.
The sudden disappearance of territorial males (those hunted)
likely resulted in fights among males looking to occupy the
empty territories and consequently, increased stress among
females and pups at these sites.

Finally, the mere presence of the hunting crews among
the colonies could also have impacted sea lions as human
presence has been linked to reduced reproductive rates
(French SS, unpub. data). These negative effects could
explain why the colonies where the hunts concentrated have
exhibited substantial population declines in the last two
decades (Szteren et al. 2006). Our study shows that the
reason for these declines is not a reduction in genetic
variability, but we hypothesized that these other impacts of
past exploitation could have contributed to the contemporary
patterns in population trends.
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Aunque nuestros reultados sugieren que la explotacion
historica no redujo la variabilidad genética, una explicacion
alternativa es que los métodos implementados no lograron
detectar un cuello de botella genético que si occurio en el
pasado. Es poco probable que se detecten los cuellos de
botella que ocurrieron hace mas de 40-80 generaciones con
los métodos implementados en BOTTLENECK, ya que la
deriva genética y las nuevas mutaciones reestablecen el equi-
librio mutacion-deriva genética dentro de ese periodo de
tiempo (Luikart et al. 1998). Sin embargo, la explotacion del
lobo marino en el GC es mucho mas reciente (<200 afios o
aproximadamente 16 generaciones). Ademas, se supone que
la razén M retiene las sefiales de un cuello de botella por
mayores periodos (Garza y Williamson 2001). Por ende,
deberiamos haber detectado las sefiales de un cuello de bote-
lla causado por la explotacion humana durante los siglos XIX
y XX.

También es importante considerar que la capacidad de
detectar un cuello de botella genético incrementa con el
nimero de marcadores analizados (Cornuet y Luikart 1996,
Garza y Williamson 2001), y los trabajos basados en un
numero bajo de éstos posiblemente no detecten incluso los
cuellos de botellas recientes. Se analizaron datos de 10
marcadores microsatelitales, un nimero dentro del intervalo
recomendado para el programa BOTTLENECK (Luikart y
Cornuet 1998), aunque cerca del limite inferior. Estudios
recientes sugieren que los métodos aqui utilizados permiten
detectar cuellos de botella con 67 marcadores (e.g., Spear
et al. 2006, Charlier et al. 2008). Nuestro andlisis de simula-
cion indicd que un cuello de botella genético podria haberse
detectado si se hubiese reducido la poblaciéon a menos de 100
individuos (fig. 4), lo cual estd dentro del intervalo del
tamafio observado de poblaciones de pinipedos sujetos a un
cuello de botella (Hoelzel et al. 1993). Consecuentemente, es
poco probable que nuestros resultados se deban a una falla en
los métodos usados.

En conclusion, nuestros resultados muestran que la
reciente explotacion humana no caus6 un cuello de botella
genético en las colonias del lobo marino de California en el
GC. La explotacion historica no fue lo suficientemente
intensa para reducir la variabilidad genética de esta pobla-
ciéon. No obstante, la explotacion podria haber afectado la
estructura social, la aptitud y la dindmica poblacional en esta
zona. La caceria se concentrd en unas cuantas colonias donde
probablemente se maté una alta proporcion de los machos
adultos (Lluch-Belda 1969), a pesar de una regulacion que
limitaba la toma a <50% de los machos adultos (Zavala-
Gonzalez y Mellink 2000). Ademas, se sustrayeron los
machos durante la temporada de caza (15 de mayo a 15 de
julio), que coincide con la temporada de reproduccion,
cuando los machos se agrupan en las colonias y defienden sus
territorios.

Los cazadores frecuentemente mataban a los machos mas
grandes y agresivos (Lluch-Belda 1969), probablemente los
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